专题10(4.3 对数函数)(解析版)

专题10(4.3 对数函数)(解析版)
专题10(4.3 对数函数)(解析版)

专题10(4.3 对数函数)

一、单选题

1.(2020·上海)函数121log 1(1)1y x x x ??

=++>

?-?

?的最大值是( ) A .2- B .2

C .3-

D .3

【答案】A 【分析】令11

11211

t x x x x =+

+=-++--,用双勾函数的性质求得其最小值,再利用12

log y t =单调性求解.

【详解】令11

11211

t x x x x =+

+=-++--, 由双勾函数知:t 在()1,2上递减,在()2,+∞上递增, 所以当2x =时,t 取得最小值,最小值为4, 又因为

12

log y t =,在[4,)+∞上递减,

所以其最小值为

min 12

log 42y ==-,

所以121log 1(1)1y x x x ??

=+

+> ?-?

?

的最小值为2-. 故选:A

【点睛】本题主要考查复合函数求最值以及对数函数和双勾函数的性质,还考查了运算求解的能力,属于中档题.

2.(2017·上海松江·高一期中)函数y=2lg 11x ??

-

?+??

的图象关于 ( )

A .x 轴对称

B .y 轴对称

C .原点对称

D .直线y=x 对称

【答案】C

【分析】先化简函数,然后求出()y x -进行判定

【详解】函数()()()21lg 11111x y x lg lg x lg x x x -????

=-==--+

? ?++????

()()()()1 111x y x lg lg x lg x y x x +??

-==+--=- ?-??

则()()y x y x =--

∴函数关于原点对称

故选C

【点睛】本题考查了函数图像的对称性,在判定时先化简函数解析式,然后得出关于原点对称,较为基础.

3.(2020·上海黄浦·格致中学高一期末)已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥

【答案】C

【分析】因为函数2(log )y x a b =++的图象不经过第四象限,所以当0x =时,0y ≥,所以log 20a b +≥.

【详解】因为函数2(log )y x a b =++的图象不经过第四象限, 所以当0x =时,0y ≥,

log 20a b ∴+≥.

故选:C .

【点睛】本题主要考查了指数函数的图象和性质,是基础题.

4.(2018·上海市敬业中学高一期末)以下关于函数()lg 1y x =-的说法正确的是( )

A .定义域是()0+∞,

B .值域是()0+∞,

C .在定义域上单调递增

D .在定义域上单调递减

【答案】D

【分析】根据定义域为{}

1x x <,值域为R ,排除A ,B ,再根据单调性得到答案. 【详解】函数()lg 1y x =-的定义域为:{}

1x x <故A 错误;值域为R ,B 错误; 易知:1y x =-单调递减,lg y x =单调递增 故()lg 1y x =-在定义域上单调递减,C 错误,D 正确 故选 D

【点睛】本题考查了函数的定义域,值域,单调性,意在考查对数函数的基本性质.

二、填空题

5.(2020·上海高一课时练习)不等式0.25log (1)1x ->的解集是________.

【答案】51,4?? ???

【分析】由()0.250.25log 11log 0.25x ->=,结合()0.25log f x x =在()0,∞+单调递减,即可求解集.

【详解】解:由()0.25log f x x =在()0,∞+单调递减,因为()0.250.25log 11log 0.25x ->=,

所以1010.25

x x ->??

-

???.

故答案为:51,4?? ???

【点睛】本题考查了对数不等式的求解,考查了对数函数的单调性,考查了对数函数的定义域.本题的易错点是忽略了真数需要大于零.

6.(2016·上海理工大学附属中学)已知()3log f x x =,若()()2f a f >,则a 的取值范围为______.

【答案】()10,2,2??+∞ ?

??

【分析】可先作出函数图像,结合图像求解即可

【详解】作出函数()f x 的图像,如图所示,由于()122f f ??= ???

,故结合图像可知1

02

a <<或2a >.

故答案为:()10,2,2??+∞ ?

??

【点睛】本题考查对数型函数不等式的解法,解题关键是能够正确作图,属于中档题 7.(2019·宝山·上海交大附中)已知log 21a <(其中0a >且1a ≠),则a 的取值范围是________. 【答案】(0,1)

(2,)+∞

【分析】将log 21a <变形为log 2log a a a <,对01a <<和1a >讨论,得出结果. 【详解】解:

log 21a <

log 2log a a a ∴<,

当01a <<时,2a <; 当1a >时,2a >, 综合得:a 的取值范围是(0,1)(2,)+∞,

故答案为 (0,1)

(2,)+∞

【点睛】本题考查含参的对数不等式,注意对对数的底是否大于1要进行分类讨论,是基础题.

8.(2019·上海市建平中学高一期末)已知a R ∈且

1

1a

>,则关于x 的不等式()2log 570a x x -+>的解集为______.

【答案】()2,3

【分析】先由a R ∈且

1

1a

>,得到01a <<,利用对数函数的单调性,将不等式()2

log 570a x x -+> ,转化为22570

571x x x x ?-+>?-+

求解.

【详解】

因为a R ∈且

1

1a

>, 所以01a <<,log a y x =在 ()0,∞+上递减,

因为不等式()

2

log 570log 1a a x x -+>= ,

所以22570571x x x x ?-+>?-+?-+

解得 23x <<,

所以不等式的解集是()2,3, 故答案为:()2,3

【点睛】本题主要考查对数不等式的解法和一元二次不等式的解法,还考查了运算求解的能力,属于中档题.

9.(2019·上海市建平中学高一期末)函数()f x =______. 【答案】(],ln 2-∞

【分析】求出函数定义域,然后先求得232x x --的取值范围,利用二次根式的性质,对数函数性质得函数值域.

【详解】由2032x x -->得31x -<<,定义域为(3,1)-

2232(1)4x x x --=-++,

∴当31x -<<时,20324x x <--≤,02<,

∴ln 2≤. 故答案为:(,ln 2]-∞.

【点睛】本题考查对数型复合函数的值域,解题方法是先求出函数定义域,在定义域内求出内层函数的取值范围,再由对数函数性质得结论.

10.(2020·上海高一课时练习)若5log 0a >,则a 的取值范围是___________;若

15

log 1a <,则a 的取值范围是__________.

【答案】1a > 15

a >

【分析】根据对数函数单调性和对数定义域,即可求得答案. 【详解】

5log y x =在定义域内是增函数

由5

log 0a >,可得55log log 1

0a a >??>?

解得:1a >

∴5log 0a >,则a 的取值范围是:1a >

15

log y x =在定义域内是减函数

由15

log 1a <,可得1

155

1log log 50a a ??

解得:15

a >

∴15

log 1a <,则a 的取值范围是:15

a >

故答案为:1a >;15

a >

. 【点睛】本题主要考查了解对数不等式,解题关键是掌握对数函数单调性,考查了分析能力和计算能力,属于基础题.

11.(2020·上海)函数22

33log log 3y x x =-+的值域为_________,单调递减区间是

_____________.

【答案】[2,)+∞ (0,3]

【分析】先换元转化为二次函数,再根据二次函数性质求值域;根据二次函数单调性以及对数函数单调性确定减区间. 【详解

222

233333log log 30log 2log 323,(log )y x x x y x x t t t x R =-+∴>∴=-+=-+=∈

2223(1)22y t t t ∴=-+=-+≥,即值域为[2,)+∞;

因为3log t x =为(0,)+∞上单调增函数,所以当31log 1,03t x x ≤≤<≤,

时,函数2

233log log 3y x x =-+单调递减,即减区间为(0,3];

故答案为:[2,)+∞,(0,3]

【点睛】本题考查对数型复合函数值域与单调区间问题,考查基本分析与求解能力,属基础题.

12.(2020·上海)函数()

2

2log 54y x x =+-的值域为_______,单调递增区间是

_____________.

【答案】(]2,log 9-∞ (1,2]-

【分析】先由题意求出函数的定义域,令254t x x =+-,确定其单调性与值域,根据复合函数的单调性判定原函数的单调性,从而可求出值域.

【详解】由2540x x +->解得:15x -<<,即函数()

2

2log 54y x x =+-的定义域为

()1,5-,

令254t x x =+-,则其图像关于直线2x =,且开口向下;

因此254t x x =+-在()1,2-上单调递增,在()2,5上单调递减;所以(]0,9t ∈ 又函数2log y t =是关于t 的增函数,

因此函数()

2

2log 54y x x =+-的单调递增区间为:(1,2]-;递减区间为()2,5;

所以max 2log 9y =,即函数()

2

2log 54y x x =+-的值域为(]2,log 9-∞.

故答案为:(]2,log 9-∞;(1,2]-.

【点睛】本题主要考查对数型复合函数的单调性与值域,属于常考题型.

三、解答题

13.(2020·上海奉贤·高一期中)已知2256x ≤且21

log 2

x ≥

,求函数

2

()log 2

2

x f x =?的最大值和最小值. 【答案】最小值为1

4

-

,最大值为2. 【分析】由已知条件化简得

21

log 32

x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即

21

log 32

x ≤≤ ()()()2

22231log 1log 2log 24f x x x x ?

?=-?-=-- ??

?.

当23log ,2x =

()min 1

4

f x =-,当2lo

g 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.

14.(2018·上海市宝山区海滨中学高一期末)已知函数2

2()log (23)f x x x =-++

(1)求()f x 的单调递减区间; (2)求()f x 的最值,并求此时x 的值.

【答案】(1)()1,3;(2)当1x =时()f x 有最大值2.

【分析】(1)先由题意得到2230x x -++>,求解,即可得出定义域;再令

223t x x =-++,根据二次函数与对数函数单调性,即可得出结果;

(2)由(1)可直接得出结果.

【详解】(1)由题意可得:2230x x -++>,即2230x x --<,解得:13x ;

即函数()f x 的定义域为()1,3-;

令223t x x =-++,则其为开口向下的二次函数,且对称轴为1x =,

当()1,1x ∈-时,函数223t x x =-++单调递增,()1,3x ∈时,函数223t x x =-++单调递减;

又2log y t =为增函数;

所以2

2()log (23)f x x x =-++在()1,1x ∈-上单调递增,在()1,3x ∈上单调递减;

即函数()f x 的单调递减区间为()1,3; (2)由(1)得:

当1x =时,2

2()log (23)f x x x =-++有最大值2(1)log (123)2=-++=f .

【点睛】本题主要考查求对数型复合函数单调性,以及由函数单调性求最值,熟记二次函数与对数函数单调性即可,属于常考题型.

15.(2016·上海格致中学高一期末)已知函数()21x

f x =-的反函数为

()()()14,log 31f x g x x -=+

(1)若()1

f x

g x -≤,求x 的取值范围D ;

(2)设函数()()()1

12

h x g x f x -=-

,当x 属于(1)中的D 时,求()h x 的值域. 【答案】(1)[0,1](2)[0,

12

] 【分析】(1)先求出反函数的解析式及定义域,把解析式代入不等式,利用对数函数的单调性和定义域解此不等式;

(2)先利用对数的运算性质化简H (x )的解析式,再结合对数函数的图象与性质,从而解决问题.

【详解】解:由y =2x ﹣1得2x =y +1,∴x =log 2(y +1) ∴f ﹣1(x )=log 2(x +1)(x >﹣1)

(1)由f ﹣1(x )≤g (x )得log 2(x +1)≤log 4(3x +1) ∴log 4(x +1)2≤log 4(3x +1)

∴210310

01(1)31x x x x x +??

+≤≤??+≤+?

>>得 ∴D =[0,1] (2)()()()()()142441131231132211

x H x g x f x log x log x log log x x -+=-

=+-+==-++ ∵0≤x ≤1∴1≤x +1≤2 ∴2

121x ≤

≤+ ∴2

1321

x ≤-

≤+ ∴4213012log x ????-

∈ ???+?

???

, ∴()102H x ??∈????

,.

【点睛】本题考查反函数的求法和函数的值域,属于对数函数的综合题,要会求一些简单函数的反函数,掌握有关对数函数的值域的求法,属中档题.

16.(2018·上海普陀·曹杨二中高一期末)已知函数()()()2log 424,x x

f x b

g x x =+?+=.

(1)当5b =-时,求()f x 的定义域;

(2)若()()f x g x >恒成立,求实数b 的取值范围.

【答案】(1)(-∞,-0)∪(2,+∞);(2)(3,)-+∞

【分析】(1)把5b =-代入解析式并化简()()2log 4524x x

f x =-?+,从而可得

45240x x -?+>,从而求出定义域.

(2)由()()f x g x >得4242x x x b +?+>,从而可得4

1(2)2

x

x b >-+

, 令4

()1(2)2

x

x h x =-+

从而化为最值问题. 【详解】(1)当5b =-时,()()2log 4524x x

f x =-?+,则45240x x -?+>,故0x <或2x >,

所以函数的定义域为{

0x x <或}2x >. (2)

()()2log 424x x f x b =+?+,()g x x =,

∴由()()f x g x >得4242x x x b +?+>,即41(2)2x x b >-+

,令4()1(2)2

x x h x =-+, 则()3h x ≤-,当3b >-时,()()f x g x >恒成立, 故实数b 的取值范围为(3,)-+∞

【点睛】本题考查了函数的定义域的求法以及恒成立问题,注意“分离参数法”求参数的取值范围.

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数22()log (1)f x x x =+的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

高一对数及对数函数练习题及答案

《对数与对数函数》测试 12.21 一、选择题: 1.已知3a +5b = A ,且 a 1+b 1 = 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x = lg(10x)+lg a 1 ,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,则x 1x 2的值 是( ). (A).lg3·lg2 (B).lg6 (C).6 (D). 6 1 4.若log a (a 2+1)<log a 2a <0,那么a 的取值X 围是( ). (A).(0,1) (B).(0,21) (C).(21 ,1) (D).(1,+∞) 5. 已知x = 31log 12 1 + 31log 1 5 1 ,则x 的值属于区间( ). (A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lg b a )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a = 4b = 6c ,则( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b 2 8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值X 围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ).

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

中职函数、指数对数函数测试题

指数与对数函数测试题 姓名: 学号: 。 一、选择题:本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中, 只有一项是符合题目要求的. 13 4 2 8 64=( ) A .4 B .15 8 2 C .72 2 D .8 2.函数y = ) A .[1+∞,) B .-∞(,3] C .[3+∞, ) D .R 3.指数函数的图像过点(3,27),则其解析式是( ) A .9x y = B .3 y x = C .3x y = D .13 x y = () 4.下列函数在+∞(0,) 上是减函数的是( ) A .2 x y = B .2 y x = C .2log y x = D .12 x y = () 5.下列运算正确的是( ) A .4 33 4 22=2÷ B .lg11= C .lg10ln 2e += D .433 4 22=2 6.若对数函数()y f x =过点(4,2),则(8)f =( ) A .2 B .3 C . 12 D .1 3 7.设函数[) 22 log ,0,()9+,(,0)x x f x x x ?∈+∞?=?∈-∞?? ,则((f f = ( ) A .16 B .8 C .4 D .2 8.下列函数既是奇函数,又是增函数的是( ) A .2 y x = B .1y x = C .2x y = D .3y x = 9.某城市现有人口100万,根据最近20年的统计资料,这个城市的人口的年自然增长率为%,按这个增长率计算10年后这个城市的人口预计有( )万。

A .20100 1.012y =? B .10 1001+1.2%y =? () C .101001-1.2%y =? () D .10 100 1.12y =? 10.下列函数中,为偶函数的是 ( ) A .1 y x -= B .2 y x = C .3x y = D .3log y x = 11.下列函数中,在区间(0),+∞内为增函数的是( ); A .1 2x y =() B .2 log y x = C .12 log y x = D .1y x -= 12. 函数 y = ( ) A. []11,- B. (11) ,- C. ()1,-∞ D. ()1,-+∞ 二、填空题:(共4小题,每题5分,共20分) 13. 2=10x 化为对数式为: ; 2log 8=3化为指数式: 。 14.求值:2 -3 27= ;22log 1.25+log 0.2= ; 15.若幂函数()y f x =的图像过点(3,9),则f = 。 16.比较大小: 0.12 4 5() 0.15 4 5 (); 1.1log 2 0 三、解答题 (本大题共2个小题,共40分;解答应写出文字说明、证明过程或演算步骤) 17.计算:(1) 2113 2 4 20.25+-81+log 8()() (2)1 -23 51+log 1ln 8 e -() 18.某商场销售额为500万元,实行机制改革后,每年销售额以8%的幅度增长,照此发展下去,多少年后商场销售额达能够翻一番(结果精确到整数) (参考: 1.08log 29.006≈, 1.8log 2 1.179≈, 1.08log 418.013≈)

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

对数函数性质及练习(有答案)

对数函数及其性质 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征???? ? log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数 log a x 的真数:仅是自变量x 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因 是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2 -a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2 -a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________. (1)y =log (a >0,且a ≠1);(2)y =log 2x +2; (3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析: 2.对数函数y =log a x (a >0,且a ≠1)的图象与性质

(1)图象与性质 谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. (2)指数函数与对数函数的性质比较 (3)底数a对对数函数的图象的影响 ①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上

(完整word版)对数与对数函数练习题及答案

对数与对数函数同步练习 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、4 1 B 、4 C 、1 D 、4或1 3、已知221,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g 的两根是,αβ,则αβg 的值是( ) A 、lg5lg 7g B 、lg35 C 、35 D 、35 1 5、已知732log [log (log )]0x =,那么1 2 x -等于( ) A 、1 3 B C D 6、函数2lg 11y x ?? =- ?+?? 的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 7、函数(21)log x y -= ) A 、()2,11,3??+∞ ???U B 、()1,11,2?? +∞ ???U C 、2,3??+∞ ??? D 、1,2??+∞ ??? 8、函数212 log (617)y x x =-+的值域是( ) A 、R B 、[)8,+∞ C 、(),3-∞- D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( ) A 、 1 m n >> B 、1n m >> C 、01n m <<< D 、01m n <<<

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

(对数与对数函数)含有答案-人教版

(对数与对数函数)含有答案-人教版

命题人:张立洪 第 2 页 共 10 页 高一数学基础训练(六) 对数部分: 一、选择题: 1.若3 12=x ,则x 等于 (B ) A log 23 B log 2 3 1 C log 2 13 1 D log 3 12 2.已知log a 8=2 3,则a 等于 ( D ) A 41 B 2 1 C 2 D 4 3.下列选项中,结论正确的是 (C ) A 若log 2x =10,则2x=10 B 若2x =3,则log 32=x C 0log )(log 3 22= D 23 3 2log = 4.以下四个命题:(1)若log x 3=3,则x=9;(2)若log 4x =21 , 则x=2; (3)若log 3 x=0,则x=3;(4)若log 5 1 x=-3, 则x=125,其中真命题的个数是(B ) A 1个 B 2个 C 3个 D 4个 5.下列各式中,能成立的是 (D ) A log 3(6-4)=log 36-log 34 B log3(6-4)=4 log 6 log 3 3 C log 35-log 36=5 log 5log 3 3 D log 23+log 210=log 25+log 26 6.下列各式中,正确的是 (D ) A lg4-lg7=lg(4-7) B 4lg3=lg3?4 C lg3+lg7=lg(3+7) D ln N e N = 7.如果()N a a =--3log 1 ,那么a 的取值范围是(D )

命题人:张立洪第 3 页共 10 页

命题人:张立洪 第 4 页 共 10 页 A. 3 B. 8 C. 4 D. log 4 8 二、填空题: 1.把下列指数形式写成对数形式: (1) 4 5=625 5log 6254= (2)6 2-=641 2 log 1 64 =-6 (3)a 3=27 3 log 27=a (4) m )(3 1 =5.73 13 log 5.73m = 2.把下列对数式写成指数式 (1) 3log 9=2 2 3=9 (2)5 log 125=3 3 5=125 (3)2log 41=-2 22-=14 (4)3 log 811=-4 4 3-=1 81 3.利用对数的定义或性质求值: (1) log 3 131 =1; (2)log 111=0;(3) log 232=5;(4)log 9 131=2; 4.当底是9时,3的对数等于14

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

对数和对数函数测试题(卷)

对数与对数函数试题 一.选择题 1.函数y= 的图象大致为( ) A . B . C . D . 2、下列函数中,其定义域和值域分别与函数y=10lgx 的定义域和值域相同的是 A. y=x B. y=lgx C. y=2x D. y x = 3、已知03.1()2a =,20.3b -=, 12log 2c =,则,,a b c 的大小关系是 () A .a b c >> B .a c b >> C.c b a >> D .b a c >> 4、对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如 [2]=2;[1.2]=2;[2.2-]=3-,这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。那么]64[log ]4[log ]3[log ]2[log ]1[log 22222+++++Λ的值为() A .21 B .76 C .264 D .642 5、已知{}a b 2,3,4,5,6,7,8,9∈、,则log a b 的不同取值个数为( ) A. 53 B. 56 C. 55 D. 57 6、若, ,则( ) A. B. C. D. 7、函数 的图像大致是( ) A. B. C. D. 8、函数()2log (2)a f x x =+-(01)a a >≠且的图像必经过点() A .(0,1)B .(2,1)C .(3,1)D .(3,2) 9、三个数03770.30.3.,,,㏑,从小到大排列()

A.0.37.73.0㏑0.3 B.0.37,㏑0.3,0.37 C.7,0.3 0.3, 70.3,,㏑ D.70.3ln 3,0.3,7 10、当01a <<时,在同一坐标系中,函数x y a -=与log a y x =的图象是() A . B . C.D . 11、设函数f(x)定义在实数集上,f(2x)=f(x)-,且当x ≥1时,f(x)=lnx ,则有() A .11f()的的取值围是() A .3,14?? ???B .3,4??+∞ ???C .()1,+∞D .()3,11,4??+∞ ??? U 13、已知lg5,lg7m n ==,则2log 7=() A . m n B .1n m - C .1n m - D .11n m ++ 14、函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( ) A .1<d <c <a <b B .c <d <1<a <b C .c <d <1<b <a D .d <c <1<a <b 二.填空题 15、已知[]x 表示不大于x 的最大整数,设函数()[]2log f x x =,得到下列结论: 结论1:当12x <<时,()0f x =;结论2:当24x <<时,()1f x =; 结论3:当48x <<时,()2f x =;照此规律,得到结论10:__________. 16、已知函数()ln f x x =,若()()(0)f m f n m n =>>,则 11 m n m n +=++__________.

对数函数 典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里 x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

必修1《对数与对数函数测试题》测试

《对数与对数函数测试题》测试 一、 选择题: 1.已知3a =5b = A ,且 a 1+b 1 = 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x = lg(10x)+1 lg x ,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2) lgx +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).6 1 4.若log a (a 2 +1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0, 21) (C).(2 1 ,1) (D).(1,+∞) 5. 已知x = 31 log 12 1 + 31 log 15 1 ,则x 的值属于区间( ). (A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lg b a )2 的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a = 4b = 6c ,则( ). (A). c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b 2 8.已知函数y = log 5.0(ax 2 +2x +1)的值域为R ,则实数a 的取值范围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510 的位数是M ,则M 为( ). (A).20 (B).19 (C).21 (D).22 10.若log 7[ log 3( log 2x)] = 0,则x 2 1 为( ). (A). 3 21 (B). 3 31 (C). 2 1 (D). 4 2 11.若0<a <1,函数y = log a [1-( 2 1)x ]在定义域上是( ).

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

中职数学基础模块上第四章指数函数与对数函数测试题

中职数学基础模块上第四章指数函数与对数函数测试题 1 / 1 第四章 指数函数与对数函数测试题 姓名: 得分: 一、选择题(每小题3分,共36分) 1。 化简:22a a b ab = ——-------———-—-————--———————-— —--- ---————————-—-—————-—--—--——--—--( ) A 。 52 a B. 2 ab - C. 12 a b D 。 32 b 2。 计算:lg100ln ln1e +-= ――――――――――――――――――――( ) A 。 1 B 。 2 C. 3 D. 4 3。 下列运算正确的是:――――――――――――――――――――――( ) A. 433 4 2 2=2 B. 433 4 (2)=2 C 。 lg10 + ln1 =2 D. lg11= 4。 已知:函数y = a x 的图像过点(—2,9),则f (1) = ——---———-——-—---——-—-—-—-----—( ) A. 3 B. 2 C 。 13 D 。 1 2 5。 若a b >,则---———--——-------—--——-——-—-———-—---———-—--——--—-——-—--——-—-——-———---—-—---—---( ) A. 2 2a b > B. lg lg a b > C 。 22a b > D 。 a b > 6. 下列运算正确的是——----—--—-—-——---—-—--——--——---—-——--—-------—( ) A. log 2 4 + log 28 = 4 B 。 log 4 4 + log 28 = 5 C 。 log 5 5 + log 525 = 2 D 。lg10+ log 28 = 4 7。 下列函数中那个是对数函数是-——---———————---——-—-( ) A. 1 2 y x = B. y = log x 2 C. 3 y x = D 。 2log y x = 8。 将对数式ln 2x =化为指数式为——---————---—-------—-———---—-—---——--——-——---————---——( ) A. 2 10x = B 。 x = 2 C. x = e D 。 x = e 2 9。 三个数0.53 、 0。50.7 、lg100的大小关系正确的是—-—-—----—-—--———-——--——--—--—( ) A. 0.53 〉 lg100 〉 0。5 0。7 B 。 lg100 〉 0.50.7 〉 0。 53 C 。 0。5 0。7 〉0。53 > lg100 D. lg100 > 0.53 > 0.50.7 10。 已知22log ,(0,) ()9,(,0) x x f x x x ∈+∞?=?+∈-∞?,则[(7)]f f -=--———-—-——-— ------—( ) A 。 16 B. 8 C. 4 D. 2 11. 已知( 3 1) x-1 〉 9,则 x 的取值范围是—-———————-———————------——--——-—--———-———--—-—--( ) A. (0 ,—1) B 。(— ,—1) C 。 (1,+ ) D.( 1,0) 12。 已知f(x) = x 3 + m 是奇函数,则(1)f -的值为-——-——--——--—-—-———----————--—-——-( ) A 。 12- B 。 54 C 。 - 1 D. 1 4 二、填空题(每空4分,共16分) 13. 0.2x = 5化为对数式为: __________________。 14. log 2 8 = 3 化为指数式:______________________。 15.函数0.2log (1)y x = -定义域为__________________________________。 16. 函数log (5)a y x =+ (01)a <<在(0 ,+ )是_________________(减或增)

相关文档
最新文档