超临界电化学沉积技术的研究进展

超临界电化学沉积技术的研究进展
超临界电化学沉积技术的研究进展

有机电化学合成及研究进展

有机电化学合成及其发展方向 摘要 介绍有机电化学合成的原理,研究内容。有机电化学合成与传统合成的优势,介绍中国有机电化学合成的发展以及有机电化学的新进展。有机电化学的高效、经济、无污染性。还有有机电化学合成的若干发展方向。 关键词 有机电化学发展方向绿色化学 Review on organic electrosynthesis and its Development trend Abstract In this paper,the principle and the research method of organic electro- ynthesis---one of the most efficient green technology was discussed. The principle of organic electrosynthesis, applications, and the advantages co- mparing to the tradition organic synthesis were expounded. Introduction to Chinese organic electrosynthesis development and advancement of organic electrochemistry. Organic electrosynthesis of high efficiency, no pollution. There are several development directions of organic electrosynthesis. Key words:organic electrosynthesis;developments of research;Green Chemistry; 引言部分 以电化学方法合成有机化合物称为有机电合成,它是把电子作为试剂,通过电子得失来实现有机化合物合成的一种新技术,这是一门涉及电化学、有机合成及化学工程等学科的交叉学科。由于电化学早已有之,合成技术、化学工程技术和化学材料不断更新,因而,有人称之为“古老的方法,崭新的技术”[1]。 有机电合成是有机合成的一个分支学科,有其独特的优点和优势。有机电合成与一般有机合成相比,有机电合成反应是通过反应物在电极上得失电子实现的,一般无需加入氧化还原试剂,可在常温常压下进行,通过调节电位、电流密度等来控制反应,便于自动控制。这样,简化了反应步骤,减少物耗和副反应的发生。可以说有机电合成完全符合“原子经济性”要求,而传统的合成催化剂和合成“媒介”是很难达到这种要求的。从本质来说,有机电合成很有可能会消除传统有机合成产生环境污染的根源。有机电化学合成也是一种绿色化学,中国走可持续发展战略,在化学合成中有机电合成将会占很大比例。将是未来的合成化学的

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

电化学沉积

金属电沉积理论 一.研究概况 在电化学中,金属的电化学沉积学是一种最古老的学科。在电场的作用下,金属的电沉积发生在电极和电解质溶液的界面上,沉积过程含有相的形成现象。 首先,在金属的电化学沉积实验的研究时间要追溯到19世纪,并且在引进能产生直流电的电源以后,电镀很快成为一种重要的技术。电镀被用来制造各种不同的装饰性和功能性的产品,尽管在开始的早期,电镀技术的发展和应用建立是在经验的基础上。 金属电沉积的基本原理就是关于成核和结晶生长的问题。1878年,Gibbs在他的著名的不同体系的相平衡研究中,建立了成核和结晶生长的基本原理和概念。20世纪初,Volmer、Kossel、Stransko、Kaischew、Becker和Doring用统计学和分子运动模拟改进了基本原理和概念。按照这些早期的理论,成核步骤不仅要求一个新的三维晶体成核,而且完美单晶表面的层状二维生长。对于结晶理论的一个重要改进是由Avrrami提出的结晶动力学,他认为在成核和生长过程中有成核中心的重复碰撞和相互交迭。在1949年,Frank提出在低的过饱和状态下的一个单一晶面成长会呈螺旋状生长。Cabrera和Frank等考虑到在成长过程中吸附原子的表面表面扩散作用,完善了螺旋成核机理。 20世纪二三十年代,Max、V olmer等人对电化学结晶进行了更为广泛的基础研究。Erday-gruz和Volmer是第一次认识到过饱和度与过电位,稳态电流密度和由电荷转移引起的电结晶过电位之间的关系。 20世纪三四十年代,Finch和他的同事做了大量的关于多晶电化学沉积的实验,研究了决定结晶趋向与金属薄膜的组织结构的主要因素。在这一时期,Gorbunova还研究了底层金属与电解质溶液组成对电结晶过程的影响,并发现了由于有有机添加剂的吸附作用可能导致金属晶须的生长。 1945年,Kaischew对电结晶理论做了重大改进。考虑到单一晶体表面上金属原子的结合和分开的频率,可利用分子运动学模拟电化学结晶过程。这项工作对电结晶理论的发展有着重大的影响。 20世纪50年代是在电化学结晶理论与实验技术取得重大进步的阶段。Fincher等人完成在实际的电镀体系中抑制剂对电结晶成核与生长的影响的系统研究,并按照其微观结构和形态对金属电沉积进行了分类。Piontell等人对基体的取向作用和在金属沉积系统中同向和异向的金属沉积的阴离子的特性进行了进一步的研究。Kardos、Kaischew等人利用新的实验技术证实Volmer`s的三维形核的正确性。Wranglen,Vermilyea等人对结晶树枝状生长进行了深入的研究,提出了新的电化学结晶的理论模型。 20世纪60年代初,Flischman和Thirsh发展了在电结晶状态下多重成核与生长的一般

电化学合成技术研究进展

电化学合成技术研究进展 摘要:电化学合成作为一种新型的合成方法,其研究和工业应用进展迅速,本文重点介绍了在溶液体系和熔盐体系中一些材料的电化学合成的合成工艺研究进展。最后展望了电化学合成的发展前景。 关键词:电化学合成氧化还原合成工艺 1溶液体系的电解合成 1.1 金属及合金的电沉积 金属电沉积,主要是在外加电场的作用下,金属或其合金从电解质中以晶体形式沉积。它包含了电镀、电提取、电解精炼等多种电沉积方式,是目前电化学合成金属材料的主要方法之一。其中电镀要求沉积金属与基体结合牢固,结构致密,厚度均匀,多用于表面工程处理,合成膜材料;其余两种方法则对合成产物与基体的结合力无特殊的要求,多用作材料的制备。用电解法制备的金属产品的优点主要是:产物的纯度高,控制电解条件可制得不同聚集态的金属,另外还可制备合金、金属镀层膜材料、有色金属的冶炼和提纯。 1.2 特殊高价态元素化合物的电氧化合成 19世纪初期,Rheinold和Erman发现电是一种强有力的氧化剂和还原剂。若要进行一个氧化反应,就必须找到一个强的氧化剂。但是若需要制备这些强的氧化剂,则很难再找到更强的氧化剂,因此,必须采用电化学方法。高锰酸钾是重要的锰化合物之一,目前,电解法制备高锰酸钾的优点是利用率高、能耗少。由于在电解过程中,阳极表面容易形成一层钝化膜,阻止阳极的进一步溶解,导致电流效率不高。Bouzek分别采用电解前阳极的阴极极化和交直流叠加的方法,提高了电解效率。Denvir等发现随着阳极中碳含量的增加,相应制备的高铁酸盐产率也有所提高。 1.3 低价态元素化合物的电还原合成 阳极能够制备高价态的氧化剂,而阴极则可以进行电还原反应,制备特殊低价态的元素化合物。曾海燕以活性炭纤维作为阴极,钛钌网作为阳极,无水硫酸钠作为溶液电解质,通过硫酸和氢氧化钠调节溶液的pH值,保持恒温的条件下电解后制得H2O2。半导体材料Si 的制备目前主要依据西门子法获得,林会会选用价格相对低廉的SUP13Cr不锈钢作为工作电极,在室温条件下非水溶剂碳酸丙烯酯中利用电化学方法还原SiCl 4在室温下获得沉积Si。范小振利用草酸的电还原成功地制备了羟基乙酸,是一种有机合成中间体和化工产品,应用很广,可用于医学工程材料和高分子材料等领域。一种重要的有机精细化工中间体-对氨基苯酚(PAP)可利用硝基苯电解还原法制取,与传统的化学制备方法相比具有污染较少,产品品质高,工艺简单等优点。但是这种方法的关键问题在于硝基苯在介质中的溶解度很小,而电解合成中只有溶解的硝基苯才能有效的参与反应,Noman在含7%的硝基苯中,以硫酸作支持电解质的电解液中加入氧化二甲基十二烷基胺,作为表面活性剂,以Cu(Hg)为阴极,PAP的产率高达95%。目前,电化学方法合成有机物的报道较多,主要是利用较为廉价的有机原料(如草酸,葡萄糖等)通过电还原制备附加值较高的电化学中间体,这种方法工艺简单,节能环保,应该在以后的生物医学、高分子材料等领域发挥越来越大的作用。1.4 纳米金属氧化物的电化学合成 电化学合成是制备纳米材料的一种新思路,能够有效地控制合成产物的成分和形貌。金属氧化物是一类重要的功能材料,常需要达到纳米尺度才能表现其具备独特的物化性能。如廖学红在不同配位剂存在下,用电合成方法制备出球形银纳米粒子和树枝状的纳米银;Switzer率先介绍了用电化学的方法合成陶瓷薄膜和多晶粉体,并电解硝酸铈合成了纳米级CeO2粉体。周幸福率先实现了在非水体系中电解金属直接水解法制备纳米NiO 粉体。

电化学分析法在药物分析中的应用

电化学分析法在药物分析中的应用 电化学分析法electrochemical analysis 是基于溶液电化学性质的化学分析方法,是由德国电化学分析法化学家C.温克勒尔在19世纪首先引入分析领域的,仪器分析法始于1922年捷克化学家J.海洛夫斯基建立极谱法。电化学分析法的基础是在电化学池中所发生的电化学反应。电化学池由电解质溶液和浸入其中的两个电极组成,两电极用外电路接通。在两个电极上发生氧化还原反应,电子通过连接两电极的外电路从一个电极流到另一个电极。根据溶液的电化学性质(如电极电位、电流、电导、电量等)与被测物质的化学或物理性质(如电解质溶液的化学组成、浓度、氧化态与还原态的比率等)之间的关系,将被测定物质的浓度转化为一种电学参量加以测量。根据国际纯粹化学与应用化学联合会倡议,电化学分析法分为三大类:①既不涉及双电层,也不涉及电极反应,包括电导分析法、高频滴定法等②涉及双电层,但不涉及电极反应,例如通过测量表面张力或非法拉第阻抗而测定浓度的分析方法。③涉及电极反应,又分为两类:一类是电解电流为0,如电位滴定;另一类是电解电流不等于0,包括计时电位法、计时电流法、阳极溶出法、交流极谱法、单扫描极谱法、方波极谱法、示波极谱法、库仑分析法等。 毛细管电泳在药物分析中的应用 1前言 毛细管电泳(CE)的历史可以归溯到1967年Hejerten发表的博士论文,现在人们普遍将CE定义为在内径100 μm以内的毛细管中进行的电泳分析,它的出发点应归功于1979年Mikkers等人在内径0.2 mm的聚四氟乙烯管中进行的研究。1981年Jorgenson和Lukacs发表的研究论文对CE的发展作出了决定性的贡献,他们用内径75 μm的毛细管对荧光标识氨基酸化合物进行CE测定,获得理论塔板数高达40万的高分离性能,并且深入地阐明了CE 的一些基本性能和分离的理论依据。1984年Terabe[1]等人提出了胶束动电毛细管色谱法(MEKC),使许多电中性化合物的分离成为可能,大大拓宽了CE的应用范围。到80年代后期,CE的研究成为分析化学领域的热门课题,至今已有各种英文专著10多部,这里列举3部与药物分析有密切关系的专著[2~4],从80年代末开始每年都有多次国际性CE学术会议,表1列出比较有代表性的国际性HPCE会议召开地点和专辑情况,可以看出到目前为止CE研究的中心仍然还在美国。通过STN(the Scientific & Technical Information Network)对美国化学文摘的检索结果表明,90年代以来,CE的论文数几乎成直线上升,应用范围迅速扩大,大有取代目前广泛应用的高效液相色谱(HPLC)之势。鉴于文章篇幅的限制,并考虑到药物分析涉及的范围广、品种多的特点,本文从应用出发,着重叙述一些普通低分子有机合成药的CE分析情况。有关更为详细的综述可以参考最近的报道[5]和J Chromatogr A 的特集[2]。 2CE与药物分析 药物分析大致可分为二大部分:一是原药的定量,原药中不纯物的测定、药剂的分析以及对它们的稳定性的评价等以药品质量管理为目的的测试方法。这些方法要求有良好的选择

电化学沉积3D打印金属零件工艺【详述】

电化学沉积3D打印金属零件 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 3D打印通过材料层间凝固形成复杂的三维几何体,金属3D打印提供的自由设计与制造已经在航空航天、汽车和医疗领域获得了应用。金属增材制造多以DMLS、SLM、LENS等技术常见,通过选择性激光烧结金属粉末层实现零件成型。由于金属打印机的高成本、零件内部易产生缺陷等问题,目前对金属增材制造的商业应用受到很大限制。因此,今年XJET开发出了基于喷墨的金属增材方式,开启了金属打印的新模式,近来伦敦帝国学院推出了一种成本较低的金属成型方式,该技术是基于FDM的电化学增材制造工艺。 电化学增材制造的基本原理是源于电镀工艺。电镀通常用于诸如首饰镀金或硬币镀铜的应用,它的工作原理是溶液中的金属离子如硫酸铜中的Cu2+离子通过施加外部电位而被还原成其元素组分,从而形成金属结构。

该工艺的优点是可在室内环境条件下沉积多种材料和合金,而不会造成热损伤,不需要激光器或惰性气体环境,成本很低。而且,在沉积过程还可以通过电位的逆转来实现增材和减材,从而通过电化学溶解来回收组分。 这项技术主要缺点是沉积速度慢,该问题的解决主要基于设备本身,研发团队采用半月板隔离法,将离子溶液装入注射器中,通过机械方法使电解质挤出,在喷嘴和导电板之间形成弯液面,通过施加电压来沉积金属,并且通过打印头移动来建立3D零件。采用该方法,金属沉积率比等效系统高出三个数量级。印刷的铜结构具有多晶质的特性,随着电压的增加,其粒尺寸减小,从而提高维氏硬度和电阻率。 电化学沉积技术通过控制电压正反可实现增材和减材制造,对于回收金属非常有限,大大降低了成本,并且通过安装打印头给复合材料制造提供了可能。

电化学沉积

电化学沉积概述 机械学院11243009 宁智 摘要:概述了电化学定义及其特点,并且重点介绍了电化学沉积技术的机理,优点,应用及其发展。 关键词:电化学;电化学沉积;机理;应用 1 引言 电化学是研究电与化学反应相互关系的学科,主要通过化学反应来产生电能以及研究电流导致化学变化方面的研究[1]。尤其是近年来电化学技术的快速发展,不仅电化学理论和电化学方法不断创新,而且在应用领域也更加广泛,近年来电化学的发展非常迅速,不仅电化学理论和电化学、方法不断创新,而且在应用领域,如化学工业、能源、材料科学和环境保护等方面同样也占有越来越重要的地位[2]。电化学过程有以下特点:1)多功能性。它具有直接或间接氧化与还原、相分离、浓缩与稀释、生物杀伤等功能,能处理从uL~106L的气体、液体与固体污染物。2)能量效率高。与高温燃烧反应相比,它可在较低温度下进行。由于不经过卡诺循环限制,能量利用率高。通过电位控制、电极与电解池的设计,可减小由于电流分布不均带来的副反应、欧姆降等能量损失。3)可自动控制。电化学过程中的两大参数电流与电位信号,易测定和自动控制。4)环境相容性高。电化学过程中使用的主要试剂为电子,是最洁净试剂。另外,较高的选择性可防止副反应发生,可减少污染物。5)经济合算。所需设备简单,操作费用较低。根据上述过电位控制、电极与电解池的设计,设计合理的电解池结构,利用先进电极材料,可达到“零排放”要求。[3]电化学沉积在特种加工尤其是在新型功能材料这一新领域所取得的突出成绩都是比较典型的例子。 2 电化学沉积概述[4-6] 电化学沉积是一门古老的技术.金属电化学沉积在19世纪早期如1840年即已出现银和金的镀覆专利.不久以后又发明了镀镍技术.电镀铬工艺至今也约有一个世纪.科学技术的不断发展和深入,电化学沉积的研究领域不断拓宽和扩展,已迅速地发展成为具有重大工业意义的一门技术,并已获得了巨大的成功.传统的电沉积过程,如Cu,Ni,Cr,强调的是装饰性和防腐性.今天,具有特殊用途的镀层的研究、开发和应用则已成为核心内容。 近年来,随着理论和实验研究的不断深入,电沉积技术取得了很大发展,沉积方法也越来越多样化,主要包括直流电沉积、脉冲电沉积、喷射电沉积和复合电沉积等方法.电沉积技术应用主要是各种半导体、合金的电沉积,以及多种形态和性能材料的开发. 3 电化学沉积的机理 电镀工艺的发展和控制通常都是以一种纯粹的实验观察为依据.在工业实践过程中,规范化的电镀工艺通常仅依赖于添加剂的优劣.很少量的表面活性品种对沉积过程有很显著的影响,其作用的复杂性导致对基本理论的了解远远落后于工艺的发展.先进的技术必须有成熟的理论依据为基础.现在,强有力的现场分析技术如扫描探针显微镜,拉曼光谱,红外光谱,以及基于X射线技术与电化学测试手段的联用技术的应用,使电沉积、电结晶的理论研究更加深入成为现实[4]。 金属电沉积是在外加电压下,通过电解液中金属离子在阴极还原为原子而形成沉积层的过程.金属电沉积不仅是发生在电极/离子导体界面上的电荷传递过程,而且包含了在外电场影响下的成核和晶体生长等一系列成相过程.根据电沉积条件的不同,金属沉积物的形态可是大块多晶、金属薄层、粉末或枝晶等. 电沉积,亦即电结晶过程,是一个多步骤的复杂过程,涉及溶液体相中和电极表面层的交叉变化.理想晶面上金属电沉积主要经历以下几个阶段: 1)溶液中的金属离子(或络离子)向电极界面附近传输;

电化学法沉积金属薄膜和镀膜(中文译版)

Rapid electroplanting of insulators 电化学法沉积金属薄膜和镀膜有着很长的历史。这些技术大体分为两类,各有各的优点和缺点。第一种,也是最古老的一种,就是利用自发氧化还原反应来从溶液中沉积金属。这种沉积方法不仅可在金属基片上沉积,还可以在绝缘基片上沉积。但这种方法的沉积条件很难控制在原位沉积。一部分原因在于溶液中存在多种盐类和添加剂。第二种方法----电镀术---利用电流来降低溶液中的金属离子含量,并给出了控制沉积金属的质量(还在某种程度上控制了颗粒大小)。但这种技术的应用至今仍被局限于导电基片。我们将在这篇文章里描述可在不导电基片上实施的电镀技术,并能控制沉积金属的颗粒大小、厚度和生长速率。我们这种方法的基础是从与基片相连的电极上逐步向外生长金属,它的晶格形貌由生长着的沉积金属的电流的减小所控制。这种方法一般会形成树状、粉末状的沉积物,但我们指出了一系列快速生长均一薄膜的方法。 这里我们描述了一系列电化学晶格和一些可以用电沉积的方式在绝缘基片表面沉积金属膜层的方法。这种方式使得控制沉积磨蹭的晶粒尺寸。这种方法是建立在最近非平衡物理的基础上的。它使得生长均一薄膜成为可能,这也是电化学生长的基本要求。 用电沉积法沉积金属是在低电流密度下生长致密的金属。所以,当沉积电流提升时,沉积(随着电流功率的提高以及平衡和颗粒修复的缺失)变得粗糙,乃至变成树状或粉末状。这在工业上是一个制约因素。非平衡态物理学更多注重了同一性:即生长模式。比如,二元电解液的电化学生长就被研究了15年。由Chazlviel提出的新理论正确预言了二元电解液在树状沉积物周围的生长速率、沉积速率以及浓度场。这种理论预测了大电场的存在下在沉积物的顶端存在正比于离子浓度降低速率的连续生长模式。我们在自由流动的(大概是指溶液吧)、接近二维的树状沉积物的情况下验证了这些预测,这份工作由M.e.a独立发现。但这些实验存在一个问题:沉积物不能从电池里被取出。这就是为什么我们中的一个人提出了一种新的沉积树状物的方法(由C.e.a提供的模型提出)。 (公式推导看不懂,略) (图一) 现在我们公布这种装置使得连续沉积镀膜得以实现(薄膜的生长特征相同,包括厚度和生

电化学发光分析研究进展

电化学发光分析研究进展 电化学发光是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射。电化学发光与化学发光相同之处是二者的发光均由进行能量电子转移反应的组分所产生;而不同之处是电化学发光由电极上施加的电压所引发和控制,化学发光是由试剂的混合所引发和控制。根据电化学发光的发光强度进行分析的方法称为电化学发光分析法。该法不仅具有化学发光分析的灵敏度高、线性范围宽和仪器简单等优点,而且具有电化学分析控制性强、选择性好等优点。近年来,在新电化学发光试剂的合成和应用研究方面取得了比较大的发展,特别是电化学发光在免疫分析中的应用引起人们极大的研究兴趣。 福州大学,长春应用化学研究所,华东师范大学,陕西师范大学等单位在电化学发光分析新体系和新技术研究方面取得一系列的成果,受到国内外同行的关注。国内外对电化学发光分析法的研究均有评述。 本文拟侧重介绍ECL体系及其在临床分析研究中的应用,同时,对我们近年来在电化学发光分析方面的研究工作也作以简要介绍。 1电化学发光体系及其应用 ECL体系按发光试剂的种类可以分为以下两类:(1)金属配合物电化学发光体系; (2)有机化合物的电化学发光体系。 1.1无机化合物的电化学发光体系 无机化合物电化学发光体系中,最典型的电化学发光试剂是钌联吡啶配合物Ru(bpy)32+,该试剂在水溶液和有机溶剂中发光效率高,溶解度好;可进行可逆单电子转移反应,在电化学发光基础理论和分析应用研究中占有重要地位。已报道ECL金属配合物有Ru, Os, Cr, Cd, Pd, Pt, Re, Ir, Mo,Tb, Eu, Cu, Al等的金属配合物[1],其中Ru, Os,Re的金属配合物具有良好的ECL性质。合成高发光效率可标记的ECL金属配合物是电化学发光免疫分析和核酸分析中一个重要的研究方向。Blackburn[12]等合成了可标记的Ru(bpy)32+类物质,建立了地高辛和促甲状腺激素(TSH)等物质的电化学发光免疫分析方法。研究金属配合物与共反应物的ECL反应,不仅可以提高检测金属配合物的灵敏度,而且可以建立测定共反应物的ECL方法,拓宽电化学发光分析的应用范围。董绍俊等人利用金属EDTA螯合物与Ru(bpy)32+产生ECL,建立了测定金属离子的电化学发光分析法[13]。Richter 利用冠醚对金属离子的识别以及与(2, 2′-bipyridine)2Ru-4-(N-aza-18-crown-6-methyl-2,2′-bipyridine)-TPA的电化学发光反应,建立了测定Pb2+, Hg2+, Cu2+和K+的电化学发光分析法[14]。Bard等人利用Na+冠醚对钌联吡啶电化学发光的增强作用,建立了检测Na+离子的电化学发光分析法[15]。Martin等人利用钌联吡啶与辅酶NADH以及酶反应的产物的电化学发光建立了测定葡萄糖、乙醇、二氧化碳、胆固醇和葡萄糖-6-磷酸脱氢酶的电化学发光分析法[16]。我们基于罗丹明B对亚硫酸根在铂电极上弱电化学发光的增敏作用,建立了测定亚硫酸氢钠的能量转移电化学发光新方法,并用于药物VK3和白糖中亚硫酸氢钠的测定[17]。电化学发光分析法已用于测定罂粟,含氨基的生物碱,海洛因,利格鲁卡因,蔗糖,果糖,甘露糖,甘油,柠檬酸,酒石酸,三甲胺,氨基酸,脯氨酸,4-羟基脯氨酸等物质。

现代仪器分析综述

现代仪器分析综述 (1309011025 韩武) 现代仪器分析为现代分析化学奠定了雄厚的学科理论基础——信息理论, 使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。若能充分利用现代仪器分析方法和技术, 就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展。 1、现代分析仪器的发展及发展趋向 现代仪器分析是在化学分析的基础上逐步发展起来的一类分析方法,现代分析仪器对科技领域的发展起着关键作用,一方面科技领域对分析仪器不断提出更高的要求,另一方面随着科学技术的飞速发展,新材料、新器件不断涌现又大大推动了分析仪器的快速更新,同时为仪器分析中老方法的不断更新、新方法的不断建立提供了物质和技术基础,大大地促进了现代仪器分析的快速发展。现代分析仪器的发展趋向主要有以下特点:向多功能化、自动化和智能化方向发展,向专用型和微型化方向发展,向多维分析仪器方向发展,向联用分析仪器方向发展。仪器分析的最主要的功能是人类五官感触的延伸,人类智慧利用了光、电和磁的物理特性通过物理和化学手段将微小的物理量放大,而获得感知小型化集成化(芯片)、多功能化(联用技术)和高稳定、高灵敏度检测是仪器分析发展的最高境界。20 世纪 70 年代中期首先出现了二维气相色谱技术,70 年代后期迅速发展了二维质谱技术和二维核磁共振波谱技术。二维气相色谱技术可使 用一种流动相在两根串联的色谱柱上对组成复杂的样品实现完全分离:二维质谱技术可同时提供强的碎片离子峰和强的分子离子峰,从而获得完整的结构信息;二维核磁共振波谱技术可提供固体物质、生物大分子的三维结构,显示原子核在样品中分布的立体图像。由上述分析仪器的发展和发展趋向 ,可知现代分析仪器是一种高科技产品,它综合采用了各种技术的最新成果,在不断创新与自身发展的同时,又为各个科技领域的研究和发展提供有力的手段和重要的信息。 2、现代仪器分析的内容和分类 现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。为了便于学习和掌握,根据测量原理和信号特点,大致分为电化学分析法、色谱分析法、质谱分析法,

电化学暂态测试技术综述及案例

电化学暂态测试方法总结及案例 学院:材料科学与工程学院 班级:材硕1309 学号:S20130XXX 姓名:越迷贝贝

电化学暂态测试方法总结及案例分析 姓名:越迷贝贝学号:S20130XXX 学院:路老板梯队 电化学暂态过程是指电极开始极化到电极过程达到稳态这一阶段。电极过程中任一基本过程如双电层充电、电化学反应或扩散传质等未达到稳态都会使整个电极过程处于暂态过程中。电极电位、电极界面的吸附覆盖层状态或者扩散层中浓度的分3布都可能处在变化之中,因此暂态过程比稳态过程复杂得多。 利用各基本过程对时间响应的不同,使所研究的问题得以简化,达到研究各基本过程和控制电极总过程的技术就是电化学暂态测试技术。 电化学暂态测试技术也称电化学微扰测试技术,就是用指定的小幅度电流或电压讯号加到研究电极上,使电极体系发生微弱的扰动,同时测量电极参数的响应来研究电极反应参数。 电化学暂态测试技术的原理即为黑箱原理,也称“黑箱系统辨识法”。通过观测外部输入黑箱的信息和黑箱输出的信息的变化关系,来探索黑箱的内部构造和机理的方法。“黑箱”指内部构造和机理不能直接观察的事物或系统。黑箱方法注重整体和功能,兼有抽象方法和模型方法的特征。通过考察系统的输入、输出及其动态过程,而不通过直接考察其内部结构,来定量或定性地认识系统的功能特性、行为方式,以及探索其内部结构和机理的一种控制论认识方法。在不打开黑箱的情况下,只是通过外部观测、试验,找出输入和输出的关系,并由此来研究黑箱的功能和特性,探索其构造和机理。 暂态测试方法随极化方式的不同,可分为恒电流暂态、恒电位暂态、动电

位扫描、交流阻抗法。 在扩散控制成混合控制的情况下,达到稳态扩散之前,电极表面附近反应粒子的浓度同时是空间位置和时间的函数,反应物的扩散流量与极化时间有关,或者说决定浓差极化特征的物理量除了浓度C、扩散系数D之外,还有极化时间t。因此在C、D不变的情况下,可以通过改变极化时间t来控制浓差极化。 来衡量。 <0.006cm在这样靠近电极的液层里,对流的影响可忽略 不计,因此暂态法是研究浓差极化的一种好方法。暂态法对于测定快速电化学反应动力学参数非常有利。因为对于浓差极化的影响,很难用稳态法测量快速反应动力学参数。若用旋转电极来缩小扩散层有效厚度,则要制造每分钟几万转的机械装置。若用暂态法,缩短极化时间,使扩散层有效厚度变薄,可大大减小浓差极化的影响。 极化后的暂态过程中输送到电极上的电量一部分用于双电层充电,改变电极电位;一部分消耗于电化学反应。也就是说在暂态过程中通过金属/溶液界面的总电流i 由两部分组成:一部分为双电层充电电流ic,一部分为电极反应电流ir,即:i=ic+ir。电极反应电流ir也叫法拉第电流,这种电流是由电极界面的还原(或氧化)反应电子所产生,遵循法拉第定律。双电层充电电流ic是由双电层电荷的改变引起的,其电量不符合法拉第定律,称为非法拉第电流。 恒电流暂态期间,虽然极化电流i不随时间发生变化,但充电电流和反应电流都随时间发生变化。电极/溶极界面相当于一个漏电的电容器,或者说相当于一个电容和一个电阻并联的电路。

电化学研究进展

综述题目:电化学研究进展 学院: 专业: 班级: 学号: 学生姓名: 2013年6月16日

目录 摘要 ............................................................................................................................................................ I I 关键词: ................................................................................................................................................ I I Abstract ......................................................................................................................................................... III Keywords:............................................................................................................................................ III 第一章前言 .. (1) 1.电化学机理 (1) 第二章电化学工艺 (2) 2. 电化学方法 (2) 2.1 电化学氧化法 (2) 2.2电还原法 (2) 2.3电凝聚法 (3) 2.4 电层析法 (3) 2.5 电气浮法 (3) 2.6 磁电解法 (3) 3.电化学工艺的优点 (4) 3.1 环境兼容性高 (4) 3.2 多功能性 (4) 3.3 能量高利用率 (4) 2.4 经济实用 (4) 4 结语 (4) 4.1前景 (5) 参考文献 (6)

蛋白质电化学及其研究进展

蛋白质电化学及其研究进展 组成生命体的许多生物物质是荷电的微粒或分子,在生命活动过程中,无论是能量转换、神经传导、光合作用,还是大脑思维、基因传递,甚至生命的起源,都与电子传递密切相关。从某种意义上讲,研究生命过程实质就是研究生物体中的电子传递过程。例如,生物体的呼吸链就是一种典型的由氧化还原蛋白质和酶组成的电子传递体系。由此可见,生命现象的许多过程皆伴随着电子传递反应。 在生命体内,许多涉及氧化还原蛋白质的化学反应都发生在带电荷的生物膜上或其附近,因而其电子的传递必然会受到电场的作用和影响。这种作用和影响与电化学研究中的工作电极表面或其附近的情况十分相似。因此,采用电化学方法研究氧化还原蛋白质和酶等生物大分子的直接电子转移过程,是生物电化学和生物学领域一直非常关注的问题。 通过这些研究,首先,可方便地帮助获得蛋白质的内在热力学和动力学性质的重要信息;其次,获得电极物质与具有高催化活性和生物传感特性的蛋白质和酶等生物大分子间结合的动态信息,如在特定的电极表面蛋白质键合特征,电子传递对蛋白质在电极表面的取向的要求等,深入认识 蛋白质和酶等生物大分子在生命体内的生理作用和电子传递反应传递机制;再次,在实际应用中也为构筑新型第三代生物传感器和生物燃料电池等生物电子器件提供了重要基础。 由于蛋白质在电极表面易于吸附,可能造成构象变化和活性丧失,因此,目前主要采取以下一些研究途径构筑适宜的蛋白质-电极界面来实现氧化还原蛋白质与电极之间直接电子传递。 1.生物膜和生物模拟膜电极 构筑及蛋白质/酶直接电化学 在生命体内,类脂双分子层构成生物膜的基本结构单元。类脂具有典型的双亲结构,即疏水的碳氢长链和亲水的极性基团,蛋白质就吸附在生物膜表面或嵌入其内部。我们知道,生物体内很多电子传递蛋白都是膜蛋白,表明生物膜环境有利于蛋白质的电子传递。 早在1993年,美国Rusling 研究小组在基于模拟生物膜薄膜的蛋白质直接电化学方面取得了很大进展。他们把肌红蛋白包埋在双十二烷基二甲基溴化铵多双层表面活性剂薄膜中,其异相电子传递速率比在水溶液中提高了1000倍, 这是首次将蛋白质的直接电子传递与模拟生物膜相结合。显然,模拟生物膜能为某些蛋白质提供比其在水溶液中更为有利的微环境,更有利于深埋在多肤链内部的电活性基团接近电极表面,大大促进了它们与电极之间的电子交换,并可保持蛋白质或酶的生物活性。 从某种意义上讲,蛋白质在模拟生物膜微环境中的电化学行为,很可能更接近于其在生命体内的电子转移过程。因此,氧化还原蛋白质在模拟生物膜电极上的直接电化学研究,对于认识生命体内的电子转移机制和酶的催化机理以及某些重要生命物质在生命体内的代谢过程有重要意义,同时该研究也能为生物传感器的研制提供一条新思路。 为了提高生物膜修饰电极在水溶液中的稳定性,研究人员提出了多双层复合薄膜方法。多双 生物燃料电池示意图 利用碳纳米管独特的一维纳米管状结构、良好的导电性和大比表面积等特性,进一步发展合成碳纳米管-蛋白质/酶组装体系,将为构建理想的新型生物传感器、生物燃料电池等纳米生物电子器件提供重要基础。 上海师范大学贾能勤 今日启明星 世界科学2009.2 26

电化学分析方法在医药分析中的应用

目录 中文摘要 (2) 外文摘要 (3) 引言 (4) 1.电化学分析方法 (4) 1.1电化学分析原理 (4) 1.2 电化学分析方法分类 (4) 2.电化学滴定法的应用 (4) 2.1电位滴定法 (5) 2.2 电流滴定法 (5) 2.3 库仑滴定法 (5) 2.4 交流示波极谱滴定法 (6) 3.毛细管电泳法的应用 (6) 3.1药物制剂成分分析 (6) 3.2手性药物拆分 (7) 3.3中草药分析中的应用 (8) 3.4毛细管电泳在临床分析中的应用 (9) 3.5毛细管电泳在药物残留分析中的应用 (9) 4.离子选择电极的应用 (10) 5.电化学免疫传感器的应用 (11) 5.1 电位型免疫传感器 (11) 5.2 电导型免疫传感器 (12) 5.3 电容型免疫传感器 (12) 5.4 电流型免疫传感器 (12) 6.结论 (13) 参考文献 (14) 致谢 (17)

摘要:电化学分析是化学分析中常用的一种方法。电子技术与电化学相结合基础上发展起来的电化学分析法具有简便、快速、灵敏等优点,能广泛应用于医疗、食品分析、工业生产、环境检测等领域。本研究综述了多篇国内外文献介绍了电化学分析方法的原理,分类以及电化学分析方法中的电化学滴定法、毛细管电泳法、离子选择电极及电化学免疫传感器在医药分析中的应用。 关键词:电化学分析法;电化学滴定法;毛细管电泳法;离子选择电极;电化学免疫传感器 Electrochemical Analysis applications in the Medical field Zhao Xiaoli Director:Wei Feng

光谱电化学综述

光谱电化学 化学反应过程都伴随着参加反应物的价态变化, 即价电子的转移过程, 一般不称为电化学过程。人们习惯上把在外加电势的情况下发生的化学过程称为电化学过程, 如电冶金、电解、电镀、电合成有机物等, 通过化学反应获得电能也是电化学过程,如化学电源等。当今人类的生产和生活活动已经与电化学密不可分。电化学的应用越来越广泛,随着电化学的发展和各类电极材料和体系的不断创新,实现了电化学方法与其它技术的联用,如光谱电化学额、色谱电化学、毛细管电泳、电化学石英晶体微天平以及扫描电子显微镜等。 对于光谱电化学,顾名思义就是将电化学分析方法与光谱分析方法相结合的联用技术。 1 光谱电化学的创建与发展 传统的电化学研究方法是以电信号为激励和检测手段,得到的是电化学体系的各种微观信息的总和,难以直观、准确地反映出电极/溶液界面的各种反应过程、反应中间物种的浓度、形态的变化对于正确反应机理带来很大的问题【1,2】。 60年代初期美国著名电化学家R.N.Adams教授在指导研究生T.kuwana进行邻苯二胺衍生物电化学氧化时,观察到电极反应同时伴随有颜色变化,于是他提出了能不能设计出一种能“看穿”的电极用光谱学的方法来识别所有形成的有色物质呐?这一新的设想在1964年由T.kuwana实现了,他第一次使用的光透电极(OTE)是在玻璃片上镀了很薄的一层掺杂Sb的SnO2,这种具有导电性的玻璃,被称为Nesa玻璃,它作为一个电极的同时还可以测量电解池液层中电活性物质的浓度对光的吸收,从而创建了光谱电化学。 80年代初期,中国科学院长春应用化学研究所电分析化学实验室率先在国内开展了光谱波普电化学方面的研究,相继一些综合性大学如复旦大学、厦门大学、北京师范大学、武汉大学、重庆大学等也开展了这方面的研究,取得了一系列可喜的成果,无论从文献报道,还是从学术会议来看,光谱电化学将是电化学和电分析化学发展的最热门研究领域之一。 光谱电化学发展经历的一个主要过程是将研究对象从稳定的电化学界面结构和表面吸附扩展至反应的动态过程和表面吸附,既可以配合电化学暂态技术(如电位阶跃或快速循环伏安法)开展时间分辨为ms或μs级的研究,以揭示分子水平上的电化学反应动力学规律;又可以采用超短脉冲激光技术研究在固定电位下的界面结构和表面物种的亚稳态等现象,即从分子或原子水平上研究电化学界面动力学【1,2】。 40多年来,光谱电化学得到了迅速发展,已经成为电化学领域中一个重要的新的分支学科。目前,它已在有机、无机及电化学研究等各方面得到了公认。 2 光谱电化学的分类 光谱电化学技术按测试方式分为非现场和现场两种。非现场是在电化学反应发生之前和之后对反应物和产物的结构信息和界面信息进行探测,由于一些电化学产物和中间体存在不稳定性,在终止电化学反应后或电极从电解池取出的状态

电化学分析测试仪器的现状和发展趋势

电化学分析测试仪器的现状和发展趋势 刘永宏(2016211539) (西北师范大学化学化工学院,甘肃兰州730070) 摘要:随着对分析测试仪器的需求不断地增长,我国的电化学分析仪器的研制开发有了很大发展。本文通过对恒电位仪、极谱仪、分析测试系统三大主要电化学仪器进行分析,综述了电化学分析测试仪器的现状和发展趋势。 关键词:电化学分析测试系统;恒电位仪;极谱仪;发展趋势 1引言 随着国家对食品安全、环境、能源、新材料和人类健康的重视,对分析测试仪器的需求不断地增长,同时对分析测试仪器的要求也越来越高。分析测试仪器的发展除了继续追求更低的检出限、更高的灵敏度和分辨率外,有如下一些特点:小型化和便携式;自动化和智能化;通用型和专用型;联用;原位、在线;快速、高通量。 近代电分析化学的研究不仅能对组成和形态进行分析,而且对电极过程理论,对生命科学、能源科学、信息科学和环境科学的发展有重要作用。而恒电位仪、极谱仪恒电位仪、极谱仪、电化学分析测试系统是进行电化学分析、测试、研究的基本工具。PC微机的迅速普及和发展为电化学分析测试系统的微机化提供了 非常好的应用平台,使电化学分析测试仪器更加广泛地应用于化学、生物学、材 料学、环境科学等领域,也使现代电化学仪器步入了新的发展阶段。 2电化学分析仪器的发展现状 经过多年发展, 目前, 我国电化学分析仪器工业已经具有一定的研究、开发和生产能力, 但主要产品总体技术水平与国际先进水平还有一定的差距。目前生产和使用的国产电化学测量仪器的种类很多, 但是性能比较单一, 准确度也不高, 具体表现在技术系统性差、集成度不够、持续创新能力不强等方面。约73%的分析测试仪器需要进口, 其中电化学高档精密仪器进口比例份额还要更高。 随着电化学测量的应用越来越广泛, 对测量仪器的要求也逐步提高, 高灵敏度、专一性、低成本、速度快、取样少、简易便携的电化学分析测量仪器是研究和展的方向。近年来, 随着计算机和集成模块的大量使用, 仪器更新换代的速度也逐渐加快, 大量自动快速新型的测量仪器不断问世。从酸度计的发展历程来看, 20世纪80年代前后, 为指针式仪表, 准确度低, 误差大; 进入20世纪90年代后期, 数显式酸度计逐渐取代了指针式的仪器; 近几年酸度计更是快速发展, 集成模块的应用使操作更加简单, 使测量数据更加准确。 为此本文拟从恒电位仪、极谱仪、微机化电化学分析测试系统等三个方面综述国内电化学分析测试仪器的发展现状。 2.1 恒电位仪 恒电位仪是电化学测试中最重要的仪器,其性能的优良直接影响电化学测试

相关文档
最新文档