油脂的晶体特性(精)

油脂的晶体特性(精)
油脂的晶体特性(精)

油脂的晶体特性

①油脂的晶型:同质多晶现象:同一种物质具有不同固体形态的现象。固态油脂属于同质多晶现象。天然油脂一般都存在3-4 种晶型,按熔点增加的顺序依次为:玻璃质固体(亚α型或γ型),α型,β’型和β型,其中α型,β’型和β型为真正的晶体。α型:熔点最低,密度最小,不稳定,为六方堆切型;β’和β型熔点高,密度大,稳定性好,β’型为正交排列,β型为三斜型排列。X 衍射发现α型的脂肪酸侧链无序排列,β’型和β型脂肪酸侧链有序排列,特别是β型油脂的脂肪酸侧链均朝一个方向倾斜,有两种方式排列:DCL-

二位碳链长,β-2 型,TCL-三位碳链长,β-3 型。

②影响油脂晶型的因素

(1)油脂分子的结构:一般说来单纯性酰基甘油酯容易形成稳定的β型结晶,而且为β-2 型,而混合酰基甘油酯由于侧链长度不同,容易形成β’型,并以TCL 排列。

(2)油脂的来源:不同来源的油脂形成晶型的倾向不同,椰子油、可可脂、菜籽油、牛脂、改性猪油易于形成β’型;豆油、花生油、玉米油、橄榄油、等易于形成β型。

(3)油脂的加工工艺:熔融状态的油脂冷却时的温度和速度将对油脂的晶型产生显著的影响,油脂从熔融状态逐渐冷却时首先形成α型,当将α型缓慢加热融化后在逐渐冷却后就会形成β型,再将β型缓慢加热融化后逐渐冷却后则形成β’型。实际应用的例子:用棉

籽油加工色拉油时进行冬化处理,这一过程要求缓慢进行,使优质尽量形成粗大的β型,如果冷却过快,则形成亚α型,不利于过滤。

2 油脂的热性质

(1)熔点:对一般的化合物而言,熔点=凝固点。但对具有粘滞性的和同质多晶现象的物质,凝固点小于熔点。油脂的凝固点比其熔点低1-5℃。油脂中熔点甘油三酯<甘油二酯<甘油一酯。对于油脂来说,组成脂肪酸的饱和程度越高,熔点越高。天然油脂的熔点一般为

一范围,因为油脂一般为混合物,并有同质多晶现象。

(2)沸点和蒸汽压:油脂和脂肪酸的沸点有以下顺序:甘油三酯>甘油二酯>甘油一酯>脂肪酸>脂肪酸的低级醇酯。他们的蒸汽压则按相反的顺序变化。

(3)烟点,闪点,着火点:

烟点,闪点,着火点是油脂在接触空气时加热时的稳定性指标。

烟点:在不通风的情况下加热油脂观察到油脂发烟时的温度,一般为240℃。

闪点:油脂在加热时油脂的挥发物能被点燃但不能维持燃烧的温度,一般为340℃。

着火点:油脂在加热时油脂的挥发物能被点燃且能持续燃烧的时间不少于5 秒的温度,一般为370℃。

3 油脂的油性和粘性

油性是指液态油脂能形成润滑薄膜的能力。人的口舌对食品颗粒形状的感受程度有一定的阈值,当颗粒直径大于5 微米时,人的口感粗糙,但颗粒本身的形状和软硬程度对口感也有一定的影响作用。在食品加工中油脂可以均匀地分布在食品得表面形成一层薄膜,使人口感愉快。液态油有一定的粘性,这是由酰基甘油分子侧链之间的引力引起的。蓖麻油之所以粘性较其他油高,是因为含有蓖麻酸醇。

4 塑性

在室温下表现为固态的油脂并非严格的固体,而是固-液混合体脂肪中固液两相的比例可用膨胀计来测量,常用固体脂肪指数来表示。测定若干温度时25 克油脂固态和液态时体积的差异,除以25 即为固体脂肪指数。美国油脂化学协会规定的测定温度为10℃、21.1℃、

26.7℃和33.3℃;国际理论与应用化学联合会规定为10℃、15℃、20℃和25℃。油脂的塑性是指在一定压力下表观固体脂肪具有的抗应变能力。

油脂加工工艺学习题及答案

一.分水箱的分水原理:(1)溶剂和水互不溶解(2)溶剂与水的相对密度不同 二.成品粕的评价指标(低温粕评价指标):1.粕残溶要求合格:粕残溶700ppm,引爆试验合格;2.蒸脱中尽可能使粕熟化:脱毒、钝化或破坏抗营养物,降低毒性。3.成品粕物理性质好:成品粕的粒度、流动性、含蛋白的等级性好4.用作食品蛋白质尽量少变性:要求蛋白的水溶解性高(NSI值要小)。 三.尿酶含量有什么意义?答:太低,过度变性, 四.溶剂损耗的分类:(定义以及一般的量)溶剂损耗的来源:1.不可避免损耗:(1)尾气:10g/m3折合20g/T (2)毛油:50ppm折合50g/T(3)粕:700ppm折合700g/T(4)废水:0.0007~0.0015% 折合0.15g/T合计:0.785Kg/T,实际生产中应为1Kg/T 2.可避免损耗:(1)跑、冒、滴、漏;(2)检修损失;(3)贮藏损失:自然挥发的量。 五:脱胶原理,加磷酸作用,脱蜡原理。脱胶:(一)水化脱胶的基本原理:1.水化开始前:水分少,磷脂呈内盐结构,完全溶解在油中,不到临界温度,不会凝聚析出;2.在油中加热水后:磷脂分子结构转变为水化式,具有很强的吸水能力(1)单分子层:含水量少时,磷脂分子的极性基团朝向水相定向排列; (2)多分子层:随着水量增加,磷脂分子定向排列成烃链尾尾相接的双分子层,一个磷脂双分子层与另一个磷脂双分子层之间被一定数量的水分子隔开,成为片(层)状结晶体;(3)分子囊泡层:当水量增至很大时,磷脂分子就形成单分子层囊泡。(4)多层脂质体:最终膨胀成多层的类似洋葱状的封闭球形结构?a?a?°多层脂质体?±它的每个片层都是磷脂双分子层结构,片层之间和中心水。(5)絮凝胶团:磷脂在形成多层脂质体过程中还吸附油中其他胶质,颗粒增大,再由小胶粒相互吸引絮凝成大的胶团。形成的胶粒越稳定含油量越低,越易与油脂分离。 毛油中的胶体杂质主要是磷脂,当油中水分很少时,其中的磷脂成内盐状态,极性很弱,溶于油脂,当油中加入适量的水后,磷脂吸水浸润,磷脂的成盐原子团便和水结合,磷脂分子结构由内盐式转变为水化式,带有较强的亲水集团,磷脂更易吸水水化。随着吸水量的增加,絮凝的临界温度提高,磷脂体积膨胀,比重增加,从而从油中析出,通过适当的分离手段,便能从油中分离出来。加磷酸促使非水化磷脂转变成水化磷脂。脱蜡机理:1.蜡质的化学组份:油脂中的蜡是高级一元羧酸与高级一元醇形成的酯。是带有弱亲水基的亲脂性化合物。温度高于40℃时,蜡的极性微弱,溶解于油脂中;2.蜡质有比较高的熔点:随着温度下降,蜡分子中的酯键极性增强,低于30℃时蜡形成结晶析出,形成较为稳定的胶体系统;3.蜡质的结晶稳定性:持续低温,蜡晶凝聚成的晶粒,形成悬浊液。(与分提一样,冷冻结晶分类) 六.碱炼脱酸及其优缺点:1.中和反应原理:(1)烧碱中和游离脂肪酸: RCOOH + NaOH === RCOONa + H2O (2)钠皂为表面活性物质:吸附其他杂质形成皂脚与油脂分离。(3)磷脂、棉酚与烧碱中和皂化反应形成皂脚。(4)少量中性油皂化:引起油脂精炼损耗增加。2.碱炼脱酸的特点(1)脱杂范围广:具有脱酸、脱胶、脱固杂、脱色等综合作用。(2)适应性强:适宜于各种油脂的精炼。(3)精炼损耗大:中性油皂化及皂脚中夹带油造成精炼损耗较高,耗碱,碱炼后水洗产生废水污染环境。耗用辅助剂,从副产品皂脚回收脂肪酸时,需要经过复杂的加工环节,特别用于高酸值毛油精炼时,油脂练耗大,经济效果欠佳。 七:物理脱酸的优缺点:蒸馏脱酸法:1.蒸馏脱酸机理:游离脂肪酸蒸汽压远大于甘三酯蒸汽压,在高真空下水蒸汽蒸馏脱除,与脱臭同时进行。2.特点:(1)工艺流程简短;(2)节省辅助材料;产量高,经济效益好(3)避免中性油皂化和夹带损失;(4)避免废水的产生;没有废水污染。(5)精炼得率高:产品稳定性好;(6)直接获得精制粗脂肪酸;(7)但要求脱胶彻底。3.对原料油品质要求:经预处理达到:P≤5 ppm、Fe≤0.l ppm、Cu ≤0.01 ppm。简单说就是(1)得率高,产品为脂肪酸(2)但要求脱胶彻底。物理精炼的预处理包括脱胶和脱色。八:物理精炼化学精炼的优缺点:(和物理脱酸化学脱酸的优缺点一样) 九:压榨和浸出的优缺点以及对比:浸出方法的特点(一)出油率高,粕残油低,浸出粕残油1%以下浸出对低含油料尤为明显(二)粕的质量高: 1.便于直接使用作食品或添加剂2.便于提高饲料的营养和实用价值3.便于提高肥料的效率(三)加工成本低:并且浸出法生产随生产量的增加,加工成本趋向降低。(四)自动化程度高:1.劳动强度低 2.容易实现自动化生产(五)环境条件好 1.封闭生产,无泄露2.无粉尘 3.生产温度较低(六)油脂质量好1.浸出毛油颜色浅2.浸出毛油脂溶性物质少,溶剂的选择性好3.浸出毛油的悬浮杂质和胶体杂质少(七)生产具有一定危险性1.易燃烧易爆炸2.液体或气体对操作人员身体的损害。压榨后饼中残油:3%一5%。压榨法取油具有工艺简单、配套设备少、对油料品种适应性强、生产灵活、油品质量好、色泽浅、风味纯正等优点,但是压榨后饼残油高,压榨过程动力消耗大,榨条等零部件易磨损。 十.油料清理种类及优缺点:(1)筛选:利用油料与杂志在颗粒大小上的差别。借助含杂油料和筛面的相对运动,通过筛孔将大于或小于油料的杂志清除掉(2)风选:根据油籽与杂质在比重和气体动力学性质上的差别,利用风力分离油料中杂志的方法称为风选、可以用于去除油料中的轻杂质和灰尘,也可用于去除金属、石块等重杂,还

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

《油脂精炼与加工工艺学》复习思考题

《油脂精炼及加工工艺学》复习思考题 一、绪论 1. 当今世界四大油脂脱酸技术是什么? 2. 原油中的杂质分为哪几类? 3. 油脂精炼和加工的意义是什么? 4. 油脂精炼的一般过程是怎样的? 二、油脂脱胶 1. 原油中的胶溶性杂质对精炼各工序有何影响? 2. 油脂脱胶的主要方法有哪些? 3. 影响油脂脱胶的因素是什么? 4. 水化脱胶各工艺中加水量应如何确定? 5. 磷酸脱胶的目的是什么?磷酸在脱胶过程中有何作用? 6. 精炼车间中如何检测脱胶油脂的质量? 三、油脂脱酸 1. 油脂脱酸的目的和方法是什么?工业生产中常采用哪些方法? 2. 试用化学动力学因素分析,间歇式碱炼为什么多采用低温浓碱法工艺? 3. 影响碱炼的主要因素是什么? 4. 碱炼时加碱量及碱液浓度应怎样确定? 5. 什么是“威逊损失”?碱炼损耗由哪几部分组成? 6. 什么是“酸价炼耗比”、“精炼指数”、“精炼效率”? 7. 高速离心机达到平衡工作的关键是什么? 8. 碟式离心机的油-皂分离效果可以用什么方法进行调节? 9. 间歇式碱炼工艺方法和连续式碱炼工艺方法有哪几种? 10.泽尼斯碱炼的特点是什么?影响泽尼斯碱炼的因素是什么? 11.混合油碱炼的特点是什么?影响混合油碱炼的因素是什么? 12.物理精炼的特点是什么?其局限性有哪些? 四、油脂脱色 1. 油脂中含有哪几类色素?油脂脱色的方法主要有哪几种? 2. 脱色工段除脱色外,还有哪些辅助作用? 3. 理想吸附剂应具备什么样的条件?生产中常用的吸附剂有哪些? 4. 影响吸附脱色效果的因素是什么? 5. 吸附剂的初始脱色能力与持久脱色能力的选择应如何权衡? 6. 吸附脱色工艺有哪几种? 7. 工业生产中为什么均采用真空吸附脱色? 8. 脱色油过滤分离时的初滤液应如何处理? 五、油脂脱臭 1. 油脂脱臭的目的和作用是什么? 2. 脱臭损耗包括哪几个方面?如何降低脱臭时中性油的损耗? 3. 影响油脂脱臭效果的因素是什么? 4. 脱臭中直接(汽提)蒸汽起何作用?对其质量有何要求? 5. 脱臭中直接(汽提)蒸汽的用量大小应如何权衡? 6. 脱臭工段加入柠檬酸的作用是什么? 7. 脱臭工段常采用哪些间接加热热媒? 8. 脱臭工段对真空度有何要求?应选用哪种真空设备? 六、油脂脱蜡

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

油脂加工工艺学

第一章毛油的组成、性质及预处理 毛油是一种以中性油脂为主要成分,且混有非甘油三酸酯 组分阶段的混合物。 第二章水化脱胶 一、水化脱胶的概念、作用 水化脱胶是利用磷脂等胶溶性杂质的亲水性,将一定量的热水或稀碱、食盐水溶液、磷酸等电解质水溶液,在搅拌下加入到一定温度的毛油中,使其中的胶溶性杂质凝聚沉降分离的一种脱胶方式。 在水化脱胶过程中,被分离出不溶的物质以磷脂为主,还有与磷脂结合在一起的蛋白质、糖基甘油二酯、粘液质和微金属离子等。 二、水化脱胶的原理及影响因素 (一)水化脱胶的原理 在水化过程中能被凝聚沉降的物质以磷脂为主,磷脂中又以卵 磷脂为代表。这种磷脂属于“双亲媒性分子”,即在其分子结 构中,既有疏水的非极性基团,又有亲水的极性基团。当毛油 中含水量很少时,磷脂呈内盐式结构,此时极性很弱,溶于油 中,不到临界温度,不会凝聚沉降析出。水化时,在毛油当中 加入热水之后,磷脂的亲水基团则投入水相之中,水分子与成 盐的原子团结合,致使分子结构由内盐式转化为水化式。在水

化式结构中,磷脂分子中的亲水基团(游离态羟基),具有更强的吸水能力,随吸水量的增加,磷脂由最初极性基团倾入水中呈含水胶束,然后转变成有规则的定向排列。分子中疏水基团在油相尾尾相接,亲水基团伸向水相形成脂质双分子层(又称液晶形式)。在脂质分子层中,水分子进入磷脂双分子层间,并未破坏磷脂的分子结构,却引起磷脂的体积膨胀,发生水合作用。有时脂质体双分子层还能自发膨胀成多层的类似洋葱状的封闭球型结构————“多层脂质体”。多层脂质体的每个片层都是脂质双分子层结构,片层之间和中心部分充满水相和油相(O/W),若经高频声波处理,可变成磷脂双分子层围成的球状的单层脂质体。 水化后的磷脂和其它胶体物质,极性基团周围吸引了许多水分子之后,在油脂之中的溶液解度减小。吸水量逐渐增大,膨胀之后,双分子层或多分子层的片状和球状胶体彼此影响,有的甚至开成胶束。小颗粒的胶体在极性力的作用下,相碰后形成絮凝状胶团。同时水化后的磷脂能吸附油中的其它胶质,而使其颗粒增大,比重增大,为沉降和离心分离创造条件。 在磷脂中除上述水化磷脂之外,还存在少量的“非水化磷脂”。“非水化磷脂”即?——磷脂以及钙镁磷脂盐,具有疏水性,用常规的水化方法较难除去,这种“非水化磷脂”必须转化成“水化磷脂”才能产生水合作用。生产实践中往往事先添加少量磷酸或棕檬酸到油中,使?——磷脂等在酸的作用下,分子

光子晶体发展及种类

光子晶体及光子晶体光纤的研究现状与发展趋势 摘要:光子晶体光纤(PCF)由于具有传统光纤无法比拟的奇异特性,吸引了学术界和产业界的广泛关注,在短短的十年内PCF的研究取得了很大的进展。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 关键词:光子晶体光子晶体光纤光子晶体光纤激光器 1、前言 光子晶体光纤(photoniccrystalfiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 2、光子晶体光纤的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 2.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF 中的小孔尺寸比传导光的波长还小的缘故[3]。 2.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

油脂的一般性质

油脂一般知识 一、油脂的分类 按照来源的不同,油脂可分为四大类:水产油脂:如鱼油、鱼肝油等;陆地动物脂肪:如猪油、牛油等;乳脂:如牛乳、羊乳等;植物油脂:是种类最多、产量最大、我们日常生活中最常食用的一类,常见的品种有芝麻油、花生油、豆油、菜油、葵花籽油、玉米油、棉籽油等。 二、植物油脂的分类 1、根据加工精度的不同,植物油可分为原油、四级油、三级油、二级油、一级油等由低到高五个等级: 原油―――俗称毛油,未经任何处理的不能直接供人类食用的油。 成品油――-毛油经处理符合国家成品油质量指标和卫生要求的直接供人类食用的油脂。植物油等级是根据其精炼程度来区分的,一般是从色泽、透明度、气滋味、酸值、过氧化值、水分及挥发物、不溶性杂质、280℃加热试验、溶剂残留等理化指标来判断,并且符合国家卫生标准。全精炼的油(一级、二级)经过脱水、脱酸、脱色、脱胶、脱臭、脱溶,水杂小,色泽浅,无味,酸价、过氧化值较低,无溶剂残留,烟点高;半精炼油(三、四级)经过脱溶、脱酸、脱胶处理,色泽较深,加热后油烟大,有些四级油透明度较差。植物油精炼程度四级最低,一级最高,都符合国家直接食用标准。 2、根据加工工艺的不同,植物油可分为浸出油和压榨油两种: 浸出油―――油料经浸出工艺制取的油。油料预处理后直接(或压榨后)与有机溶剂充分结合,提取制成成品油,是国际上通用的加工方法,优点是出油率高,加工成本低,缺点是有溶剂残留,但经过全精炼以后,基本上可以完全去除溶剂残留,降低水杂、色泽,提高透明度、烟点,常用于豆油、葵花籽油、玉米油等。油脂工业使用的抽提溶剂,是国家专为油料加工生产的专用溶剂,与那些普通汽油有着本质的区别。所以只要成品油达到国家标准要求,都是优质、安全的,可放心食用。 压榨油―――油料经直接压榨制取的油。采用纯物理压榨方式,是我国传统加工方法,优点是安全,产品污染少,且营养成分不易受破坏,保持油脂中原有的气味,能保留油脂中的一些微量成分,缺点是出油率低,成本高并且较难去除黄曲霉毒素残留,常用于花生油、芝麻油等。另外,芝麻香油根据压榨工艺不同又分为小磨水代香油和机制香油。 3、根据油料来源不同,植物油可分为转基因油和非转基因油两种: 转基因油―――用转基因油料制取的油。 三、植物油的基本特性 我们所见的植物油在常温状态下,具有以下几个特点: 1、一般都呈液体状态(棕榈油除外),尤其是在气温较高的夏季。因此,在生产中发现油中漂浮有固体颗粒,就应该引起注意,要认真检查,确认是否混入了杂质;在低温下,油脂会出现凝固现象,如花生油在10℃以下会出现半凝固现象;棉籽油在7℃会出现凝固分层,这都是油脂的固有特性。但一级植物油国家标准要求在0℃下5.5个小时保持澄清透明。 2、与水不能相互溶解。油和水是两种极性不同的物质,在常温状态下,这两种物质不能相互溶解。在当混有水的油往热锅里倒时,会发生向外溅油或溢锅等现象。 3、油的密度比水的密度小。油脂的单位体积所具有的质量叫做油脂密度。在常温状态下水的密度要接近1.0g/ml,而油脂的密度一般在0.91—0.93g/ml之间,这说明油比水要轻。所以油里掺进水时,静置一段时间后,水一般都沉在底部。 4、有热胀冷缩的性质。油脂的密度随温度的变化呈反比变化,温度升高,密度降低,反之,密度升高。 四、植物油营养成分简介: 植物油主要成分是由脂肪酸和甘油化合而成的天然高分子化合物,并含有磷脂、甾醇、维生

光子晶体

光子晶体的制备及应用 王文瀚12S011029 1 引言 光子晶体(Photonic Crystals, PCs)是一种人工周期介质结构,由不同折射率材料周期性地交替排列而成,这种周期介质结构最早由Bykov于1972年提出。1987年,Yablonovitch和John分别在研究抑制原子的自发辐射和光子的局域化问题中也各自独立地提出了这种结构,并在后来的研究中将其命名为光子晶体。 实际上,在自然界中就存在着光子晶体结构,如蛋白石、孔雀羽毛、蝴蝶翅膀上的鳞状覆盖物、以及澳洲海老鼠的毛发。蝴蝶翅膀上的鳞状覆盖物是一种周期性结构。这种周期性结构可以限制光在其中的传输,让某些波长的光通过,而让另一些波长的光完全被反射。正因为如此,才形成了蝴蝶翅膀表面绚烂的花纹和色彩。这种周期性结构与Yablonovitch和John提出的光子晶体概念是相吻合的。 当然,自然界中这样的例子只是少数,目前更多的光子晶体是由人工加工制作而成。1990 年,Ho和Chan等人第一次从理论上论证了三维金刚石结构具有完全光子禁带。1991 年,Yablonovitch团队通过从一定角度对半导体介质进行钻孔,首次成功制作了具有完全禁带的三维金刚石结构光子晶体,禁带频率范围为13GHz~15GHz。[1] 2 光子晶体原理 最简单的的光子晶体是由A、B两种材料在一个方向上周期交替排列形成,这种结构叫一维光子晶体,如图1(a)所示。A、B交替的空间周期a叫做光子晶体的晶格常数,这与由原子构成的普通晶体中的晶格常数相对应。普通晶体的晶格常数通常都在埃的数量级,而光子晶体的晶格常数则通常与工作波段的电磁波波长在同一个数量级。比如,在可见光波段,一般为1μm量级或更小,而在微波段,则一般为1cm 左右。根据光子晶体中介质周期分布的维数,可以把光子晶体分为一维、二维和三维光子晶体,分别如图 1 (a)、(b)、(c)所示。 (a) 一维光子晶体结构(b) 二维光子晶体结构(c) 三维光子晶体结构 图1 光子晶体结构示意图

润滑油脂的的特性概述

润滑脂、防冻液 一、什么是润滑脂? 润滑脂是将稠化剂分散在液体润滑剂中所组成的一种稳定的固体或半固体产品。在日常生产中人们习惯于把润滑脂叫成“黄油”。 润滑脂主要是由稠化剂、液体润滑油、添加剂和填料组成。 二、稠化剂的作用是什么?有哪些种类? 稠化剂的作用是在基础油中分散和形成结构骨架,使基础油吸附并固定在结构骨架中,从而形成固体或半固体关的润滑脂。 稠化剂的种类主要有皂基稠化剂和非皂基稠化剂。 皂基稠化剂可分为三类:单皂基—以单以金属皂作为稠化剂而制成的脂,如钙基脂、钠基脂。-混合皂基—由两种或两种以上的单一金属皂同时作为稠化剂混合而制成的脂,如钙—钠基脂。?复合皂基—皂结晶或皂纤维是由两种或更的化合物共结晶而制成的,复合引起润滑脂特性改变,并以滴点升高为标志,如复合锂、复合铝基脂。 非皂基稠化剂有:烃基、无机类、有机类 三、如何判断皂基脂与非皂基脂? 通过测定是否有明确的滴点即可区分。皂基脂有滴点,有的还有优良的抗辐射性、抗化学介质等特性。四、润滑脂的添加剂的类型有哪些?润滑油中添加剂是否都可以用于润滑月脂? 润滑脂的添加剂分为两大类:一类是物理性能改善剂,如结构改进剂(醇、水、甘油等);另一类是化学性能改善剂,如抗磨剂、防锈剂等。 在润滑油添加剂中,可能对润滑脂胶体结构破坏较大的添加剂不能用在润滑脂中;有的添加剂虽油溶性差,在润滑油中使用受到限制,但在润滑脂中感受性好,故可用于润滑脂中。 五、什么是填料?其作用如何? 填料是为了增加润滑脂中的某些特殊性能而添加的固体填充物,大多数是一些有润滑作用和增稠效果的无机物粉末。大部分填料本身可作为固体润滑剂用,加入脂中可提高脂的润滑能力,在脂的润滑膜受短暂冲击负荷或高热作用下,它们可起补强作用。常用填料有:石墨、铝粉、二硫化钼、铜粉等。 六、润滑脂的主要性能有哪些? ①流变学性能②高温性能③轴承性能④润滑性能⑤防护性能⑥低温性能。 七、润滑脂的流变学性能是如何测得的? 流变学是研究物质在受到外力作用后变形或流动的科学。润滑脂的流变学性能取决于它的组成和结构,同时也与剪切速率、温度有关,润滑脂的流动性能主要通过脂的触变性、相似粘度、强度极限等性能来评定。 八、什么是润滑脂的触变性和强度极限? 润脂受到剪切作用,在一定剪速下,随着剪切时间的增加,稠度下降,脂变稀;当剪切停止时,结构骨架又逐渐恢复,脂又变稠,这种由稠变稀,由稀变稠的现象称为触变性。其值大小取决于稠化剂种类、浓度和分散状态,而与基础油粘度并无直接关系。润滑脂有轻微的触变对使用是有益的。 强度极限是表示使润滑脂开始流动所需最小的剪应力。 由于脂是具有不定期的强度极限,就不会受地心引力而改变其形态自动流动,即使在密封不严的摩擦部件中也不会流失,在机械工作时能抵抗住离心的作用,不致从零件表面被甩出。 润滑脂强度极限是温度的函数,温度越高,脂的强度极限变小,温度降低,脂的强度极限变大。脂的强度极限,取决于稠化剂的种类和含量,与工艺也有关。 九、润滑脂稠度分级、牌号分类的依据是什么? 稠度是一个与脂在润滑部位保持能力和密封性能以及脂的输送和加注有关的重要指标,其大小按针入度划分。 目前国际上通用的稠度等级是按照美国润滑脂协会(NLGI)的稠度等级划分的。将润滑脂的稠度分为九个等级:000、00、0、1、2、3、4、5、6。稠度等级用锥入度度量。

光子晶体的制备与应用研究_李会玲

光子晶体的制备与应用研究* 李会玲① 王京霞② 宋延林③ ①助理研究员,②副研究员,③研究员,中国科学院化学研究所,北京100190 *国家自然科学基金(50625312,U0634004,20421101) 关键词 光子晶体 胶体晶体 自组装 光学器件 光子晶体以其特殊的周期结构和可以对光子传播进行调控的特性被称为“光半导体”,被认为是未来光子工业的材料基础。光子晶体的制备和光学特性研究受到高度关注,并在各类光学器件、光导纤维通讯和光子计算等领域呈现广阔的应用前景。本文综述了光子晶体制备和应用研究方面近年来的主要进展。 1光子晶体简介 1987年,美国贝尔通讯研究所的Yablonovitch[1]在研究抑制自发辐射时提出“光子晶体”的概念。几乎同时,美国普林斯顿大学的John[2]在讨论光子局域时也独立地提出了这个概念。这一新的概念是与电子晶体相比较而提出的。在光子晶体中,不同介电常数的介电材料构成周期结构,介电常数在空间上的周期性将会对光子产生类似半导体的影响。由于布拉格散射,电磁波在其中传播时将会受到调制而形成能带结构,出现“光子带隙”(photonic band gap,PBG)。在光子带隙的频率范围的电磁波不能在结构中传播。这种具有光子带隙的周期性介电结构就是光子晶体(photonic crystals),或叫做光子带隙材料(photonic band gap mat erials),也有人称之为电磁晶体(electromagnetic cryst als)。随着研究的深入,人们发现了一系列光子晶体的光学性能如慢光效应[3]、超校准效应[4]、负折射现象[5]等等,这些独特的现象大大激发了科研工作者的研究热情。 2光子晶体制备 自然界中存在的光子晶体结构较少。目前,文献报道[6]自然界中存在的光子晶体结构主要有蛋白石、蝴蝶翅膀、孔雀羽毛和海鼠毛等。绝大多数光子晶体的周期性电介质结构还需要通过人为加工制备。光子晶体是在一维、二维或三维周期上高度有序排列的材料,一般所谓的光学多层膜即是一维结构的光子晶体,已被广泛地应用在光学镜片上。二维或三维的高度有序结构在光子晶体研究领域中受到广泛重视。本文主要针对二维和三维光子晶体的制备和应用进行综述。目前,光子晶体的制备方法主要包括微加工(钻孔和堆积方法)、激光全息和自组装方法等。 2.1微加工方法 微加工方法是最早报道的人工制备光子晶体的方法,具体是通过在基体材料上机械钻孔[7]、刻蚀[8,9]等方法,利用空气与基体材料的折射率差获得光子晶体。微加工方法通常采用半导体离子刻蚀技术如电子束刻蚀、激光刻蚀和化学刻蚀等制备光子晶体。这种方法由于工艺复杂,目前主要在有成熟工艺的硅(Si)和砷化镓(GaAs)基底上加工,成本昂贵,而且所制得结构层数少,质脆、性能易受环境影响,极大限制其应用。 2.2全息光刻 全息光刻技术是利用激光束干涉产生三维全息图案照射在感光树脂上,感光树脂因此产生聚合,随后通过显影除去未聚合感光树脂,留下由聚合物和空气构成的三维周期结构。Berger[10]最先证明全息光刻制备光子晶体非常简单快捷。2000年,Campbell等人[11]采用4束紫外激光进行全息干涉,在30μm厚的感光树脂上产生全息图案,这是激光全息技术在光子晶体研究中的一大进步。对于全息结构还有一些需要解决的问题,如通过全息技术得到的三维光子晶体的光学特性还不够理想,可以用于这些结构制备的光学反应还不多。这些问题在干涉光束数量增加以形成复杂结构(如金刚石结构或手性格子结构)时变得更为重要。最近有报道用高折光指数材料复型制备反相结构可以提高光学特性[12], · 153 ·  自然杂志 31卷3期科技进展

各种油脂特性

1、椰子油—硬油Coconut Oil 椰子油得自乾椰子肉(Copra),來自椰子(Cocos nucifera)。新鮮椰肉亦可使用。這是一種淡黃色或無色非乾式油,於攝氏20℃以下會呈現固狀。椰子油用於肥皂、化粧品或盥洗用品、製造潤滑油脂,人工洗濯劑、洗衣及清潔用品以及製造脂肪酸、脂肪醇、甲基酯類等。精煉椰子油可以食用並且用在如人造奶油、膳食補充等產品。可說是做手工皂不可缺少的油脂之一,富含飽和脂肪酸,可做出洗淨力強、質地硬、顏色雪白且泡沫多的香皂。但洗淨力很強的皂難免會讓皮膚感覺乾澀,所以使用份量不宜過高,建議不要超過全油脂的20%~30%左右。椰子油在秋冬氣溫下降時會呈現固態,可隔水稍微加熱使之融化。 2、棕櫚油—硬油Palm Oil 棕櫚油是油料棕櫚果肉中取得的植物脂肪。主要來源是非洲油料棕櫚,它原產於熱帶非洲,亦產於中美洲、馬來西亞及印尼等地。棕櫚油經由萃取或壓榨取得,且依其狀態以及是否經過精煉,可有各種不同的顏色。它們含有相當高的棕櫚酸及油酸,與得自相同油料棕櫚的棕櫚仁油是可以藉此加以分辨的。 棕櫚油用於製造肥皂、蠟蠋、化粧品或盥洗用品,當作潤滑劑,供熱浸錫塗佈及生產棕櫚酸等使用。精製棕櫚油則供食用,例如:當作油炸油,以及製造人造奶油。 棕櫚油亦是手工皂必備的油脂之一,可做出對皮膚溫和、清潔力好又堅硬、厚實的香皂,不過因為沒什麼泡沫,所以一般都搭配椰子油使用。建議用量20%~30%。 棕櫚油在秋冬氣溫下降時會呈現固態,可隔水稍微加熱使之融化。 3、棕櫚仁油-硬油Palm Fruit Oil 主要來自非洲油料棕櫚果實內之種仁,而非其果肉。因為其具有良好味道及堅果風味,而被廣泛用於人造奶油及糖果工業。它也用於製造甘油、洗髮精、肥皂及蠟燭。 含有較其他植物油高的抗氧化成分,也是非常好的維生素E來源,而他更是天然植物油當中葫蘿蔔素含量最高的(700-1000ppm),是葫蘿蔔的30倍。 由於本身及含有非常大量的抗氧化物質,棕櫚果油本身不容易氧化酸敗,也適合在較高的溫度下使用 4、蓖麻油Castor Oil 蓖麻油係得自Ricinus Communis的種籽,它是非乾式、黏稠,通常無色或淺黃色油。含有緩和及潤滑皮膚的功能,特有的蓖麻酸醇對髮膚有特別的柔軟作用,能製造泡沫多且有透明感的香皂,能幫助維持精油、香精的香味,還很容易解於其它油中,所以也很適合用做Superfatting。 5、向日葵籽油Sunflower Seed Oil 此油取自常見的向日葵而為淡金黃色,常用作沙拉油及人造奶油或豬油替代品。此油具有半乾式性質、精煉後在油漆及凡立水工業上用途極大。 每100克的向日葵花籽油中含有57~90毫克的維生素E,亞油酸含量達60%,還含有植物固醇、卵磷脂、胡蘿蔔素等營養豐富,可以柔軟肌膚、抗老化。它的皂化價和橄欖油一樣,常被用來取代橄欖油做皂,不過因為它的INS值很低,所以最好配合硬油使用,否則不但皂化過程慢,做出來的皂也軟趴趴的,建議用量是15%~20%。 6、橄欖油Olive Oil 橄欖油含有豐富的維他命、礦物質、蛋白質,可以保濕並修護皮膚,製造出的香皂泡沫持久且如奶油般細緻,由於深具滋潤性,也很適合用來製作乾性髮質適用的洗髮皂和嬰兒皂。

相关文档
最新文档