高二化学电子云与原子轨道

高二化学电子云与原子轨道
高二化学电子云与原子轨道

第一节原子结构

第三课时

一、教学目标

1. 了解电子云和原子轨道的含义。

2. 知道原子核外电子的排布遵循能量最低原理

二、教学重难点

1. 原子轨道的含义

2. 泡利原理和洪特规则

三、教学方法

以科学探究、思考与交流等方式,探究泡利原则、洪特规则以及原子结构之间的关系,充分认识结构决定性质的化学基础

四、教具准备

多媒体

【教学过程】

【导入】

复习构造原理

Cr 1s22s22p63s23p63d54s1

【引入】电子在核外空间运动,能否用宏观的牛顿运动定律来描述呢?

五、电子云和原子轨道:

1. 电子云

宏观物体的运动特征:

可以准确地测出它们在某一时刻所处的位置及运行的速度;可以描画它们的运动轨迹。

微观物体的运动特征:核外电子质量小,运动空间小,运动速率大。无确定的轨道,无

法描述其运动轨迹。无法计算电子在某一刻所在的位置,只能指出其在核外空间某处出现的

机会多少。

【讲述】电子运动的特点:

①质量极小②运动空间极小③极高速运动。因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。

概率分布图看起来像一片云雾,因而被形象地称作电子云。常把电子出现的概率约为

90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。

2. 原子轨道

【讲述】S的原子轨道是球形的,能层序数越大,原子轨道的半径越大。

P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以P x、P y、P z为符号。P原子轨道的平均半径也随能层序数增大而增大。

【讲述】s电子的原子轨道都是球形的(原子核位于球心),能层序数越大,原子

轨道的半径越大。这是由于1s,2s,3s,,电子的能量依次增高,电子在离核

更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理

解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s

电子比1s电子能量高,克服原子核的吸引在离核更远的空间出现的概率就比1s

大,因而2s电子云必然比1s电子云更扩散。

3.轨道表示式w.w.w.k.s.5.u.c.o.m

(1)表示:用一个小方框表示一个原子轨道,在方框中用“↑”或“↓”表示该轨道上排入的电子的式子。

+7 2 5

电子排布式:1s2 2s22p3

轨道表示式:

1S 2S 2P

(2)原则

泡利原理:内容:每个原子轨道上最多只能容纳两个自旋状态不同的电子。即每个

原子轨道最多只容纳两个电子。

洪特规则:内容:原子核外电子在能量相同的各个轨道上排布时,电子

尽量分占不同的原子轨道,且自旋状态相同,这样整个原子的能量最低。

全充满(p6,d10,f14)全空时(p0,d0,f0)半充满(p3,d5,f7)

【讲述】量子力学告诉我们:ns能级各有一个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道.而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。w.w.w.k.s.5.u.c.o.m

一个原子轨道里最多只能容纳2个电子,而且自旋方向相反,这个原理成为泡利原理。

推理各电子层的轨道数和容纳的电子数。

当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,

这个规则是洪特规则。w.w.w.k.s.5.u.c.o.m

【练习】

写出5、6、7、8、9号元素核外电子排布轨道式。并记住各主族元素最外层电子排布轨道

式的特点:(成对电子对的数目、未成对电子数和它占据的轨道。

w.w.w.k.s.5.u.c.o.m

【思考】下列表示的是第二周期中一些原子的核外电子排布,请说出每种符号的意义及从中获得的一些信息。

【思考】写出24号、29号元素的电子排布式,价电子排布轨道式,阅读周期表,比较有

什么不同,为什么?从元素周期表中查出铜、银、金的外围电子层排布。它们是否符合构

造原理?

【板书设计】

五、电子云和原子轨道:

1. 电子云w.w.w.k.s.5.u.c.o.m

2. 原子轨道

3. 轨道表示式

电子云与原子轨道教案

第一节原子结构(第二课时) 【教学目标】 知识目标: 1.原子核外电子运动的特征。 2.了解核外电子的分层排布规律,能画出1~18号元素的原子结构示意图 能力目标: 1.空间的想象能力和抽象思维能力。 2.分析推理能力。 情感目标: 1.培养学生的唯物观,世界是物质的。 2.物质的运动是有规律的。 3.培养学生用普遍联系的观点分析问题。 教学重点:原子核外电子的排布规律 教学难点:原子核外电子运动的特征,电子云,原子核外电子的排布规律。 教学过程: 【引入】普通物体的运动有固定的轨迹,可以测定或根据一定的数据计算出来在某一时刻的位置,并且能描绘出其运动轨迹。而原子核外电子的运动没有固定的轨迹,不能测定或计算出电子在某一时刻的位置,也无法描绘出其运动轨迹。但是电子的运动并不是毫无规律可循的。今天我们将学习有关核外电子运动的知识。 【板书】二、电子云与原子结构 【讲解】首先,我们来总结一下核外电子的运动特征 【板书】1、原子核外电子的运动特征 (1)电子的质量很小,只有9.11×10-31千克; (2)核外电子的运动范围很小(相对于宏观物体而言); (3)电子的运动速度很大。 【提问】如何描述核外电子的运动状态呢?(以氢原子为例) 【讲解】科学家是用这种方法来描述的,在一定时间间隔内电子在原子核外出现概率的统计,电子每出现一次,在图中就增加一个小点,可以想象成你手持一架虚拟的高速照相机拍摄电子,然后把所有照片叠加在一起得到的图像。由此得到的概率分布图看起来像一片云雾,因而被形象的称为电子云。(结合图讲解) 【板书】2、电子云 【提问】前面我们讲解的是核外只有1个电子的氢原子的电子云图,也就是1S电子的电子云图,且电子云是球形的。那么是不是所有的原子的核外电子的电子云都是球形的呢?【讲解】答案是否定的,根据科学家的研究,P电子的电子云形状呈纺锤形(或无柄亚铃形);d电子云是花瓣形。像这种电子云的轮廓图我们又称为原子轨道 【板书】3、原子轨道 【讲解】像书上的图1-12是S能级的原子轨道,且随着能层序数n的增大,原子轨道半径也增大。这是由于1S、2S、3S……电子的能量依次增高,电子在离核更远的区域出现的概率增高,电子云就向更大的空间扩展。从图1-13可见,跟S电子不同,P电子的原子轨道是纺锤形的,每个P能级有3个原子轨道,他们相互垂直,分别以Px、Py、Pz为符号。且P电子原子轨道的平均半径也随n增大而增大。

电子云

电子云 1简介 电子云是物理学、化学中的一项概念。 电子云是近代对电子用统计的方法,在核外空间分布方式的形象描绘,它的区别在于行星轨道式模型。电子有波粒二象性,它不像宏观物体的运动那样有确定的轨道,因此画不出它的运动轨迹。不能预言它在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少。为此,就以单位体积内电子出现几率,即几率密度大小,用小白点的疏密来表示。小白点密处表示电子出现的几率密度大,小白点疏处几率密度小,看上去好像一片带负电的云状物笼罩在原子核周围,因此叫电子云。在量子化学中,用一个波函数Ψ(x,y,z)表征电子的运动状态,并且用它的模的平方|Ψ|2值表示单位体积内电子在核外空间某处出现的几率,即几率密度,所以电子云实际上就是|Ψ|2在空间的分布。研究电子云的空间分布主要包括它的径向分布和角度分布两个方面。径向分布探求电子出现的几率大小和离核远近的关系,被看作在半径为r,厚度为dr的薄球壳内电子出现的几率。角度分布探究电子出现的几率和角度的关系。例如s态电子,角度分布呈球形对称,同一球面上不同角度方向上电子出现的几率密度相同。p态电子呈8字形,不同角度方向上几率密度不等。有了pz的角度分布,再有n=2时2p的径向分布,就可以综合两者得到2pz的电子云图形。由于2p和3p的径向分布不同,2pz和3pz的电子云图形也不同。 2概念 电子云就是用小黑点疏密来表示空间各电子出现概率大小的一种图形。 电子云出现的几率大小 电子在原子核外很小的空间内作高速运动,其运动规律跟一般物体不同,它没有明确的轨道。根据量子力学中的测不准原理,我们不可能同时准确地测定出电子在某一时刻所处的位置和运动速度,也不能描画出它的运动轨迹。因此,人们常用一种能够表示电子在一定时间内在核外空间各处出现机会的模型来描述电子在核外的的运动。在这个模型里,

高中化学第1章原子结构与性质第1节原子结构(第2课时)能量最低原理电子云与原子轨道学业分层测评新人教选

能量最低原理 电子云与原子轨道 (建议用时:45分钟) [学业达标] 1.图中所发生的现象与电子的跃迁无关的是( ) 【解析】燃放烟火、霓虹灯、燃烧蜡烛等获得的光能都是电子跃迁时能量以光的形式释放出来导致的,而平面镜成像则是光线反射的结果。 【答案】 D 2.X、Y、Z三种元素的原子,其最外层电子排布分别为n s1、3s23p1和2s22p4,由这三种元素组成的化合物的化学式可能是( ) A.X2YZ3B.X2YZ2 C.XYZ2D.XYZ3 【解析】最外层电子排布为3s23p1和2s22p4的元素分别是Al和O,它们的化合价分别为+3、-2。最外层电子排布为n s1的元素化合价为+1,根据化合价代数和为0知C项符合题意。 【答案】 C 3.图1和图2分别是1s电子的概率密度分布图和原子轨道图。下列有关认识正确的是( ) A.图1中的每个小黑点表示1个电子 B.图2表示1s电子只能在球体内出现 C.图2表明1s轨道呈圆形,有无数对称轴 D.图1中的小黑点表示某一时刻,电子在核外所处的位置 【解析】电子云图中的一个小黑点只表示电子曾经在此出现过一次,A错误;图2所

示只是电子在该区域出现的几率大,在此之外也能出现,不过几率很小,B错误;1s轨道在空间呈球形而不是圆形,C错误。 【答案】 D 4.p轨道电子云形状正确叙述为( ) A.球形对称 B.对顶双球 C.极大值在x、y、z轴上的哑铃形 D.互相垂直的梅花瓣形 【解析】p轨道的电子云形状为 【答案】 C 5.下列各能级中轨道数最多的是( ) A.7s B.6p C.5d D.4f 【解析】s轨道是球形对称的,p轨道有3种伸展方向,而d轨道有5种伸展方向,f 轨道有7种伸展方向。因此7s、6p、5d、4f的原子轨道数分别为1、3、5、7。 【答案】 D 6.以下列出的是一些原子的2p能级和3d能级中电子排布的情况。其中违反了泡利原理的是( ) 【解析】泡利原理是指在一个原子轨道中最多只能容纳两个电子,且自旋状态相反,故A违反了泡利原理。 【答案】 A 7.下面是第二周期部分元素基态原子的电子排布图,据此下列说法错误的是( )

电子云与轨道

第2课时能量最低原理电子云与原子轨道 学习目标: 1.了解能量最低原理,知道基态与激发态。 2.知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道,掌握泡利原理和洪特规则。(重难点) 基础初探: 1.能量最低原理 原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 2.基态原子与激发态原子 (1)基态原子:处于最低能量的原子。 (2)激发态原子:基态原子的电子吸收能量后,电子跃迁到较高能级,变成激发态原子。 (3)基态、激发态相互转化的能量变化 3.光谱与光谱分析 (1)光谱形成原因 不同元素的原子发生跃迁时会吸收或释放不同的光。 (2)光谱分类 (3)光谱分析 在现代化学中,利用原子光谱上的特征谱线来鉴定元素的分析方法。 思考探究: (1)在国庆节、元旦、春节,我们经常放焰火来庆祝,请你思考这与原子结构有什么关系呢? (2)对充有氖气的霓虹灯管通电,灯管发出红色光。产生这一现象的主要原因是什么? 认知升华: 1.光(辐射)是电子释放能量的重要形式之一。电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将以光的形式释放能量。 2.日常生活中看到的灯光、激光、焰火等可见光,都与原子核外电子发生跃迁释放能量有关。

精讲精练: 1.下列关于同一原子中的基态和激发态说法中,正确的是( ) A .基态时的能量比激发态时高 B .激发态时比较稳定 C .由基态转化为激发态过程中吸收能量 D .电子仅在激发态跃迁到基态时才会产生原子光谱 2.当镁原子由1s 22s 22p 63s 2→1s 22s 22p 63p 2时,以下说法正确的是( ) A .镁原子由基态转化成激发态,这一过程中吸收能量 B .镁原子由激发态转化成基态,这一过程中释放能量 C .转化后镁原子的性质更稳定 D .转化后镁原子与硅原子电子层结构相同,化学性质相似 3.以下现象与原子核外电子的跃迁有关的是( ) ①霓虹灯发出有色光 ②棱镜分光 ③激光器产生激光 ④石油蒸馏 ⑤凸透镜聚光 ⑥燃放的焰火在夜空中呈现五彩缤纷的礼花 ⑦日光灯通电发光 ⑧冷却结晶 A .①③⑥⑦ B .②④⑤⑧ C .①③⑤⑥⑦ D .①②③⑤⑥⑦ 基础初探: 1.电子运动的特点:电子质量小,运动速度快,无规则,故无法确定某个时刻处于原子核外空间何处。只能确定它在原子核外空间各处出现的概率。 2.电子云:电子云是处于一定空间运动状态的电子在原子核外空间的概率密度分布的形象化描述。电子云中的小黑点表示电子在核外出现的概率密度,小黑点越密,表明概率密度越大。 3.原子轨道: (1)定义:量子力学把电子在原子核外的一个空间运动状态称为一个原子轨道。 (2)各能级所含原子轨道数目 (3)形状 ①s 电子的原子轨道呈球形,能层序数越大,原子轨道的半径越大。 ②p 电子的原子轨道呈哑铃或纺缍形,能层序数越大,原子轨道的半径越大。p 能级有3个原子轨道,它们互相垂直,分别以p x 、p y 、p z 表示。

电子云与原子轨道教案

《电子云与原子轨道》教学设计 本节内容是人教版高二化学上册所学选修3第一章第一节《原子结构与性质》的第五课时。本节课的授课对象主要是高三上普通班的同学。 一、教学设计思路分析 1、教材分析 本节课的地位和作用:人教版高中化学选修3、第一章第一节“原子结构与性质”(P9页)第五课时,主要内容为“电子云与原子轨道”概念的建立;了解原子核外电子的运动规律,掌握泡利原理、洪特规则;以及掌握不同能层的能级、原子轨道以电子云轮廓图的的关系。 教学重点:通过s电子云、p电子云的轮廓图,加深对电子云、原子轨道含义的理解。 教学难点:学会从电子云模拟轮廓图取理解核外电子的排布特点及特殊性质。 2、学情分析 学生接受能力较强,已处于高二阶段;在该阶段学生对原子结构以及核外电子排布等已有一定的理解,为这节课的学习也奠定了一定的基础。但对核外电子的运动规律以及原子轨道非常陌生,而且不易将泡利原理和洪特规则熟练地运用于原子轨道的理解中。 学生的好奇心强,已具备了探究的意识;掌握了探究必备的相关知识,如知道原子的组成,物质的远动是有规律的,核外电子的运动规律要遵循能量最低原理、洪特规则和泡利原理。 3、教学思路 以学生活动为主体,探究学习方法为基本方法,理论学习与实践相结合,用多媒体展示,通过模型建立,组织学生思考与讨论,从而获得认知。 二、教学方案设计 1、教学目标 知识与技能: (1)使学生领会电子云及原子轨道的基本含义。 (2)使学生理解s电子云、p电子云的轮廓图,加深对电子云、原子轨道含义的理解进一步掌握核外电子的排布及运动规律物质。 过程与方法:

创设学习情景,空间模型,引导学生积极参与探究过程,获取知识和亲身体验。培养学生知识迁移能力,合作学习能力,同时培养学生用普遍联系的观点分析问题。 情感态度与价值观: 培养学生的唯物观,世界是物质的;物质的运动是有规律;培养学生用普遍联系的观点分析问题。 2、教学方法: 教法:讨论法、讲授法指导教学。 学法:自主阅读法、讨论法。 3、教学准备 多媒体设备、PowerPoint课件、 4、教学过程

原子结构—电子云与原子轨道教学设计

《电子云与原子轨道》教学设计

课堂练习复习提问电子在那里出现的概率小,点密的地方表示电子在那里出现 的概率大。 【问题2】S电子云的原子轨道都是球形的,电子只能出 现在球体内吗? 【讲解点拨】绘制电子云轮廓图常把电子出现的概率约 为90%的空间圈出来,而电子也出现在球体外,只是概率小 于90%。 【讲解】认识原子轨道能级的电子云轮廓图 演示文稿展示S能级、P能级、d能级的电子云轮廓图。 【提出概念】轨道:量子力学把电子在原子核外的一个 空间运动状态称为一个原子轨道。 PPT:不同能层的能级、原子轨道及电子云轮廓图。 教师提问(略) 1.构造原理 2.书写Cl、K、Fe元素原子的核外电子排布式。 小组合作讨论后, 小组代表发言。 加深理解 得出结论:1.所有 原子的任一能层 的S电子云轮廓都 是一个球形,只是 球的半径大小不 同。2.其他空间运 动状态的电子云 都不是球形的。P 电子云是哑铃 状…… 学生回答问题 学生回忆 Cl:1s22s22p63s23p5 K: 1s22s22p63s23p64s1 F e:1s22s22p63s23p63d64s2

教师讲解课堂练习自主构建 课堂小结 二、泡利原理和洪特规则 【讲解】上节课我们学习了电子排布式的画法,下面需 要大家学会电子排布图的画法。电子排布图中每个方框代表 一个原子轨道,每个箭头代表一个电子。 【板书】C、N的基态原子的电子排布式(略) 1.写出24号、29号元素的电子排布式、电子排布图。 2.阅读元素周期表,比较有什么不同,为什么?从元素周 期表中查出铜、银、金的外围电子层排布。它们是否符合构 造原理? 教师引导学生小组讨论,形成补充规则。 相对稳定的状态是: 全充满:(P6,d10,f14) 全空:(P0,d0,f0) 半充满:(P3,d5,f7) 【引导】原子结构示意图、电子排布式、电子排布图不 同化学用语所能反映的粒子结构情况和区别。 结论: 1.原子结构示意图能直观反映粒子核内的质子数和核外 电子层数及各能层上的电子数。 2.电子排布能直观反映粒子各能层、各能级和各轨道的能 量的高低及个轨道上的电子分布情况及电子的自旋状态。 【归纳总结】PPT 1.核外电子排布规则: (1)能量最低原理 (2)泡利原理 (3)洪特规则 2.核外电子排布表示方法: (1)原子结构示意图 (2)电子排布式 (3)电子排布图 听、看、识忆、理 解 练习 1.写O、F、 Al、Si、P原子的电 子排布图。 对比元素周期表, 产生疑问。小组讨 论。 练习2.书写C、N Ca、Cl原子结构示 意图,电子排布 式、电子排布图。 深入理解 归纳、总结、识记

原子的基态与激发态、电子云与原子轨道

第2课时 原子的基态与激发态、电子云与原子轨道 [目标定位] 1.知道原子的基态、激发态与光谱之间的关系。2.了解核外电子运动、电子云轮廓图和核外电子运动的状态。 一、能量最低原理和原子的基态与激发态 1.原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 (1)处于最低能量的原子叫做基态原子。 (2)当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。 (3)基态、激发态相互间转化的能量变化 基态原子 吸收能量释放能量,主要形式为光 激发态原子 2.不同元素的原子发生跃迁时会吸收或释放不同的光,若用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,则可确立某种元素的原子,这些光谱总称原子光谱。 (1)玻尔原子结构模型证明氢原子光谱为线状光谱。 (2)氢原子光谱为线状光谱,多电子原子光谱比较复杂。 3.可见光,如灯光、霓虹灯光、激光、焰火……都与原子核外电子发生跃迁释放能量有关。 (1)基态原子 电子按照构造原理排布(即电子优先排布在能量最低的能级里,然后依次排布在能量逐渐升高的能级里),会使整个原子的能量处于最低状态,此时为基态原子。 (2)光谱分析 不同元素的原子光谱都是特定的,在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。 1.下列说法正确的是( ) A .自然界中的所有原子都处于基态 B .同一原子处于激发态时的能量一定高于基态时的能量

C.无论原子种类是否相同,基态原子的能量总是低于激发态原子的能量 D.激发态原子的能量较高,极易失去电子,表现出较强的还原性 答案 B 解析处于最低能量的原子叫做基态原子。电子由较低能级向较高能级跃迁,叫激发。激发态原子的能量只是比原来基态原子的能量高。如果电子仅在内层激发,电子未获得足够的能量,不会失去。 2.对充有氖气的霓虹灯管通电,灯管发出红色光。产生这一现象的主要原因是() A.电子由激发态向基态跃迁时以光的形式释放能量 B.电子由基态向激发态跃迁时吸收除红光以外的光线 C.氖原子获得电子后转变成发出红光的物质 D.在电流的作用下,氖原子与构成灯管的物质发生反应 答案 A 解析解答该题的关键是明确基态原子与激发态原子的相互转化及其转化过程中的能量变化及现象。在电流作用下,基态氖原子的电子吸收能量跃迁到较高能级,变为激发态原子,这一过程要吸收能量,不会发出红色光;而电子从较高能量的激发态跃迁到较低能量的激发态或基态时,将释放能量,从而产生红光,故A项正确。 理解感悟光是电子释放能量的重要形式之一,日常生活中的许多可见光,如灯光、霓虹灯光、激光、焰火等都与原子核外电子发生跃迁释放能量有关。 易错提醒电子云图与电子云轮廓图不是同一个概念,电子云轮廓图实际上是电子云图的大部分区域;量子力学把电子在原子核外的一个空间运动状态称为一个原子轨道,电子云轮廓图就是我们通常所说的原子轨道图。 二、电子云与原子轨道 1.原子核外电子的运动特点。 (1)电子的质量很小(9.1095×10-31kg),带负电荷。 (2)相对于原子和电子的体积而言,电子运动的空间很大。 (3)电子运动的速度很快,接近光速(3.0×108m·s-1)。 2.电子在核外空间做高速运动,不能确定具有一定运动状态的核外电子在某个时刻处于原子核外空间何处,只能确定它在原子核外各处出现的概率,得到的概率分布图看起来像一片云雾,因而被形象地称作电子云。

高二化学电子云与原子轨道教案

第一节原子结构 第三课时 一、教学目标 1. 了解电子云和原子轨道的含义。 2. 知道原子核外电子的排布遵循能量最低原理 二、教学重难点 1. 原子轨道的含义 2. 泡利原理和洪特规则 三、教学方法 以科学探究、思考与交流等方式,探究泡利原则、洪特规则以及原子结构之间的关系,充分认识结构决定性质的化学基础 四、教具准备 多媒体 【教学过程】 【导入】 复习构造原理 Cr 1s22s22p63s23p63d54s1【引入】电子在核外空间运动,能否用宏观的牛顿运动定律来描述呢? 五、电子云和原子轨道: 1. 电子云 宏观物体的运动特征: 可以准确地测出它们在某一时刻所处的位置及运行的速度;可以描画它们的运动轨迹。 微观物体的运动特征:核外电子质量小,运动空间小,运动速率大。无确定的轨道,无法描述其运动轨迹。无法计算电子在某一刻所在的位置,只能指出其在核外空间某处出现的机会多少。 【讲述】电子运动的特点:

①质量极小 ②运动空间极小 ③极高速运动。因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。 概率分布图看起来像一片云雾,因而被形象地称作电子云。常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。 2. 原子轨道 【讲述】S 的原子轨道是球形的,能层序数越大,原子轨道的半径越大。 P 的原子轨道是纺锤形的,每个P 能级有3个轨道,它们互相垂直,分别以P x 、P y 、P z 为符号。P 原子轨道的平均半径也随能层序数增大而增大。 【讲述】s 电子的原子轨道都是球形的(原子核位于球心),能层序数越大,原子 轨道的半径越大。这是由于1s ,2s ,3s……电子的能量依次增高,电子在离核 更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理 解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s 电子比1s 电子能量高,克服原子核的吸引在离核更远的空间出现的概率就比1s 大,因而2s 电子云必然比1s 电子云更扩散。 3. 轨道表示式 (1)表示:用一个小方框表示一个原子轨道,在方框中用“↑ ”或“↓ ”表示该轨道上排入的电子的式子。 电子排布式:1s 2 2s 22p 3 轨道表示式: (2)原则 ?泡利原理:内容:每个原子轨道上最多只能容纳两个自旋状态不同的电子。即每个原子轨道最多只容纳两个电子。 ?洪特规则:内容:原子核外电子在能量相同的各个轨道上排布时,电子 尽量分占不同的原子轨道,且自旋状态相同,这样整个原子的能量最低。 全充满(p6,d10,f14)全空时(p0,d0,f0)半充满(p3,d5,f7) 1S 2S 2P +7 2 5

氢原子电子云空间分布的可视化

氢原子电子云空间分布的可视化 1 技术指标 1)设计一个用户界面,从不同角度直观揭示氢原子电子云空间几率分布的规律。要求:有用户任意输入量子数的界面; 2)根据量子力学中对氢原子的求解,设计出各个模块的参数(例如径向分布概率,角向分布概率等); 3)用Matlab来进行模拟; 4)通过给定量子数,可以弹出绘图窗口,给出该量子态下,三维空间中氢原子中电子在空间各点的几率分布。 2 基本原理 2.1 电子云模型及其量子力学实质 电子云是电子在原子核外空间概率密度分布的形象描述,电子在原子核外空间的某区域内出现,好像带负电荷的云笼罩在原子核的周围,人们形象地称它为“电子云”。用现代量子力学的观点来看,电子有波粒二象性,它不像宏观物体的运动那样有确定的轨道,因此画不出它的运动轨迹。我们不能预言它在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少。为此,就以单位体积内电子出现几率,即几率密度大小,用小黑点的疏密来表示。小黑点密处表示电子出现的几率密度大,小黑点疏处几率密度小,看上去好像一片带负电的云状物笼罩在原子核周围,因此叫电子云。用一个波函数Ψ(x,y,z)表征电子的运动状态,并且用它的模的平方|Ψ|^2的值表示单位体积内电子在核外空间某处出现的几率,即几率密度,所以电子云实际上就是几率密度|Ψ|^2在空间的分布。研究电子云的空间分布主要包括它的径向几率分布和角度几率分布两个方面。径向分布探求电子出现的几率大小和离核远近的关系,被看作在半径为r,厚度为dr的薄球壳内电子出现的几率。角度分布探究电子出现的几率和角度的关系。 2.2 用matlab软件编程实现电子云模型

原子结构和分子结构

第四章原子结构和分子结构 第一节原子结构 自然界的物质种类繁多,性质各异。不同物质在性质上的差异是由于物质内部结构不同而引起的。在化学反应中,原子核不变,起变化的只是核外电子。要了解物质的性质及其变化规律,有必要先了解原子结构,特别是核外电子的运动状态。 一、核外电子运动的特征 我们知道,地球沿着固定轨道围绕太阳运动,地球的卫星(月球或人造卫星)也以固定的轨道绕地球运转。这些宏观物体运动的共同规律是有固定的轨道,人们可以在任何时间内同时准确地测出它们的运动速度和所在位置。电子是一种极微小的粒子,质量为9.1×10-31 kg,在核外的运动速度快(接近光速)。因此电子的运动和宏观物体的运动不同。和光一样,电子的运动具有微粒性和波动性的双重性质。对于质量为m,运动速度为v的电子,其动量为:P=mv 其相应的波长为: λ=h/P=h/mv (4-1) 式(4-1)中,左边是电子的波长λ,它表明电子波动性的特征,右边是电子的动量P (或mv),它表明电子的微粒性特征,两者通过普朗克常数h联系起来。 实验证明,对于具有波动性的微粒来说,不能同时准确地确定它在空间的位置和动量(运动速度)。也就是说电子的位置测得愈准时,它的动量(运动速度)就愈测不准,反之亦然。但是用统计的方法,可以知道电子在原子中某一区域内出现的几率。 图4-1氢原子五次瞬间照像 图4-2若干张氢原子瞬间照片叠印 电子在原子核外空间各区域出现的几率是不同的。在一定时间内,在某些地方电子出现的几率较大。而在另一些地方出现的几率较小。对于氢原子来说,核外只有一个电子。为了在一瞬间找到电子在氢原子核外的确切位置,假定我们用高速照相机先给某个氢原子拍五张照片,得到图4-1所示的五种图象,⊕代表原子核,小黑点表示电子。如果给这个氢原子照几万张照片,叠加这些照片(图4-2)进行分析,发现原子核外的一个电子在核外空间各处都有出现的可能,但在各处出现的几率不同。如果用小黑点的疏密来表示电子在核外各处的几率密度(单位体积中出现的几率)大小,黑点密的地方,是电子出现几率密度大的地方;疏的地方,是电子出现几率密度小的地方,如图4-3所示。像这样用小黑点的疏密形象地描述电子在原子核外空间的几率密度分布图象叫做电子云。所以电子云是电子在核外运动具有统计性的一种形象表示法。 图4-3氢原子的电子云图4-4氢原子电子云界面图

相关文档
最新文档