电动力学——矢量和张量课件(DOC)

电动力学——矢量和张量课件(DOC)
电动力学——矢量和张量课件(DOC)

矢量和张量

vectors and tensors

中山大学理工学院黄迺本教授

(2005级,2007年3月)

如果不理解它的语言,没有人能够读懂宇宙这本书,它的语言就是数学.

——Galileo

经典电动力学的研究对象

——电磁相互作用的经典场论

——狭义相对论

——电动力学的相对论协变性

主要数学工具

微积分、线性代数、矢量与张量分析、数学物理方程、级数等.

教材和参考书

教材:郭硕鸿《电动力学》(第二版)高等教育出版社,1997

参考书:

[1]黄迺本,方奕忠《电动力学(第二版)学习辅导书》,高等教育出版社,2004

[2]J.D.杰克孙《经典电动力学》人民教育出版社,1978

[3]费恩曼物理学讲义,第2卷,上海科技出版社,2005

[4]朗道等《场论》人民教育出版社,1959

[5]蔡圣善等《电动力学》(第二版),高等教育出版社,2003

[6]尹真《电动力学》(第二版),科学出版社,2005

[7]Daniel R Frankl,ELECTROMAGNETIC THEORY,Prentice-Hall,Inc.,1986

矢量和张量

目录(contens)

1.矢量和张量代数(the algebra of vectors and tensors)

2.矢量和张量分析(the analysis of vectors and tensors)

3.δ函数(δ function)

4.球坐标系和柱坐标系

1 矢量和张量代数

在三维欧几里德空间中,按物理量在坐标系转动下的变换性质,可分为标量(零阶张量),矢量(一阶张量),二阶张量,及高阶张量.(见郭硕鸿,电动力学,P258)分为:

0 阶张量,即标量(scalar),在3维空间中,只有30 = 1个分量.标量是 空间转动下的不变量.

例如,空间中任意两点之间的距离r ,就是坐标系转动下的不变量.温度、任一时刻质点的能量、带电粒子的电荷、电场中的电势,等等,都是标量.

1阶张量,即矢量(vector),在3维空间中,由31 = 3个分量构成有序集 合.

例如,空间中任意一点的位置矢量r ,质点的速度v 和加速度a ,作用力F 和

力矩M ,质点的动量p 和角动量L 、电流密度J ,电偶极矩p ,磁偶极矩m ,电场强度E ,磁感应强度B ,磁场矢势A ,等等都是矢量.

2阶张量(tow order tensor ),在3维空间中,由32 = 9个分量构成有序 集合.

例如,刚体的转动惯量→→

I ,电四极矩→→

D ,等.

3阶张量,在3维空间中,由33 = 27个分量构成有序集合. 矢量表示

印刷——用黑体字母,如 r , A

书写——在字母上方加一箭头,如 A r ,

正交坐标系的基矢量

正交坐标系(如直角坐标系,球坐标系,柱坐标系)基矢量321,e e e ,的正交性可表示为

??

?≠===?j

i j

i ij 0

1

δj i e e (1.1) 一般矢量A 有三个独立分量A 1,A 2,A 3,故可写成

∑==

++=3

1

332211i i

i A A A A e

e e e A (1.2)

矢量的乘积

两个矢量的标积与矢积,三个矢量的混合积与矢积分别满足

A B B A ?=? (1.3) A B B A ?-=? (1.4)

)()()(B A C A C B C B A ??=??=?? (1.5) )()()(B A C A C B C B A ??=??- (1.6)

并矢量与二阶张量

两个矢量A 和B 并置构成并矢量

j

i

e

e e e e e e e AB j j i i

B A B B B A A A ∑==

++++=3

1

,332211332211))(( (1.7)

它有9个分量j i B A 和9个基j i e e ,一般地BA AB ≠.三维空间二阶张量也有9个分量ij T ,它的并矢量形式与矩阵形式分别为

j i

e

e ∑=→→

=

3

1

,j i ij T T

(1.8)

????

??????=333231232221

1312

11

T T T T T T T T T T (1.9) 张量的迹是其主对角线全部元素(分量)之和:

332211tr T T T T ++= (1.10)

单位张量的并矢量形式与矩阵形式分别是

332211e e e e e e ++=→→

I (1.11)

????

??????=100010001I (1.12)

因此(Ⅰ.1)式中的符号ij δ实际上是单位张量的分量.

对称张量与反对称张量 若ij ji T T =,称之为对称张量,它有6个独立分量,若对称张量的迹为零,则它只有5个独立分量.单位张量是一个特殊的对称张量. 若ij ji T T -=,称之

为反对称张量,由于0332211===T T T ,反对称张量只有3个独立分量.

任何张量ij T 均可写成一个对称张量ij S 与一个反对称张量ij A 之和,即ij ij ij A S T +=,只需使)/2(ji ij ij T T S +=,)/2(ji ij ij T T A -=.

二阶张量与矢量点乘,结果为矢量.由(Ⅰ.1)式,有

∑∑∑∑=

=?=

?→→

ij

j

ij i j

ki ij j

i k k k

ij

ij k

k T A e T A T A T e

e e e A j

i

δ

,, (1.13)

∑∑∑∑=

=?=

?→→

ij

i

ij j i

ij k

j i k k

k

k ij

ij T A e T A A T T e

e e e A jk

j

i

δ

,, (1.14)

一般地A A ?≠?→→

→→T T . 但单位张量与任何矢量点乘,均给出原矢量:

A A A =?=?→→

→→

I I (1.15)

并矢量与并矢量、或二阶张量与二阶张量双点乘,结果为标量.运算规则是先将靠近的两个矢量点乘,再将另两个矢量点乘:

))(()()(D A C B CD AB ??=: (1.16)

2 矢量和张量分析

(1)算符?和2?

物理量在空间中的分布构成“场”(field).表示“场”的物理量一般地是空间坐标的连续函数,也可能有间断点,甚至会有奇点.例如:

温度T 、静电势?的分布都构成标量场;

电流密度J 、电场强度E 、磁感应强度B 、磁场矢势A 的分布都构成矢量场. ?是对场量作空间一阶偏导数运算的矢量算符,2?=???是二阶齐次偏导数运算的标

量算符,即拉普拉斯算符.在直角坐标系中

z y x z

y x ??+??+??=?e e e ,2222222

z

y x ??+??+??=? (2.1) 三个基矢量z y x e ,e ,e 均是常矢量.

(2)标量场的梯度(gradient of a scalar field) 标量场?在某点的梯度

z

y x z

y x

??+??+??=??

???e e e (2.2)

是一个矢量,它在数值上等于?沿其等值面的法向导数,方向沿?增加的方向,即

n dn

d ?

?=

? (2.3) 例如静电势?的分布是一个标量场,E =-??即变成矢量场——静电场.

(3)矢量场的散度(divergence of a vector field) 矢量场A 通过某曲面S 通量(flux)定义为

??=

ΦS

d S A (2.4)

其中n S dS d =是曲面S 某点附近的面积元矢量,方向沿曲面的法向n .对于闭合曲面(closed surface),规定S d 的方向沿曲面的外法向.

对于矢量场A 中包含任一点)(z y x ,,的小体积V ?,其闭合曲面为S ,定义极限

A S A ??=???→?V

d S

V 0

lim (2.5)

为矢量场A 在该点的散度,它是标量.在直角坐标系中

z

A y A x A z y x ??+??+??=

??A (2.6) 若0≠?=Φ?S

d S A , 则该点散度0≠??A ,该点就是矢量场A 的一个源点;

若0=?=Φ?

S

d S A ,则该点散度0=??A ,该点不是矢量场A 的源点.

若处处均有0=??A ,A 就称为无散场(或无源场),它的场线必定是连续而闭合的曲线.磁场B 就是无散场(solenoidal field ).

高斯定理(Gaussl theorem ) 对任意闭合曲面S 及其包围的体积V ,下述积分变换定理成立

?

?

??=?S

V

A S A dV d (2.7)

由此推知,若A 是无散场,即处处有0=??A ,则A 场通过任何闭合曲面的净通量均为零.

(4)矢量场的旋度(curl of a vector field) 矢量场A 沿闭合路径(closed contour)L 的积分

??L

d l A

称为A 沿L 的环量(circulateon),其中l d 是路径L 的线元矢量.若对任意闭合路径L ,均有

0=??L

d l A (2.8)

则称A 为保守场(conservative field ).

当闭合路径L 所围成的面积元S ?是某点P 的无限小邻域,我们约定:路径积分的绕行方向即d l 的方向,与其所围成的面积元S ?的法向n 成右手螺旋关系,并定义极限

n L

S S

d )

()(lim 0

A n A l A ??=???=???→?

(2.9)

为矢量场A 在该点的旋度A ??在n 方向的分量.在直角坐标系中

z x y y z x x y z y

A x A x A z A z A y A e e e A )()()(

??-??+??-??+??-??=?? (2.10) 它是矢量.按上述约定

若()0>??n A ,则A 线在该点周围形成右手涡旋;若()0

如果所有点上均有0=??A ,A 就称为无旋场.例如静电场E 就是无旋场(irrotational field).

斯托克斯定理(stokes theorem) 对任意的闭合路径L 所围的曲面S ,下述积分变换成立

()S A l A S

d d L

???=??? (2.11)

(5) 矢量场的几个定理 标量场的梯度必为无旋场:

0=???? (2.12)

【证】对任意标量场?的梯度

z

y x z

y x

??+??+??=??

???e e e 取旋度,可得

[]0)()(=????-????=

???y

x x y x ?

??, []0=???y ?,[]0=???z ? 逆定理:无旋场必可表示成某一标量场的梯度,即

若0=??A ,必可令??=A

例如对于静电场强度E ,就可用标势?的负梯度描写: ?-?=E .

矢量场的旋度必为无散场:

0=????A (2.13)

【证】

0)()()(=??-????+??-????+??-????=

????y

A x A z x A z A y z A y A x x

y z x y z A 逆定理:无散场必可表成另一矢量场的旋度,即

若0=??B , 必可令A B ??=

例如对于磁感应强度B ,就可用矢势A 的旋度描写.

(6)算符运算

标量函数?的梯度??是矢量,矢量函数f 的散度f ??是标量,旋度f ??是矢量,而f ?是二阶张量:

∑∑

===??=

??

=?3

1

,3

1

3

1

j i i

j

j j i i

x

f f x j i j i

e e e e

f (2.14)

若?和φ是标量函数,f 和g 是矢量函数,有

?φφ??φ)()()(?+?=? (2.15) ???)()()(f f f ??+??=?? (2.16) ???)()()(f f f ??+??=?? (2..17) f g g f g f ??????=???)()()(- (2.18) f g g f g f f g g f )()()()()(??+????-??=???- (2.19) g f g f f g f g g f )()()()()(??+???+??+???=?? (2.20) g f g f fg )()()(??+??=?? (2.21)

f f f 2)()(????=????- (2.22)

上述运算不必采用化成分量的方法进行,只要抓住算符?的微分作用及其矢量性质,便可快捷准确地写出结果.当?作用于两个函数的乘积(或两个函数之和)时,表示它对每一个函数都要作微分运算,可以先考虑?对第一个量的作用,并将这个量记为?的下标,以示算符只对此量执行微分运算,第二个量则视为常数,再考虑?对第二个量的作用,此时亦将第二个量记为?的下标,第一个量则视为常数;必须注意的是,算符不能与其微分运算对象掉换次序.

例如(2.16)式,)(f ???是对矢量f ?求散度,故运算结果的每一项都必须是标量,我们有

??????)()()()()(f f f f f ??+??=??+??=??f

又如(2.20)式,)(g f ??是对标量g f ?求梯度,结果的每一项都必须是矢量,先把它写成

)()()(g f g f g f ??+??=??g f

再根据三矢量的矢积公式(1.6)式,但结果中必须体现f ?对f 的微分作用,以及g ?对g 的微分作用,故有

f g f g g f )()()(??+???=??f g f g f g f )()()(??+???=??g

g f g f f g f g g f )()()()()(??+???+??+???=??

右方所得结果中第二项实际上是f g ??,第四项是g f ??.

(7)积分变换

???=??S

V

d dV S A A )( (高斯定理) (2.23.)

→→

→→?=????T

d dV T S

V

S )( (2.24)

???=???L

S

d d l A S A )( (斯托克斯定理) (2.25) ????=?+?S

V

d dV S )()(2

2

φ??φφ?(格林公式) (2.26)

??

??-?=

?-?S

V

d dV S )()(22?φφ??φφ?(格林公式) (2.27)

3 δ函数

一维δ函数定义为

??

?'

≠'

=∞='-x x x x x x 0

)(δ (3.1) 1)(='-?b

a

dx x x δ ,当b x a <'< (3.2)

主要性质为:)(x x '-δ为偶函数,其导数是奇函数;又若函数)(x f 在x x '=附近连续,有

)()()(x f dx x x x f b

a

'='-?δ,当b x a <'< (3.3)

这一性质由中值定理可以证明.三维δ函数定义为

??

?'

≠'

=∞='-x x x x x x 0

)(δ (3.4) 1)(='-?V

dV x x δ,当x '在V 内 (3.5)

因此,位于x '的单位点电荷的密度可表示为)()(x x x '-=δρ. (4.3)式可推广到三维情形,若函数)(x f 在x x '=附近连续,便有

)()()(x x x x '='-?

f dV f V

δ,当x '在V 内 (3.6)

4.球坐标系和圆柱坐标系

直角坐标系

当坐标),,(z y x 变化时,三个基矢z y x e ,e ,e 的方向保持不变.常用的微 分运算表达式为

z y x z

y x e e e ??+??+??=

????? (4.1) z A y A x A z

y x ??+??+??=

??A (4.2) z x y y z x x y z y

A x A x A

z A z A y A e e e A )()()(

??-??+??-??+??-??=?? (4.3) 2

22

22

22

z y x ??+

??+

??=

????? (4.4)

曲线正交坐标系

任一点的坐标也可用曲线正交坐标系描述,沿三个坐标),,(321u u u

增加方向的基矢量321e ,e ,e 互相正交,随着坐标变化,一般地三个基矢量的取向将会改变.无限小线元矢量l d 、坐标i u 的标度系数i h ,以及微分算符分别为

3

332221113

32211e e e e e e l du h du h du h dl dl dl d ++=++= (4.5)

2

1222])()()[(

i i i i u z u y u x h ??+??+??= (4.6) 3

33

222111

111u h u h u h ??

+??+??=?e e e (4.7) )]()()([13

321322132113213212u h h h u u h h h u u h h h u h h h ????+????+????=

? (4.8) 球坐标系

r u =1,θ=2u ,φ=3u ;11=h ,r h =2,θsin 3r h =.三个基矢r e e =1,θe e =2,φ

e e =3的方向均与坐标θ和φ有关,而与r 无关.与直角坐标系基矢的变换为

?????

?????????????

?

?--=??????????z y x e e e e e e r 0cos sin sin sin cos cos cos cos sin sin cos sin φφθφθφθθφθφθφθ (4.9) ????

?

???????????????--=??????????φθθ

θ

φφθφθφφθφθe e e e e e r 0sin cos cos sin cos sin sin sin cos cos cos sin z y x (4.10)

坐标变换为

φθcos sin r x =,φθsin sin r y =,θcos r z = (4.11)

常用的微分运算表达式为

φ

?

θθ???φ

θ??+??+??=?sin 11r r r r

e e e (4.12) φθθθθφ

θ

??+??+??=

??A r A r A r r

r r sin 1)sin (sin 1)(122A (4.13) φθθφθφθφθφθθθ

e e e A ??????????

+????????-??+??

????????

=

??r r r A A r r r A r r A r A A rsin -))-(1(sin 11)sin (1 (4.14)

2

22

2222

sin 1)sin (sin 1)(1φ?

θθ?θθθ????+????+????=?r r r r r r (4.15) 立体角元、球面积元与体积元分别为

φθθd d d sin =Ω (4.16)

Ω===d r d d r dl dl dS r 2232sin φθθ (4.17) φθθd drd r dl dl dl dV sin 2321== (4.18)

柱坐标系

r u =1,φ=2u ,z u =3; 11=h ,r h =2,13=h .三个基矢量r e e =1,φe e =2 ,z

e e =3中,r e 和φe 的方向均与坐标φ有关,z e 则为常矢量.与直角坐标系基矢的变换为

????????????????????-=??????????z y x z e e e e e e r 1000cos sin 0sin cos φφφ

φφ (4.19) ????

????????????????-=??????????z z y x e e e e e e r φφφφφ10

0cos sin 0sin cos (4.20) 坐标变换为

φcos r x =,φsin r y =,z z = (4.21)

常用的微分运算表达式为

z r z

r r e e e ??+??+??=

??

φ???φ1 (4.22) z

A A r A r r r z

r ??+??+??=

??φφ1)(1A (4.23)

z r z r r z A A r r r r

A z A z A A r e e e A ]([1()1(

φ

φφφ

φ

??-??

+????+????=??))-- (4.24)

2

22222

1)(1z r r r r r ??+

??+????=??

φ??? (4.25) 体积元为

dz rdrd dl dl dl dV φ==321 (4.26)

例1.设u 是空间坐标z y x ,,的函数,证明:

u du

df

u f ?=

?)( (1) du

d u u A

A ?

?=??)( (2) du

d u u A

A ?

?=??)( (3) 【证】对于)(u f ?,注意到du df u f =??,有

u dr

df z u y u x u du df z

f y f x f u f z y x z y x

?=??+??+??=??+??+??=?)()(e e e e e e

在直角坐标系中将矢量A 写成分量形式,便可证明(2)式和(3)式.

例2.从源点(即电荷电流分布点)x '到场点x 的距离r 和矢径r 分别为

222)()()(z z y x y x x r '-+'-+'-= z y x z z y -y x -x e e e r )-()('+'+'=)(

对源变数x '和场变数x 求微商的算符分别为

z y x z y x

'??+'??+'??=?'e e e ,z

y x z

y x ??

+??+??=?e e e 证明下列结果,并体会算符?'与?的关系:

r

r r r

=

?'-=? (单位矢量) (1) 3=??'-=??r r (2) 0=??'-=??r r (3)

→→

=?'-=?I r r (单位张量) (4) 311r

r r r

-=?'-=?

(5)

03

3

=?

?'-=??r

r

r r ,

(0≠r ) (6) 03

3

=?

?'-=?

?r r r r (7)

【证】 将算符?与?'分别作用于r 和矢径r 的表达式,可得到(1)至(4)式的结果.利用前面1.2题的第一式和本题(1)至(4)式的结果,得

3211)(1r

r r r dr r d r r

r -=-=?=?- 0)(333=??+??=?

?-r r r -r r r ,(当0≠r ) 0)(333

=??+??=?

?-r r r -r r r

同理可证31r r r =?';03=??'r

r ,当0≠r ;03=??'r r

.事实上,对任意的标量函数)(r f 和

矢量函数r )(r f ,不难证明

)()(r f r f ?'-=?;])([])([r r r f r f ??'-=?? ])([])([r r r f r f ??'-=??;])([])([r r r f r f ?'-=?

即算符?与?'存在代换关系?'-→?.这种代换将会经常用到.

附录矢量与张量运算

附录 矢量与张量运算 1标量﹑矢量与张量 1.1基本概念 在本书中所涉及的物理量可分为标量、矢量和张量。 我们非常熟悉标量,它是在空间没有取向的物理量,只有一个数就可以表示其状态。例如质量、压强、密度、温度等都是标量。 矢量则是在空间有一定取向的物理量,它既有大小、又有方向。在三维空间中,需要三个数来表示,即矢量有三个分量。考虑直角坐标右手系,三个坐标轴分别以1、2和3表示,、2和3分别表示1、2和3方向的单位矢量。如果矢量a 的三个分量分别为a 1、、a 2、a 3,则可以表示为 也可以用以下符号表示 a =(a 1,a 2,a 3) 矢量a 的大小以a 表示 a =(a 12+a 22+a 32)1/2 我们还会遇到张量的概念,可将标量看作零阶张量,矢量看作一阶张量,在此将主要讨论二阶张量的定义。 二阶张量w 有9个分量,用w ij 表示。张量w 可用矩阵的形式来表示: w 其中下标相同的元素称为对角元素,下标不同的元素称为非对角元素。若w ij =w ji ,则称为对称张量。如果将行和列互 相交换就组成张量w 的转置张量,记作w T ,则 w T = 显然,若w 是对称张量,则有w =w T 。另外,如果w T =-w ,w 被称为反对称张量,同时有w ij =-w ji 。任何一个二阶张量都可以写成两部分之和,一部分为对称张量,另一部分为反对称张量。 w =(w +w T )+ (w -w T ) 单位张量是对角分量皆为1,非对角分量皆为0的张量 是最简单的对称张量。 张量对角分量之和称为张量的迹 t r w = 张量的迹是标量,如果张量的迹为零,称此张量为无迹张量。 1.2基本运算 1.2.1矢量加法与乘法运算 在几何上,矢量的加法满足平行四边形法则和三角形法则。如图附-1所示,减法为加法的逆运算。 1e e e a 332211e e e a a a a ++=??????????=3332 31232221131211w w w w w w w w w ??????????3323 13 322212312111w w w w w w w w w 2121 δ?? ??? ?????=100010001δδ ∑i ii w

安捷伦矢量信号分析基础(中文版)

安捷伦矢量信号分析基础应用指南

目录矢量信号分析 (3) VSA 测量优势 (4) VSA 测量概念和操作理论 (6) 数据窗口—泄漏和分辨率带宽 (12) 快速傅立叶变换 (FFT) 分析 (14) 时域显示 (16) 总结 (17) 矢量调制分析 (18) 简介 (18) 矢量调制和数字调制概况 (19) 数字射频通信系统概念 (23) VSA 数字调制分析概念和操作理论 (26) 灵活定制的或用户定义的解调 (27) 解调分析 (31) 测量概念 (32) 模拟调制分析 (36) 总结 (38) 其他资源 (39) 下载 89600B 软件并免费试用 14 天,与您的分析硬件结合使 用 ; 或通过选择软件工具栏上的File> Recall> Recall Demo> QPSK>,使用我们记录的演示信号进行测量。立即申请您的 免费试用许可: https://www.360docs.net/doc/f317121.html,/?nd/89600B_trial

矢量信号分析本应用指南是关于矢量信号分析(Vector Signal Aanlysis) 的入门读物。本 节将讨论 VSA 的测量概念和操作理论 ; 下一节将讨论矢量调制分析,特别是 数字调制分析。 模拟扫描调谐式频谱分析仪使用超外差技术覆盖广泛的频率范围 ; 从音 频、微波直到毫米波频率。快速傅立叶变换 (FFT) 分析仪使用数字信号处理 (DSP) 提供高分辨率的频谱和网络分析。如今宽带的矢量调制 ( 又称为复调制 或数字调制 ) 的时变信号从 FFT 分析和其他 D SP 技术上受益匪浅。VSA 提供快 速高分辨率的频谱测量、解调以及高级时域分析功能,特别适用于表征复杂 信号,如通信、视频、广播、雷达和软件无线电应用中的脉冲、瞬时或调制 信号。 图 1 显示了一个简化的 VSA 方框图。VSA 采用了与传统扫描分析截然不 同的测量方法 ; 融入 FFT 和数字信号处理算法的数字中频部分替代了模拟中频 部分。传统的扫描调谐式频谱分析是一个模拟系统 ; 而 VSA 基本上是一个使 用数字数据和数学算法来进行数据分析的数字系统。VSA 软件可以接收并分 析来自许多测量前端的数字化数据,使您的故障诊断可以贯穿整个系统框图。 图 1. 矢量信号分析过程要求输入信号是一个被数字化的模拟信号,然后使用 D SP 技术处理 并提供数据输出 ; FFT 算法计算出频域结果,解调算法计算出调制和码域结果。

《电动力学》考点归纳及典型试题分析

《电动力学》知识点归纳及典型试题分析 一、试题结构 总共四个大题: 1.单选题('210?):主要考察基本概念、基本原理和基本公式, 及对它们的理解。 2.填空题('210?):主要考察基本概念和基本公式。 3.简答题 ('35?):主要考察对基本理论的掌握和基本公式物理意 义的理解。 4. 证明题 (''78+)和计算题(''''7689+++):考察能进行简单 的计算和对基本常用的方程和原理进行证明。例如:证明泊松方程、电磁场的边界条件、亥姆霍兹方程、长度收缩公式等等;计算磁感强度、电场强度、能流密度、能量密度、波的穿透深度、波导的截止频率、空间一点的电势、矢势、以及相对论方面的内容等等。 二、知识点归纳 知识点1:一般情况下,电磁场的基本方程为:??? ?? ?? ??=??=??+??=????-=??.0;;B D J t D H t B E ρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==J ρ)的自由空间(或均匀

介质)的电磁场方程为:??? ?? ?? ??=??=????=????-=??.0;0;B D t D H t B E (齐次的麦克斯韦方程组) 知识点2:位移电流及与传导电流的区别。 答:我们知道恒定电流是闭合的: ()恒定电流.0=??J 在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。一般说来,在非恒定情况下,由电荷守恒定律有 .0≠??-=??t J ρ 现在我们考虑电流激发磁场的规律:()@.0J B μ=?? 取两边散度,由于 0≡????B ,因此上式只有当0=??J 时才能成立。在非恒定情形下,一般有 0≠??J ,因而()@式与电荷守恒定律发生矛盾。由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。 把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流 J 合起来构成闭合的量 ()()*,0=+??D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=??0μ。此式两边的散度都等于零,因而理论上就不再有矛盾。由电荷守恒定律 .0=??+ ??t J ρ 电荷密度ρ与电场散度有关系式 .0ερ=??E 两式合起来 得:.00=??? ? ? ??+??t E J ε与()*式比较可得D J 的一个可能表示式 .0 t E J D ??=ε 位移电流与传导电流有何区别: 位移电流本质上并不是电荷的流动,而是电场的变化。它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。而传导电流实际上是电荷的流动而产生的。 知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。

矢量张量公式及推导

矢量及张量 1. 协变基矢量:321g g g a 3 21a a a ++=,i a 称为逆变基分量,i g 是协变基矢量。 2. 逆变基矢量:3 21g g g a 321a a a ++=,i a 称为协变基分量,i g 是逆变基矢量。 3. 爱因斯坦求和约定:省略求和符号,i i g g a i i a a == 4. 逆变基于协变基的关系:j i δ=?j i g g 5. 标积:i i j i j i b a b a =?=?g g b a 6. 坐标转换系数i i 'β : i i i i i i i i i i i x x x x x x g g r r g '''''β=??=????=??= 7. 转换系数的性质:i j k j i k δββ='',因为'' ''m l m j i l j i i j g g g g ?=?=ββδ 8. 张量:分量满足坐标转换关系的量,比如矢量''''''i i i i i i k k i i v v v ββ=?=?=g g g v 9. 置换张量:ijk k j i ijk e g ==][g g g ε,其中][321g g g =g ,同理有 ijk k j i ijk e g 1][= =g g g ε 由 行 列 式 的 性 质 及 线 性 ][][]['''''''''n m l n k m j l i n n k m m j l l i k j i g g g g g g g g g ββββββ==,因此ijk ε是张量分量。 定义置换张量:k j i ijk k j i ijk g g g g g g εεε== 10. 基的叉积:k l ijl ijk k j i g g g g g ?==??εε,所以l ijl j i g g g ε=?,l ijl j i g g g ε=? 11. 叉积:k ijk j i j i j i b a b a g g g b a ε=?=?,或写成实体形式ε:ab ab :εb a ==?,双标 量积用前前后后规则完成。 12. 混和积:abc εg g g g g g c b a ====ijk k j i k j i k j i k k j j i i c b a c b a c b a ε],,[],,[],,[ 13. rst ijk rst ijk k t k s k r j t j s j r i t i s i r e e εεδδδδδδδδδ==,有以上关系可得 14. 重要关系: k s j t k t j s ist ijk δδδδεε-=

《电动力学》知识点归纳及典型试题分析

《电动力学》知识点归纳及典型试题分析 一、知识点归纳 知识点1:一般情况下,电磁场的基本方程为:???? ?????=??=??+??=????-=??.0;;B D J t D H t B E ρρρρρρρρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==J ρρ)的自由空间(或均匀介质)的电磁场方程为:???? ?????=??=????=????-=??.0;0;B D t D H t B E ρρρρρρ(齐次的麦克斯韦方程组) 知识点2:位移电流及与传导电流的区别。 答:我们知道恒定电流是闭合的: ()恒定电流.0=??J 在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。一般说来,在非恒定情况下,由电荷守恒定律有 .0≠??-=??t J ρ 现在我们考虑电流激发磁场的规律:()@.0J B μ=?? 取两边散度,由于0≡????B ,因此上式只有当0=??J 时才能成立。在非恒定情形下,一般有0≠??J ,因而()@式与电荷守恒定律发生矛盾。由于电荷守恒定律是精确的普遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。 把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流J 合起来构成闭合的量 ()()*,0=+??D J J 并假设位移电流D J 与电流J 一样产生磁效应,即把()@修改为 ()D J J B +=??0μ。此式两边的散度都等于零,因而理论上就不再有矛盾。由电荷守恒定律 .0=??+ ??t J ρ电荷密度ρ与电场散度有关系式 .0ερ=??E 两式合起来

得:.00=??? ? ???+??t E J ε与()*式比较可得D J 的一个可能表示式 .0 t E J D ??=ε 位移电流与传导电流有何区别: 位移电流本质上并不是电荷的流动,而是电场的变化。它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。而传导电流实际上是电荷的流动而产生的。 知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。 答:电荷守恒定律的积分式和微分式分别为:0=??+????-=???t J dV t ds J S V ρρρρ 恒定电流的连续性方程为:0=??J 知识点4:在有介质存在的电磁场中,极化强度矢量p 和磁化强度矢量M 各的定义方法;P 与P ρ;M 与j ;E 、D 与p 以及B 、H 与M 的关系。 答:极化强度矢量p :由于存在两类电介质:一类介质分子的正电中心和负电中心不重和,没有电偶极矩。另一类介质分子的正负电中心不重和,有分子电偶极矩,但是由于分子热运动的无规性,在物理小体积内的平均电偶极矩为零,因而也没有宏观电偶极矩分布。在外场的作用下,前一类分子的正负电中心被拉开,后一类介质的分子电偶极矩平均有一定取向性,因此都出现宏观电偶极矩分布。而宏观电偶极矩分布用电极化强度矢量P 描述,它等于物理小体积V ?内的 总电偶极矩与V ?之比,.V p P i ?=∑ρi p 为第i 个分子的电偶极矩,求和符号表示 对V ?内所有分子求和。 磁化强度矢量M : 介质分子内的电子运动构成微观分子电流,由于分子电流取向的无规性,没有外场时一般不出现宏观电流分布。在外场作用下,分子电流出现有规则取向,形成宏观磁化电流密度M J 。分子电流可以用磁偶极矩描述。把分子电流看作载有电流i 的小线圈,线圈面积为a ,则与分子电流相应的磁矩为: .ia m = 介质磁化后,出现宏观磁偶极矩分布,用磁化强度M 表示,它定义为物理小体积V ?内的总磁偶极矩与V ?之比, .V m M i ?=∑ M B H P E D M j P M P ρρρρρρρρρ-=+=??=??=0 0,,,μερ

矢量信号分析仪计量中的evm指标研究

矢量信号分析仪计量中的EVM 指标研究 周峰,郭隆庆,张睿,张小雨 信息产业部通信计量中心 矢量调制信号是现代通信的基础,矢量信号分析仪(VSA)是信号分析的重要仪表,目前,我国技术监督部门还没有制定VSA 的校准和鉴定规程,相关研究也并不完善。所谓对VSA 的鉴定,就是通过测试测量来确定VSA 测量结果的残留误差。而误差矢量幅度EVM ,是VSA 测量的核心指标之一,从EVM 入手进行研究,是比较合理的。本研究报告以QPSK 信号为典型,建立了数学模型并且使用Matlab 语言编程搭建了简单算法平台,并且使用了PSA 频谱分析仪(包括VSA 选件)和SMU200矢量信号源进行了实验研究。报告主要包含三个部分。 第一部分 EVM 计算中参考信号幅度输出算法研究 VSA 可以分为两个模块:变频器、滤波器和放大器序列构成的模拟部分,和由数字处理芯片及其算法构成的数字模块。本部分主要研究数字模块中的参考信号幅度生成算法。 图 1 VSA 的模块化构成 中频信号被抽样量化后成为数字信号,N 个码片的抽样信号进入数字信号处理模块后, 其幅度和相位就确定了,经过判决,重新生成了码字序列,然后计算EVM 指标。EVM 指标是抽样信号和“标准参考信号”的矢量做差得出的结果。而这个“标准参考信号”的幅度,则是N 个码片的抽样值决定的。传统上我们定义参考信号幅度s M 为: 我们假设一个码片的归一化幅度误差是M ?,而相位误差是P ?,根据三角关系,矢量幅度误差可以表示为:

在调制方式确定后,星座图基本点的相位是确定的,所以是不依赖于参考信号幅度的,所以P ?是确定的,但是M ?是依赖参考信号幅度的,进而EVM 也是依赖参考信号幅度的。经典理论指出:参考信号幅度s M 的选择算法,应当使EVM 尽可能小。但是我们的研究显示,从理论上讲,(1)式的算法不是使EVM 最小化的最优算法,以下我们将简要说明我们对最优算法的研究: VSA 输出的EVM 值,并不是单个码片的EVM 值,而是N 个码片EVM 的均方根值,即: rms EVM = = (3) 前文已经说明,i P ?是不可选择的,而 1i i s M M M ?=- (4) 而这个标准的s M 就是我们要求取的量。设定函数 ()()2 2221141sin 411sin 122N N i i i i s i i i i s s P M P M f M M M M M ==???? ??????=+?+?=+-+- ? ? ? ? ???????? ? ∑∑ (5) ()s f M 越小,则rms EVM 越小,通过偏导法来求函数()s f M 的极值,通过分析,认为一定存在 这样一个极小值存在在可导区间上:

电动力学试题

1、(15分)一半径为a的不接地导体球的中心与坐标原点重合,球上总电荷为零,两个电量均为q的点电荷置于x轴上,处(b,c均大于a),求:球外空间的电势;x=b处的电荷所受到的作用力。 2、(15分)两个无限大,相互平行的平面上均有面电流流动,其面电流密度大小均为K,且方向相反。求全空间的磁矢势A和磁感应强度B. 3、(20分)长和宽分别为a和b的矩形波导管内电磁波的群速度可定义为,其中W为单位时间内通过横截面的电磁能量的周期平均值,P为单位长度波导管内的电磁能量的周期平均值。如管内为真空,对波(m n均大于零),求W和P并由此求出。 4、(15分)电磁场存在时的动量守恒定律可表示为,其中g为电磁场,T为动量流密度张量。由该等式导出相应的角动量守恒定律的表达式,并给出角动量流密度张量的表达式。 5、(20分)位于坐标原点的电偶极距为的电偶极子,以匀角速度ω绕通过其中心的z轴在x-y平面转动,求辐射场E,B,辐射场能流密度的周期平均值和平均辐射功率。 6、(15分)在惯性系S中观测到:两个宇宙飞船A和B分别在两条平行直线上匀速运动,起速度大小均为c/2,方向相反,两平行线相距为d,飞船的大小远小于d,当两飞船相距为d时,由飞船A以3c/4的速度(也是在S系测量的)沿直线抛出一小球,问: 从飞船A上的观察者来看,为使小球正好与飞船B相遇,小球应沿什么方向抛出? 在飞船A上的观察者来看,小球的速率是多少? 文章来自:人人考研网(https://www.360docs.net/doc/f317121.html,)更多详情请参考:https://www.360docs.net/doc/f317121.html,/html/kaoyanshiti/201004/21-32447.html 一)考试内容 考试范围为理科院校物理系《电动力学》课程的基本内容。以郭硕鸿著《电动力学》(第二版)(高等教育出版社)为例,内容涵盖该教材的第一至六章,麦克斯韦方程、静电场、静磁场、电磁波的传播、辐射、狭义相对论均在其中。试题重点考查的内容: 一、静电场 1.拉普拉斯方程与分离变量法 2.镜象法 3.电多极矩 二、静磁场 1.矢势 2.磁标势 3.磁多极矩 三、电磁波的传播 1.平面电磁波 2.谐振腔 3.波导

电动力学典型试题分析(精品文档)

典型试题分析 1、 证明题: 1、试由毕奥-沙伐尔定律证明0=??B 证明:由式: () () '' 0'3'0 144dv r x J dv r r x J B ??=?=??πμπμ又知: ()()''11x J r r x J ??? ? ???=????????,因此 ()()??=??=??=r dv x J A A dv r x J B ' '0''04 4πμπμ式中 由 ()0=????=??A B 所以原式得证。 2、试由电磁场方程证明一般情况下电场的表示式.t A E ??--?= ? 证:在一般的变化情况中,电场E 的特性与静电场不同。电场E]一方面受到电荷的激发,另一方面也受到变化磁场的激发,后者所激发的电场是有旋的。因此在一般情况下,电场是有源和有旋的场,它不可能单独用一个标势来描述。在变化情况下电场与磁场发生直接联系,因而电场的表示式必然包含矢势A 在内。 t B E A B ??- =????=式代入得:0=?? ? ?? ??+??t A E , 该式表示矢量t A E ??+是无旋场,因此它可以用标势?描述,?-?=??+ t A E 。因此,在一般情况下电场的表示式为:.t A E ??--?= ?。即得证。 3、试由洛仑兹变换公式证明长度收缩公式22 1c v l l -=。 答:用洛伦兹变换式求运动物体长度与该物体静止长度的关系。如图所示,设物 体沿x 轴方向运动,以固定于物体上的参考系为‘ ∑。若物体后端经过1P 点(第 一事件)与前端经过2P 点(第二事件)相对于∑同时,则21P P 定义为∑上测得的 物体长度。物体两端在‘∑上的坐标设为'2'1x x 和。在∑上1P 点的坐标为1x ,2P 点 的坐标为2x ,两端分别经过1P 和2P 的时刻为21t t =。对这两事件分别应用洛伦兹

矢量与张量

一.矢量与张量 1.1矢量及其代数运算公式 1.1.1矢量 在三维Euclidean 空间中,矢量是具有大小与方向且满足一定规律的实体,用黑体字母表示,例如u,v,w 等。它们所对应的矢量的大小(称模、值)分别用|u |,|v |,|w |表示。称模为零的矢量为零矢量,用0表示。称与矢量u 模相等而方向相反的矢量为u 的负矢量,用-u 表示。矢量满足以下规则: (1)相等:两个矢量相同的模和方向,则称这两个矢量相等。即,一个矢量做平行于其自身的移动则这个矢量不变。 (2)矢量和:按照平行四边形定义矢量和,同一空间中两个矢量之和仍是该空间的矢量. 矢量和满足以下规则: 交换律: u +v =v +u 结合律: (u +v )+w =u +(v +w ) 由矢量和与负矢量还可以定义矢量差: u -v =u +(-v ) 并且有 u +(-u )=0 (3)数乘矢量:设a,b 等为实数,矢量u 乘数实数a 仍是同一空间的矢量,记作v =a u 。 其含义是:v 与u 共线且模为u 的a 倍,当a 为正值时v 与u 同向,当a 为负值时v 与u 反向,a 为零时v 为零矢量。数乘矢量满足以下规则: 分配律: (a+b)u =a u +b u a(u +v )=a u +a v 结合律: a(b u )=(ab)u 由矢量关于求和与数乘两种运算的封闭性可知,属于同一空间的矢量组),,2,1(I i u i =的线性组合i I i i u a ∑=1仍为该空间的矢量, 此处i a 是实数。矢量组I u u u ,,21线性相关是指存在一组不全为零的实数I a a a ,,21,使得 i I i i u a ∑=1=0 线性无关:若有矢量组J u u u ,,21,当且仅当0=j a (j=1,2,…,J)时,才有j J j j u a ∑=1 =0,

是德科技 E8267D PSG 矢量信号发生器(配置指南)

Keysight E8267D PSG 矢量信号发生器

??????????? E8267D PSG ??????????????㈨????≠????????? (CD-ROM)??㈨??????????????????????(?? 1EU) ??????(?? 1E1) ? E8267D ?????????㈨??? Keysight PSG 矢量信号发生器选件 第 1 步. 选择频率范围(必选) 所有的频率范围选件均支持 100 kHz 以下的频率,但是不提供 100 kHz~250 kHz 频率范围内的性能指标。 E8267D-532频率范围: 250 kHz~31.8 GHz选择信号发生器的最高频率 E8267D-544频率范围: 250 kHz~44 GHz选择信号发生器的最高频率 第 2 步. 选择频谱纯度 标配标配频谱纯度提供低相位噪声 E8267D-UNX1超低相位噪声改进近载波相位噪声性能 E8267D-UNY1增强的超低相位噪声改进1Hz~300kHz载波频偏时的相位噪声 E8267D-1EH改善2GHz以下的谐波性能改进2GHz以下载波频率的谐波性能 第 3 步. 选择调制类型 标配连续波信号生成、矢量 (IQ) 调制功能生成连续波 (CW) 信号, 可以调制由可选的内置基带 发生器(选件 602) 或外部基带信号源提供的 IQ 波形 E8267D-UNT AM、FM、相位调制和低频输出生成模拟调制信号 E8267D-UNU 2脉冲调制生成脉冲调制信号 (150 ns 最小脉冲宽度) E8267D-UNW 2窄脉冲调制生成脉冲调制信号 (20 ns 最小脉冲宽度) 第 4 步. 选择斜坡扫描 第 5 步. 选择内置基带发生器 (射频调制带宽为 80 MHz) E8267D-009移动闪存提供 8 GB 移动闪存卡; 用户可访问的所有文件均保存在此卡中 1.E8267D-UNX ? E8267D-UNY ?╱??; ????????????? 2. ?? E8267D-UNU ? E8267D-UNW ?╱??; ??????????????? E8267D-UNU ???? E8267D-UNW? 2

电动力学试题库一及答案

福建师范大学物理与光电信息科技学院 20___ - 20___ 学年度学期____ 级物理教育专业 《电动力学》试题(一) 试卷类别:闭卷 考试时间:120分钟 姓名______________________ 学号____________________ 一.判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1.电磁场也是一种物质,因此它具有能量、动量,满足能量动量守恒定律。 ( ) 2.在静电情况,导体内无电荷分布,电荷只分布在表面上。 () 3.当光从光密介质中射入,那么在光密与光疏介质界面上就会产生全反射。

() 4.在相对论中,间隔2S在任何惯性系都是不变的,也就是说两事件时间先后关系保持不变。 () 5.电磁波若要在一个宽为a,高为b的无穷长矩形波导管中传播,其角 频率为 2 2 ? ? ? ? ? + ? ? ? ? ? ≥ b n a m με π ω () 二.简答题。(每题5分,共15分) 1.写出麦克斯韦方程组,由此分析电场与磁场是否对称为什么 2.在稳恒电流情况下,有没有磁场存在若有磁场存在,磁场满足什么方程 3.请画出相对论的时空结构图,说明类空与类时的区别.

三. 证明题。(共15分) 从没有电荷、电流分布的麦克斯韦方程出发,推导真空中的E 、B 的波动方程。 四. 综合题。(共55分) 1.内外半径分别为1r 和2r 的无穷长空心导体圆柱,沿轴向流有稳恒均 匀自由电流f j ,导体的磁导率为μ,求磁感应强度和磁化电流。(15分) 2. 有一个很大的电解槽中充满电导率为2σ的液体,使其中流着均匀 的电流f j ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和 面电荷分布。(分离变量法)(15分) 3. 有带电粒子沿z 轴作简谐振动t i e z z ω-=0,设c z <<ω0,求它的辐 射场E 、B 和能流S 。(13分) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物 时,看见其避雷针跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时间差。该建筑

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计

矢量网络分析

矢量网络分析(Vector Network Analyzer ,VNA)是通过测量元件对频率扫描和功率扫描测试信号的幅度和相位的影响来精确表征元件特征的一种方法。网络分析是指对较复杂系统中所用元件和电路的电器性能进行测量的过程。这些系统传送具有信息内容的信号时,我们最关心的是如何以最高效率和最小失真使信号从一处传到另一处。矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域。 国内生产矢量网络分析仪的厂家主要有:中国电子科技集团41所、天津德力、成都天大仪器等单位。国产矢量网络分析仪中,仅41所有与国外同类先进产品相对应的频率上限覆盖至170GHz的系列化产品。在世界范围内矢量网络分析仪生产厂商主要有美国安捷伦、日本安立和德国罗德施瓦茨等,其中以美国安捷伦代表着最高水平,其推出产品最高频率上限已达500GHz。 矢量网络分析仪可测量的器件: 无源器件(滤波器) 有源器件(放大器) 单端口器件(天线) 双端口器件(衰减器) 多端口器件(混频器,耦合器,功分器) 平衡器件(平衡滤波器等) 网络分析仪有标量网络分析仪和矢量网络分析仪之分。 标量网络分析仪:只测量幅度信息,不支持相位的测量。接收机采用二极管检波,没有选频特性,动态范围小。 矢量网络分析仪:可同时测量被测网络的幅度信息和相位信息。接收机采用调谐接收,具有选频特性,能够有效抑制干扰和杂散,动态范围大。通过测量被测网络(被测件)对频率扫描和功率扫描测试信号的幅度与相位的影响,来表征被测网络的特性。 网络分析的基本原理

电动力学试题及其答案(1)

电动力学(A) 试卷 班级 一、填空题(每空2分,共32分) 1、已知矢径r ,则 ? r = 。 2、已知矢量A 和标量φ,则=??)(A φ 。 3、区域V 内给定自由电荷分布ρ 、σ ,在V 的边界上给定 或 ,则V 内电场唯一确定。 4、在迅变电磁场中,引入矢势A 和标势φ,则E = , B = 。 5、麦克斯韦方程组的微分形式 、 、 、 。 6、电磁场的能量密度为 w = 。 7、库仑规范为 。 8、相对论的基本原理为 , 。 9、电磁波在导电介质中传播时,导体内的电荷密度 ρ = 。 10、电荷守恒定律的数学表达式为 。 二、判断题(每题2分,共20分) 1、由0 ερ =??E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该 点散度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波是横电磁波。( ) 4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。( ) 5、只要区域V 内各处的电流密度0=j ,该区域内就可引入磁标势。( ) 6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。( ) 7、在0=B 的区域,其矢势A 也等于零。( ) 8、E 、D 、B 、H 四个 ) 9、由于A B ??=,矢势A 不同,描述的磁场也不同。( ) 10、电磁波的波动方程012222 =??-?E t v E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符? 的矢量性和微分性,证明 0)(=????φr 式中r 为矢径,φ为任一标量。

矢量信号分析仪原理

矢量信号分析仪原理 矢量信号分析仪是常用的进行雷达和无线通讯信号分析的仪器。 模拟扫描调谐式频谱分析仪使用超外差技术覆盖广泛的频率范围; 从音频、微波直到毫米波频率。快速傅立叶变换(FFT) 分析仪使用数字信号处理(DSP) 提供高分辨率的频谱和网络分析。如今宽带的矢量调制( 又称为复调制或数字调制) 的时变信号从FFT 分析和其他DSP 技术上受益匪浅。VSA 提供快速高分辨率的频谱测量、解调以及高级时域分析功能,特别适用于表征复杂信号,如通信、视频、广播、雷达和软件无线电应用中的脉冲、瞬时或调制信号。 图1 显示了一个简化的VSA 方框图。VSA 采用了与传统扫描分析截然不同的测量方法; 融入FFT 和数字信号处理算法的数字中频部分替代了模拟中频部分。传统的扫描调谐式频谱分析是一个模拟系统; 而VSA 基本上是一个使用数字数据和数学算法来进行数据分析的数字系统。VSA 软件可以接收并分析来自许多测量前端的数字化数据,使您的故障诊断可以贯穿整个系统框图。 图1. 矢量信号分析过程要求输入信号是一个被数字化的模拟信号,然后使用DSP 技术处理 并提供数据输出; FFT 算法计算出频域结果,解调算法计算出调制和码域结果。 VSA 的一个重要特性是它能够测量和处理复数数据,即幅度和相位信息。实际上,它之所以被称为“矢量信号分析”正是因为它采集复数输入数据,分析复数数据,并输出包含幅度和相位信息的复数数据结果。矢量调制分析执行测量接收机的基本功能。在下一篇“矢量调制分析基础”中,您将了解到矢量调制与检波的概念。 在使用适当前端的情况下,VSA 可以覆盖射频和微波频段,并能提供额外的调制域分析能力。这些改进可以通过数字技术来实现,例如模拟- 数字转换,以及包含数字中频(IF) 技术和快速傅立叶变换(FFT) 分析的DSP。 因为要分析的信号变得越来越复杂,最新一代的信号分析仪已经过渡到数字架构,并且往往

电动力学试题(卷)与答案解析1B

电动力学期末考试 物理学 专业 级 班 《电动力学》 试卷B 一.填空(每空1分,共14分) 1. a 为常矢量,则 )(r a , r a ) ( = 2. 能量守恒定律的积分式是- d s = dV f +dV w dt d ,它的物理意义是_____________________ 3. B =▽ A ,若B 确定,则A _______(填确定或不确定),A 的物理意义是 4. 在某区域内能够引入磁标势的条件是 5. 电四极矩有几个独立分量?答: 6.金属内电磁波的能量主要是电场能量还是磁场能量?答: 7.良导体条件是________________ 8. 库仑规范辅助条件为____________;洛伦兹规范辅助条件为____________,在此条件下,达朗贝尔矢势方程为________________________________ 9. 爱因斯坦提出了两条相对论的基本假设: ⑴ 相对性原理:_______________________________________________________________________ ⑵ 光速不变原理:____________________________________________________________________ 二. 单项选择(每题2分,共26分) 1. 导体的静止条件归结为以下几条,其中错误的是( ) A. 导体内部不带电,电荷只能分布于导体表面 B. 导体内部电场为零 C. 导体表面电场线沿切线方向 D. 整个导体的电势相等 2.下列表述正确的个数是( ) ⑴单位张量和任一矢量的点乘等于该矢量 ⑵反称张量T 与矢量f 点乘有 f T T f ⑶并矢B A 等于并矢A B A. 0个 B. 1个 C. 2个 D. 3个 3.对于均匀带电的长形旋转椭球体,有( ) A.电偶极矩不为零,电四极矩也不为零 B.电偶极矩为零,电四极矩不为零 C.电偶极矩为零,电四极矩也为零 D.电偶极矩不为零,电四极矩为零 4.有关复电容率 i 的描述正确的是( ) A. 实数部分 代表位移电流的贡献,它不能引起电磁波功率的耗散;虚数部分是传导电流的贡献,它引起能

矢量网络分析

矢量网络分析 CKBOOD was revised in the early morning of December 17, 2020.

矢量网络分析(Vector Network Analyzer ,VNA)是通过测量元件对频率扫描和功率扫描测试信号的幅度和相位的影响来精确表征元件特征的一种方法。网络分析是指对较复杂系统中所用元件和电路的电器性能进行测量的过程。这些系统传送具有信息内容的信号时,我们最关心的是如何以最高效率和最小失真使信号从一处传到另一处。矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域。国内生产矢量网络分析仪的厂家主要有:中国电子科技集团41所、天津德力、成都天大仪器等单位。国产矢量网络分析仪中,仅41所有与国外同类先进产品相对应的频率上限覆盖至170GHz的系列化产品。在世界范围内矢量网络分析仪生产厂商主要有美国安捷伦、日本安立和德国罗德施瓦茨等,其中以美国安捷伦代表着最高水平,其推出产品最高频率上限已达500GHz。 矢量网络分析仪可测量的器件: 无源器件(滤波器) 有源器件(放大器) 单端口器件(天线)

双端口器件(衰减器) 多端口器件(混频器,耦合器,功分器) 平衡器件(平衡滤波器等) 网络分析仪有标量网络分析仪和矢量网络分析仪之分。 标量网络分析仪:只测量幅度信息,不支持相位的测量。接收机采用二极管检波,没有选频特性,动态范围小。 矢量网络分析仪:可同时测量被测网络的幅度信息和相位信息。接收机采用调谐接收,具有选频特性,能够有效抑制干扰和杂散,动态范围大。通过测量被测网络(被测件)对频率扫描和功率扫描测试信号的幅度与相位的影响,来表征被测网络的特性。 网络分析的基本原理 网络有很多种定义,就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输,这就好比光源发出的光射向某种光学器件,例如透

矢量网络分析仪 工作 原理 矢网(高清版)

矢网分析仪原理 目录 1.一类独一无二的仪器 2.网络分析仪的发展 3.网络分析理论 4.网络分析仪测量方法 5.网络分析仪架构 6.误差和不确定度 7.校准 8.工序要求 9.一台仪器,多种应用 10.其它资源: 1. 一类独一无二的仪器 网络分析仪是一类功能强大的仪器,正确使用时,可以达到极高的精度。它的应用也十分广泛,在很多行业都不可或缺,尤其对测量射频(RF)元件和设备的线性特性方面非常有用。现代网络分析仪还可用于更具体的应用,例如,信号完整性和

材料测量。随着NI PXIe - 5632的问世,用户可轻松地将网络分析仪应用于设计验证和生产线测试中,完全摆脱传统网络分析仪成本高、占地面积大的束缚。 2. 网络分析仪的发展 矢量网络分析仪,比如图1所示的NI PXIe-5632可用于测量设备的幅度、相位和阻抗。由于网络分析仪是一种封闭的激励-响应系统,因此可在测量RF特性时实现绝佳的精度。而充分理解网络分析仪的基本原理对于最大限度地受益于网络分析仪至关重要。 图1.NI PXIe-5632矢量网络分析仪 在过去的十年中,矢量网络分析仪由于其较低的成本和高效的制造技术受到越来越多业内人士的青睐,其风头已经盖过标量网络分析仪。虽然网络分析理论已经存在了数十年,但是直到20世纪80年代初期第一台现代独立台式分析仪才诞生。

在此之前,网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能有限。NI PXIe-5632的推出标志着网络分析仪发展的又一个里程碑,它将矢量网络分析功能成功地添加到软件定义的灵活PXI模块化仪器平台。 通常我们需要大量的测量实践,才能精确地测量幅值和相位参数,避免重大错误。在部分射频仪器中,由于测量的不确定性,小误差很可能会被忽略不计,而对于网络分析仪等精确的仪器,这些小误差却是不容忽视的。 3. 网络分析理论 网络是一个高频率使用术语,具有很多种现代的定义。就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,一部分被传输。图2为类比图。这就好比光源发出的光射向某种光学器件,例如透镜。其中,透镜就类似于一个电子网络。当光射入透镜时,根据透镜的属性,一部分光将反射回光源,而另一部分光则会传输过去。根据能量守恒定律,被反射的信号和传输信号的能量总和等于原信号或入射信号的能量。在这个例子中,由于热量产生的损耗微乎其微,因此忽略不计。

相关文档
最新文档