产万吨尿素工艺设计方案

产万吨尿素工艺设计方案
产万吨尿素工艺设计方案

产万吨尿素工艺设

计方案

摘要

尿素工业化生产以来的百余年间,一直是肥料工业生产的主要品种。本设计是年产10万年吨尿素二氧化碳气提法化工工艺的设计;也介绍了尿素的性质、用途、生产方法和市场的发展状况;尿素生产以煤为原料,采用改进型CO2汽提法工艺。尿素合成中有二氧化碳压缩,液氨升压,合成和气提,蒸发、解读和水解以及造粒等工序。主要进行了尿素的工艺计算、降温设备的设计、设备选型,并绘制工艺流程图。

关键词:尿素,二氧化碳气提法,设计计算

前言

用于尿素生产的CO2中都含有一定量的CO、H2、CH4、N2及硫化物等。这是因为CO2来源于脱碳后的解读气,无论采用什么方法脱碳,在脱碳液吸收CO2的同时,还溶解了一定量的CO、H2、CH4、N2及硫化物等,当脱碳溶液再生时这些气体随同CO2一同被解读出来,另外,经过加空气到CO2中以对设备进行防腐保护。上述气体在整个工艺过程中极少或完全不冷凝,并随未反应的NH3及CO2由合成塔顶排放出来,经过高压洗涤塔吸收大部分氨及CO2,气体混合物中H2、CO、CH4和O2浓度急剧上升,这些可爆气体的存在是尿素生产的最大安全隐患。

尿素主要产品为合成氨、尿素、纯碱、氯化铵、精甲醇、复合肥、精细化工产品和热电产品。尿素生产以煤为原料,采用改进型CO2汽提法工艺。CO2中带有一定量的CO、H2、CH4、N2及硫化物等,既存在可燃气体爆炸的安全隐患,又有硫对设备腐蚀的担忧。国内已有尿素系统发生爆炸的先例。

一、总论

<一)概述

尿素原料主要是二氧化碳和氨。尿素产品用途广泛,其主要用作化肥。工业上还用作制造脲醛树酯、聚氨酯、三聚氰胺-甲醛树脂的原料,在医药、炸药、制革、浮选剂、颜料和石油产品脱蜡等方面也有广泛的作途。据统计,中国现有尿素生产企业200多个,规模分为大型<引进48万吨/年以上)、中型<13—30万吨/年以上)、小型<4—13万吨/年),中国中小氮肥企业中90%采用煤为原料,近年来产能发展较快。

据统计,—尿素新建装置增加产能累计987万吨,加上现有装置产能的自然增长,—中国累计增加尿素产能1340万吨,到底尿素产能达到5300万吨以上。预计—新建装置产能为715万吨,到底全国尿素产能将达到6000万吨。

1.产品用途

尿素主要用作化肥。工业上还用作制造脲醛树酯、聚氨酯、三聚氰胺-甲醛树脂的原料,在医药、炸药、制革、浮选剂、颜料和石油产品脱蜡等方面也有广泛的作途。尿素加热至200℃时生成固态的三聚氯

酸<即氰尿酸)。三聚氰酸的衍生物三氯异氰尿酸、二氯异氰酸钠、异氰尿酸三<2-羟乙酯)、异氰尿酸三<烯丙基)酯、三<3,5-二叔丁基-4-羟基苄基)异氰酸酯、异三聚氰酸三缩水甘油醚、氰尿酸三聚氰胺络合物等有许多重要应用。前两者是新型高档消毒、漂白剂,三氯异氰尿酸全世界总所产能力超过8万吨[4]。

2.尿素的基本信息

<1)尿素分子式:CH4N2O;相对分子质量:60.06。

<2)外观:无色或白色针状,或棒状结晶体,工业品为白色略带微红固体颗粒,无臭无味。

<3)密度:1.335g/mm。

<4)熔点:132.7°C。

<5)溶解性:溶于水、醇,不溶于乙醚、氯仿,呈微碱性。

<6)CAS号:57-13-6

3.产品市场需求

国内大部分地区尿素市场行情基本平稳,市场需求清淡,市场信心不足。国内尿素市场需求持续疲软,但在国际尿素价格涨势不减的情况下,国内尿素出口形势向好,受出口影响局部地区尿素价格出现了小幅波动,然而国内需求市场气氛持续冷清,市场成交较为有限,因此市场价格波动甚微,市场人士预计尿素市场行情将继续以稳为主,不乏小幅调整。

西北市场:西北地区尿素市场行情平稳。陕西主流报价在1600元/吨左右,市场批发价在1600元/吨左右。甘肃主流报价在1520元

/吨左右,市场批发价在1600元/吨左右。新疆主流报价在1600元/吨,市场批发价在1680元/吨左右。宁夏地区主流报价在1570元/吨,市场发价在1620元/吨左右。

4.尿素产量

全国尿素总产量4578.6万吨<实物),同比增长10.1%,其中大型引进装置企业生产尿素1287.9万吨<占全国尿素的28%);尿素产量4987.5万吨,同比增长10.9%,其中大型引进装置生产1316.3万吨<占全国26.4%);全国生产尿素约5104.1万吨,同比增加10.2%,其中大型引进装置生产1323.9万吨,<占全国24.5%)。能够看出,近两年,全国尿素产量年增长率基本在10%以上,其中大化肥增长率与全国产量增长率持平。

<二)尿素的国内研究现状及发展水平

1.尿素的国内研究现状

7月,全国尿素产量为263.6574万吨,去年同期为229.2333万吨,1-7月累计产量为1718.2346万吨,同比增长9.5%。其中山东省7月产量为39.1795万吨,同比增长8.3%。

无烟煤市场走势暂稳,但市场成交情况依旧较为不理想,前期维持零库存的煤炭企业当前也已经开始逐步增加库存,部分市场人士表示,由于下游企业需求量持续不振,不排除近期无烟煤价格继续下调。现晋城地区无烟煤洗中块、洗小块主流价格分别为810-900元/吨、790-840元/吨;阳泉地区无烟煤洗中块、洗小块主流价格分别为900元/吨、800元/吨。

国内尿素市场由于市场信心的恢复,出口及淡储政策的落实,局部性的,阶段性的机会依然存在。

2.尿素技术发展水平

世界尿素技术研究和发展的总体趋势主要体现在六个方面:一是较高的工艺效率,以减少原材料消耗和降低能耗;二是较高的装置运行可靠性,以实现安全、低腐蚀、高开工率、易操作;三是高产品质量,满足用户需要;四是低环境污染,减少废水和粉尘排放;五是改进设备材料,减缓腐蚀、延长使用寿命;六是优化工艺和设备布置,降低投资成本。

在当前众多典型工艺流程中,建厂最多的是二氧化碳汽提和氨汽提工艺。随着汽提法尿素工艺的日趋成熟,原料利用率和能量利用率已达到预期目标。为实现以最小投入获得最大效率和效益的新目标,汽提工艺的技术专利商积极实施了对传统工艺流程的完善改造,重点突出了改进装置运转的安全性、降低消耗、减少环境污染等方面,把技术进步放在提高装置整体效率上;特别是在九十年代后期,随着新型耐蚀材料和设备结构的改进,促进了尿素生产技术水平的提高。

二、尿素生产原理

尿素的生产能够天然气、煤炭、重油等为原料。中国的能源储备具有“缺油、少气、有煤”的特点,与之相适应,国内尿素产业也形成了独特的工艺路线结构:中、东部企业的生产原料以煤炭为主,而西部大型装置特别是中石油下属的尿素企业均以天然气为原料。当前

国内尿素原料构成比例为:煤基企业占72%,气基企业占26%,其余2%则为油基企业。制造尿素的原料是天然气、煤或石油之一和空气转化成氨和二氧化碳。

由液氨和二氧化碳气体直接合成尿素的总反应式为:

2NH3+CO2—(NH2>2CO+H2O

这是一个可逆的放热反应。实际上,该反应分两步进行。第一步由氨与二氧化碳生成中间产物氨基甲酸铵NH4COONH2,简称甲铵。第二步是甲铵脱水生成尿素,其反应式为:

2NH3+CO2—NH2CO2NH4 +159.47kJ (2-1>

NH2CO2NH4—NH2CONH2+H2O -28.49kJ (2-2>

式(2-1>是强放热反应,在常压下反应速度很慢,加压下则很快。式(2-2>是温和的吸热反应。

当温度为170~190℃,氨与二氧化碳的摩尔比为2.0,压力高到足以使反应物得以保持液态时,甲铵转化成尿素的转化率(以CO2计>为50%;其反应速率随温度的提高而增大。当温度不变时,转化率随压力的升高而增大,转化率达到一定值后,继续提高压力,不再有明显增大,此时,几乎全部反应混合物都以液态存在。

三、尿素的生产方法

<一)水溶液全循环法

水溶液全循环法是20世纪60年代以来的经典生产工艺。水溶液全循环法为尿素生产的发展做出了重大贡献,不但使生产能力大大增

加而且使二氧化碳和氨的消耗大大降低,因此它曾经被广泛地采用。

该法存在的主要问题有以下几点。

1.能量利用低。尿素合成系统总的反应是放热的,但因加入大量过剩氨以调节反应温度,反应热没有利用。

2.一段甲铵泵腐蚀严重。高浓度甲铵液在90~95度时循环入合成塔,加剧了对甲铵泵的腐蚀,因此一段甲铵泵维修频繁,是水溶液全循环法的突出弱点。

3.流程过于复杂。

<二)氨气提法

氨气提法20世纪70年代初实现了工业化,虽然不如二氧化碳气提法应用广泛,但现在有后来居上的趋势。含氨量高,回收反应热多,设备腐蚀低,机械设备投资少,操作稳定。

<三)二氧化碳气提法

二氧化碳气提法是20世纪60年代后期开发出的生产工艺,现在已成为世界上建厂最多、生产能力最大的生产方法。它的主要特点如下。

1.采用与合成等压的原料二氧化碳气提以分解未转化的大部分甲铵和游离氨,残余部分只需再经过一次低压加热闪蒸分解即可。从而免去了操作条件苛刻、腐蚀严重的一段甲铵泵。缩减了流程和设备,并使操作控制简化[2]。

2.高压冷凝器与合成等压下冷凝气提气,冷凝温度较高,返回合成塔的水量较少,有利于转化率的提高。同时有可能利用冷凝过程生

成甲铵时放出的大量生成热和冷凝热来副产低压蒸汽,除气提塔需不加蒸汽外,低压分解、蒸发及解吸等工序都能够利用副产蒸汽,从总体上看能够降低蒸汽的消耗及冷却水用量。

3.二氧化碳气提法中的高压部分,,如高压冷凝器的甲铵液及来自高压洗涤器的甲铵液,均采用液位差使液气物料自流返回合成系统,不需用甲铵泵输送,不但能够节省设备和动力,且操作稳定。但为了造成一定的位差就不得使设备之间保持一定的位差。因此,需要巨大的高层结构来支撑设备。

4.由于采用二氧化碳气提,所选用的合成塔操作压力较低<14-15MPa),因此节省了压缩机和泵的动力消耗,同时也降低了压缩机、合成塔的耐压要求。便于采用蒸汽透平驱动的离心式二氧化碳压缩机,对强化设备的生产能力和提高热能利用十分有利。

5.在整个流程中循环的物料量较少,动力消耗较低。可是较低的氨碳比又使得在高压部分物料对设备的腐蚀严重。另外,因氨碳比低,氨量少,故缩二脲生成量高。

经过以上综述及比较,本设计我选用了二氧化碳气提法生产尿素。

四、工艺条件及工艺流程概述和流程图

<一)工艺流程概述和流程图

1.工艺流程概述

由液氨和二氧化碳合成尿素反应液从合成塔1底部排出,经液位控制阀流入气提塔2的顶部,温度约为183度,经液气分布器均匀流

入气提塔内,与气提塔底部进入的二氧化碳气在管内逆流气提,气提塔管外用2.1MPa蒸汽加热,将大部分甲铵和过剩氨分解及解吸,气提后尿液由塔底引出,经自动减压阀降压到0.3MPa。由于降压,甲铵和过剩氨进一步分解、气化,吸取尿液内部的热量,使溶液温度下降到约107度。气液混合物进入精馏塔3,喷洒在鲍尔环填料上,然后尿液从精馏塔填料段底部送入循环加热器4,被加热到约135度时,返回精馏塔下部分离段。在此气液分离,分离后的尿液含甲铵和过剩氨极少,主要是尿素和水,由精馏塔底部引出,经减压后再进入真空蒸发系统。

气提塔顶部出来的气体<含氨气40%,二氧化碳60%),进入高压甲铵冷凝器5内,与高压喷射器来的原料液氨和回收的甲铵液反应,大部分生成甲铵,其反应热由管外副产蒸汽移走。反应后的甲铵液及未反应的氨气、二氧化碳气分两路进入尿素合成塔底部,在此未反应的氨、二氧化碳继续反应,同时甲铵脱水生成尿素。尿素合成塔顶部引出的未反应气,主要含氨、二氧化碳及少量水、氮气、氢气、氧气等气体,进入高压洗涤器6上部的防爆空间,再引入高压洗涤器下部的浸没式冷凝器冷却管内。管外用封闭的循环水冷却,使管内充满甲铵液,未冷凝的气体在此鼓泡经过,其中氨和二氧化碳大部分被冷凝吸收,含有少量氨、二氧化碳及惰性气体再进入填料段。由高压甲铵泵16打来的甲铵液经由高压洗涤器顶部中央循环管,进入填料段与上升气体逆流相遇,气体中的氨和二氧化碳再次被吸收。吸收氨和二氧化碳的浓甲铵液温度约160度,由填料段下部引入高压喷射器

循环使用。未被吸收的气体由高压洗涤器顶部引出经自动减压后进入吸收塔7下部,气体经吸收塔两段填料与液体逆流接触后,几乎将氨和二氧化碳全部吸收,惰性气体由塔顶放空。

精馏塔下部分离段出来的气体经气囱与喷淋液在填料段逆流接触,进行传质和传热。尿液中易挥发组分氨、二氧化碳从液相解吸并扩散到气相,气体中难挥发组分水向液相扩散,在精馏塔底得到难挥发组分尿素和水含量多的溶液。气相得到易挥发组分氨、二氧化碳的气体,这样降低了精馏塔出口气体中的水含量,利于减少循环甲铵液中的水含量。由精馏塔顶引出的气体和与解吸塔11顶部出来的气体一并进入低压甲铵冷凝器8,同低压甲铵冷凝器液位槽9的部分溶液在管间相遇,冷凝并吸收,其冷凝热和生成热靠循环泵14和冷却器15强制循环冷却,然后气、液混合进入液位槽9进行分离。被分离的气体进入吸收器10的鲍尔环填料层,吸收剂是由吸收塔来的部分循环液和吸收器本身的部分循环液,经由吸收器循环泵17和吸收器循环冷却器18冷却后喷洒在填料层上,气液在吸收器填料层逆流接触,将气体中氨和二氧化碳吸收,未吸收的惰性气体由塔顶放空,吸收后的部分甲铵液由塔底排出,经高压甲铵泵16打入高压洗涤器作吸收剂。蒸发系统回收的稀氨水进入氨水槽24,大部分经解吸塔给料泵20和解吸塔热交换器21,打入解吸塔11顶部,塔下用0.4MPa蒸汽加热,使氨水分解,分解气由塔顶引出去低压甲铵冷凝器,分解后的废水由塔底排放[5]。

2.工艺流程图

图1 二氧化碳气提、循环、回收过程的工艺流程

1-合成塔 2-气提塔 3-精馏塔 4-循环加热器 5-高压甲铵冷凝器 6-高压洗涤器7-吸收塔 8-低压甲铵冷凝器 9-液位槽 10-吸收器 11-解读塔12-吸收塔循环泵13-循环冷凝器 14-循环泵 15-冷却器 16-高压甲铵泵17-吸收器循环泵18-吸收器循环冷却器19-闪蒸槽冷液泵20-解读塔给料泵21-解读塔热交换器22-吸收塔给料升压泵23-顶部加料冷却器 24-氨水槽

<二)工艺条件

1.温度

因为甲铵的分解反应,过量氨及游离二氧化碳的解吸都是大量吸热的过程。因此,在设备材料允许的情况下,应尽量提高气提操作温度,以利于气提过程的进行。可是,温度太高则腐蚀严重,同时加剧副反应的发生,这将影响尿素的产量和质量。工业生产上,气提塔操

作温度一般选为190度左右。一般见2.1MPa的蒸汽加热以维持塔内温度。

2.压力

从气提的要求来看,采用较低的气提操作压力,有利于甲铵的分解和过量氨的解吸,这样能减少低压循环分解的负荷,同时提高气提效率。可是,实际生产中二氧化碳气提操作是采用与合成操作等压的条件进行的,因为这样有利于热量的回收,同时能降低冷却水和能量消耗。如果采用较低的压力,会使尿素合成率降低,从而增大氨和二氧化碳的循环量,同时还会使气提后气体中水含量增加,使返回甲铵液浓度降低,影响合成率。

3.液气比

气提塔的液气比是指进入气提塔的尿素熔融物与二氧化碳的质量比,它是由尿素合成反应本身的加料组成确定的,不能够任意改变。从理论上计算,气提塔中的液气比为3.87,生产上一般控制在4左右,液气比的控制是很重要的。当塔内液气比太高时,气提效率显著下降;液气比太低,易行成干管。造成气提管缺氧而严重腐蚀。在生产上,除了控制气提塔的液气比外,还要严格要求气提塔中的液气均匀分布。

4.停留时间

尿素熔融液在气提塔内停留时间太短,甲铵和过量氨来不及分解,达不到气提的要求;但停留时间过长,气提塔生产强度降低,同时副反应加剧,影响产品产量和质量。一般气提塔内尿液停留时间以

1min为宜。

五、工艺计算

用常压精馏塔分离尿素-二氧化碳混合液。要求年产10万吨尿素<年生产天数为320天),其含量为90%,进料组成为40%,塔釜残液组成为0.1%<以上均为尿素的质量分数),泡点进料,进料温度为160度,R=1.5Rmin,物系的相对挥发度为1.7,试计算:<1)进料量及塔釜残液量

(3> 理论塔板数[8]。

可根据精馏塔的物料衡算来求得进料液(F>、塔顶的馏出液(D>和塔釜液(W>

公式:总物料平衡 F=D+W (5—1>

易挥发组分平衡 F X F=DX D+WXw (5—2>

式中 F 原料液摩尔流量,kmol/h;

D——馏出液摩尔流量,kmol/h;

W——釜残液摩尔流量,kmol/h;

X F——料液中易挥发组分的摩尔分数;

X D馏出液中易挥发组分的摩尔分数;

X W 釜残液中易挥发组分的摩尔分数。

解: <1)由题意可知,尿素的物质量:

n=m/M=10×106/60=166667kg/kmol

D=n/t=10×106/60×320×24=21.7kmol/h

D/F=X F- Xw /X D- Xw

21.7/F=0.4-0.001/0.9-0.001

F=49.3 kmol/h

由F=D+W,得

W=F-D=49.3-21.7=27.6 kmol/h

因此:进料量F=49.3 kmol/h;塔釜残液量W=27.6 kmol/h <2)因泡点进料,xq= X F故:

yq=axq/1+(a-1> xq=1.7×0.4/1+(1.7-1>×0.4=0.53

Rmin= X D - yq/ yq -xq=0.9-0.53/0.53-0.4=2.846因此,回流比 R=1.5Rmin=1.5×2.846=4.269

<3)因全回流操作所需的理论板数为:

Nmin =lg[X D /(1- X D>(1- X W>/ X W>]/lga

=lg[0.4/(1-0.4>/(1-0.001>/0.001]/ lg1.7

=13.8

因此:R- Rmin/R+1=4.269-2.846/4.269+1=0.27

N-Nmin/N+2=0.35

将Nmin=13.8代入上式,求得N

N=22.3(不包括再沸器>

用逐板计算法可求得N=22(不包括再沸器>.

六、设计总结

在大学的学习过程中,毕业设计是一个重要的环节,是我们步入

社会参与实际工程建设的一次极好的演示,我十分有幸能提早把毕业设计和实际工程有机的结合起来在大学的学习过程中[10]。

这次毕业设计受益匪浅,让我能够把所学同工程实际生产相结合。在此设计前对前人的同类设计进行了探讨研究后,从中领会了设计原理及方法,然后就结合自己的一些知识及经验进行并完成了我自己毕业设计,现在我把整个设计过程所获得的知识及经验进行一个总结,经过这些经验希望能给自己今后的学习工作提供帮助。

这次毕业设计让我更加熟悉了从理论到实践的跨越。从当初的查阅图书,到现在的设计成功,这中间有很多值得回味的地方。而且也是我对课本知识一次回顾,特别是工艺计算使我更熟悉了化工原理中的有关计算。也对合成尿素的生产工艺更加了解,特别是二氧化碳气提法生产工艺的掌握。也了解了尿素生产的技术水平。

这次的设计,从选题到实现,几乎都是自己独立完成的。整个过程中,从需求分析到设计、测试,我都力求规范化和文档化,努力让自己以前学的知识运用到本网站的开发中,尽量保证整个系统的开发进度和质量,顺利完成这次的毕业设计,为自己的大学生涯画上一个完美的句号。

参考文献

[1]付艳华.气提法尿素生产工艺的比较[J].安徽职业技术学院学

报, , (01> .

[2]宣凤琴. CO2气提法和NH3气提法尿素生产技术的比较[J].安徽化工, , (04>.

[3]杨波,周海.生物质乙醇制乙烯技术研究进展[J].化工技术与开发, (12> :27-32.

[4]余映慧, 高雪.果胶生产工艺及其在食品中的应用[J].现代农业科技, , (23> :351-352.

[5]吴丹.尿素流程工艺二氧化碳汽提塔的模拟[D].大连理工大

学, .

[6]赵家凤,薛荣书,姜德军,蒋文华.尿素合成条件下甲胺冷凝器物料平衡计算[J].化学工程,1995, (04> .

[7]杨东.尿素合成塔塔板改造[D].四川大学, .

[8]万勇.改良型Kellogg大型氨厂物料和能量衡算软件的开发研究

[D].四川大学, .

[9]余慧俐,李剑,张仁超.尿素装置技改后产品缩二脲含量高的原

因及解决措施[J].川化, ,(03>.

[10]李凤华,魏顺安.高压甲胺冷凝器和尿素合成塔的模拟计算

[J].化学工业与工程, 1996,(01>.

[11]张震.尿素合成塔塔板的现状与发展[J].大氮肥, ,(05>.

[12]万勇.尿素合成塔高效塔板的应用[J].大氮肥,1998,(03>.

尿素的工业发展过程

尿素的工业发展过程 化学工程 2008级工程硕士 摘要对尿素工业发展历史进行介绍,简述了尿素工业化过程、体系结构与发展趋势 1、尿素简介 尿素,H2NCONH2学名碳酰二胺化学名称为脲,或者碳酰胺,以氨和二氧化碳合成的一种主要的氮肥。因人及哺乳动物的尿液中含有这种物质而得名,白色针状或柱状结晶,熔点132.7℃,常压下温度超过熔点即分解。现在是一 种常见而普通的化工产品,但是它的发现特别是人工合成、工业化一系列过程 却非常有意义,即体现近代工业发展的情况,更是对人类哲学、宗教理念的一 次冲击。当然现在尿素不仅作为肥料给我们带来的是农作物的高产,同时也广 泛应用与工业作为高聚合材料、多种添加剂、医药、试剂等方面。 2、尿素的发展史 尿素最先在动物的排泄物中发现。第一次得到尿素结晶是1773年,化学 家鲁埃勒(Rouelle)蒸干人尿而得。第一次得到纯尿素是1798年富克拉伊(Rourcray)等人从尿素硝酸盐中制的。 人类历史上,第一次用人工的方法从无机物中制的尿素,是在1824年,德国化学家武勒(Friedrich Wohler)使用氰酸与氨反应,产生了白色的尿素,而且证明其与从尿液中提取的尿素一样。打破了当时生命力论的理论,即有机体 内的含碳化合物是由奇妙的“生命力”造成,无法用人力取得,只能由有机物 产生有机物。这次实验的成功,成为现代有机化学兴起的标志。同时在哲学上 也是一场革命。 在这之后,又出现了50多种制备尿素的方法。但是这些方法或者原料难取、或者有毒、或者难以控制、或者不经济,最终都未工业化。1868年俄国化学家巴扎罗夫找到工业化的基础反应办法,即将氨基甲酸铵和碳酸铵长期加热 而达到尿素。 现代工业都是以氨与二氧化碳为原料生产尿素。世界上第一座这样的工厂是德国的法本公司于1922年在Oppau建成投产的,采用热混合气压缩循环。

车用尿素工艺流程-纯水设备

车用尿素设备生产工艺流程 生产车用尿素溶液用车用尿素程序:双级反渗透配EDI再配搅拌初级过滤即可灌装。 生产车用尿素溶液用工业尿素标准程序:原水泵--石英砂过滤器--活性炭过滤器--树脂软化过滤器--5μm精滤器--双级反渗透系统(制水部分)--搅拌溶解箱(带搅拌一套)--增压泵--袋式过滤器--活性炭过滤器(脱色)--5μm精滤器--初提纯:复床(混床树脂001*7阳树脂*201*7阴树脂--树脂量阳1阴2)(也可以用混床,树脂量阳1阴2)--精提纯:复床(混床树脂113抗污染高交换量阳树脂*301抗污染高交换量阴树脂--树脂量阳1阴2)(也可以用混床,树脂量阳1阴2)--再生系统:酸碱泵各一台,酸碱药箱各一台--0.22μm精滤器--储存或灌装 国外流行的办法是:用工业尿素先经行提纯(提纯需在70-75℃液体中分解,而后在30℃以下尿素从水中结晶出来--详细参读“车用尿素介绍”),而后再用纯水--水质达到10兆(软水)经行搅拌稀释31.8%--33.2% 车用尿素概述及工艺生产流程分析报告 车用尿素简介 车用尿素溶液是尿素浓度为31.8%~33.2%的水溶液,1吨车用尿素颗粒大约制3吨车用尿素溶液(以下文章所提到的车用尿素均默认为车用尿素溶液),按照欧Ⅳ标准,目前统一32.5%的浓度为符合标准的车用尿素溶液。在欧盟地区通过德国汽车工业协会标准认证的车用尿素被允许使用“AdBlue”的商标。 2011年12月29日国家环保部公布《关于实施国家第四阶段车用压燃式发动机与汽车污染物排放标准的公告》,“公告”要求2013年7月1日正式实施中国的重型柴油车国Ⅳ排放标准。 国Ⅳ排放标准指的是国家第四阶段机动车污染物排放标准,汽车排放污染物主要有HC(碳氢化合物)、NOx(氮氧合物)、CO(一氧化碳)、PM(微粒)等,通过更好的催化转化器的活性层、二次空气喷射以及带有冷却装臵的排气再循环系统等技术的应用,控制和减少汽车排放污染物到规定数值以下的标准。 柴油车,特别是重型柴油车是国Ⅳ排放标准下最迫切需要整治的对象。柴油车虽然只占机动车保有量17%,但却占据了汽车NOX排放总量的67.4%,其中重型柴油车仅占机动车保有量的4%,却占据了约56%的氮氧化物排放,因此对重型柴油车污染物的排放要求应更为严格。 重型卡车、客车等柴油车要达到国Ⅳ排放标准,在尾气处理上最现实的选择就是SCR(选择性催化还原)技术,而这项技术必须利用尿素溶液对尾气中的氮氧化物进行处理。因此,车用尿素溶液成了重型卡车及客车达到国Ⅳ排放标准的必备产品。 车用尿素生产流程欧洲国家车用尿素需求量大,已经形成产业规模,车用尿素主要由大型化工企业生产,其生产流程如下: 图表1:欧洲国家车用尿素生产流程图 具体来说,车用尿素生产主要包括尿素提纯、水处理和配置溶液3个阶段。整个生产过程主要涉及的工艺就是提纯,生产壁垒并不太高。 1)尿素提纯 由于车用尿素对纯度要求较高,一般采用工业尿素(杂质含量低于农用尿素)进行提纯,在70-75℃时尿素在水溶液中发生水解,在30℃以下尿素重新从水溶液中结晶出来,水解结晶一次可以大幅提高尿素的纯度,一般工业一级尿素水解结晶一次就可以达到车用尿素标准。 2)水处理 车用尿素对杂质控制要求严格,普通自来水生成过程中由于消毒等原因含有氯化物,难以处理,因此一般使用深层地下水去除钙镁离子降低水的硬度得到软水,作为车用尿素溶液配制

尿素生产工艺流程

化肥厂尿素生产工艺流程简介 1.尿素的物理性质:化学名称叫碳酰二胺,分子式为CO(NH2)2,分子量为60.06.含氮量为46.65%,是含氮量最高的固体氮肥.因为人类及哺乳动物的尿液中含有这种物质,并且由鲁爱耳在1773年蒸发人尿是发现了它,故称为尿素.尿素为无色,无味,无臭的针状或棱状结晶.在20-40度温度下,晶体的比重为1.335克/cm3.尿素易溶于水和氨,也溶于醇,包装和贮存要注意防潮. 2.尿素的用途和产品标准.主要用作肥料,饲料和工业原料.在工业上尿素作为高聚物的合成原料,用来制成甲醛树脂,用于生产塑料,涂料和黏合剂.尿素也用于医药,制革,颜料等部门.国家指标GB2440--91尿素技术指标. 3.生产尿素的原料主要是液氨和二氧化碳气体,液氨是合成氨厂的主要产品,二氧化碳气体是合成氨原料气净化的副产品.合成尿素用的液氨要求纯度高于99.5%,油含量小于10PPm,水和惰性物小于0.5%并不含催化剂粉,铁锈等固体杂质.要求二氧化碳的纯度大于98.5%,硫化物含量低于15mg/Nm3. 4.尿素的生产办法和过程尿素的合成分两步进行,主要化学反应 为:NH3(液)+CO2(气)==NH4COONH3=Q NH4COONH2==CO(NH2)+H2O-Q工业过程为1.液氨与二氧化碳的净化与提压输送2.液氨与二氧化碳合成 尿素3.尿素熔融物与未反应物的分离与回收4.尿素溶液的蒸发,造粒. 老系统选用的是水溶液全循环法.该法是利用碳酸稀溶液吸收未反应的氨与二氧化碳生成甲胺或碳酸氨溶液,再利用循环泵送回合成塔,由于未反应的氨和二氧化碳呈水溶液形态进行循环,故动力消耗较小,流程也较简单,投资也省.

尿素生产工艺流程简介

一分厂生产流程及说明 一分厂生产流程 生产流程说明 原料煤利用蒸汽和空气为气化剂,在煤气发生炉内产生半水煤气,经一次脱硫、变换、二次脱硫、脱碳、精脱硫、甲醇、烃化等工艺将气体净化,除去各种杂质后,将纯净的氮氢混合气压 缩到高压,并在高温、有催化剂存在的情况下合成为氨。脱碳解吸岀来的二氧化碳经净化和压缩 后,与氨一起送入尿素合成塔,在适当的温度和压力下,合成尿素, 经蒸发、造粒后包装销售。 粗甲醇经精馏得到精甲醇销售。 各工段流程 1造气工段 工艺流程说明: 采用间歇式固定常压气化法,即在煤气发生炉内,以无烟块煤或焦炭为原料,并保持一定的炭层,在高温下,交替地吹入空气和蒸汽,使煤气化,以制取合格的半水煤气。经除尘、热量回用降温后送入气柜。自上一次开始送风至下一次开始送风为止,称为一个工作循环,每个循环分吹风、上吹、下吹、二次2、一脱工段 上吹和吹净五个部分。 来自造气的半水煤气,经半水煤气气柜出口冷洗塔除去部分粉尘,煤焦油等杂质并降低一定温度后由萝茨风机加压送到冷却清洗塔下段降温、除尘后进入脱硫塔,脱除部分H 2S,然后进入冷却清洗塔上段降温后,经静电除焦除去焦油等杂质后送往压缩一入。目前使用的脱硫方法为栲胶脱硫法。

3、变换工段 流程说明: 半水煤气经除油器除去气体挟带的油等杂质后,一氧化碳与水蒸汽借助于催化剂的作用,在一定的温度下变换成二氧化碳和氢气。通过变换既除去了一氧化碳,又得到了制合成氨的原料气氢和制尿素所需的原料气二氧化碳,使热量得到有效回收。本工段采用全低变工艺进行变换。 4.二次脱硫 流程说明: 变换气经过气液分离器后进入脱硫塔脱除变换气中的H 2S 后送往压缩三入。并经溶液再生,提取单质硫。米用栲胶脱硫法脱硫。 利用二氧化碳气体在碳丙液中溶解度大的特点,除去变换气中的二氧化碳,净化气经精脱硫脱除微量硫后送往压缩四段。二氧化碳气体经净化、压缩,送至尿素合成塔。碳丙液对CO的吸收在低压下符合亨利定律,因此采用加压吸收,减压再生

尿素生产工艺 图文详解

尿素生产工艺图文详解 1性质:尿素:学名为碳酰二胺,分子式为CO(NH2)2,相对分子量为60.06。因最早由人类及哺乳动物的尿液中发现,故称为尿素。 纯净的尿素为无色、无味、无臭的针状或棱柱状的晶体,含氮量46.6%,工业尿素因含有杂质而呈白色或浅黄色。 尿素的熔点在常压下为132.6℃,超过熔点则分解。尿素较易吸湿,其吸湿性次于硝酸铵而大于硫酸铵,故包装、贮存要注意防潮。尿素易容于水和液氨,其溶解度随温度升高而增大,尿素还能容于一些有机溶剂,如甲醇、苯等。 2用途:尿素的用途非常的广泛,它不仅可以用作肥料,而且还可以用作工业原料以及哺乳动物的饲料。 2.1尿素是目前使用的固体氮肥含氮量最高的化肥; 2.2在有机合成工业中,尿素可用来制取高聚物合成材料,尿素甲醛树脂可用于生产塑料漆料和胶合剂等;在医药工业中,尿素可作为生产利尿剂、镇静剂、止痛剂等的原料。此外,在石油、纺织、纤维素、造纸、炸药、制革、染料和选矿等生产中也要尿素; 2.3尿素可用作牛、羊等动物的辅助饲料,哺乳动物胃中的微生物将尿素的胺态氮转变为蛋白质,使肉、奶增产。但作为饲料的尿素规格和用法有特殊的要求,不能乱用。 3原料来源:生产尿素的原料主要是液氨和二氧化碳气体,液氨是合成氨厂的主要产品,二氧化碳气体是合成氨原料气净化的的副产品。合成尿素用的液氨要求纯度高于99.5%,油含量小于10PPm,水和惰性气体小于0.5%并不含催化剂粉、铁锈等固体杂质。要求二氧化碳的纯度大于98.5%,硫化物含量低于15mg/Nm3。 4生产方法:水溶液全循环法. 5生产原理: 5.1化学及热、动力学原理:液氨和二氧化碳直接合成尿素的总反应式为: 2NH3(l)+CO2=CO(NH2)2+H2O这是一个放热体积减小的反应,其反应机理目前有很多的解释,但一般认为,反应在液相中是分两步进行的.首先液氨和二氧化碳反应生成甲铵,故称其为甲铵生成反应:2NH3(l)+CO2(g)=NH4COONH2(l)该反应是一个体积缩小的强放热反应.在一定的条件下,此反应速率很快,容易达到平衡.且此反应二氧化碳的转化率很高.然后是液态甲铵脱水生成尿素,称为甲铵脱水反应:NH4COONH2(l) =CO(NH2)2(l)+H2O该反应是微吸热反应,平衡转化率不是很高,一般为50%-70%.此步反应的速率很慢是尿素合成中的控制反应. 5.2工艺条件选择:根据前述尿素合成的基本原理可知,影响尿素合成的主要因素有温度、原料的配方压力、反映时间等. 5.2.1温度尿素合成的控制反应是甲铵脱水,它是一个微吸热反应,故提高温度、甲铵脱水速度加快.温度每升10℃,反应速度约增加一倍,因此,从反应速率角度考虑,高温是有利的. 目前应选择略高于最高平衡转化率时的温度,故尿素合成塔上部大致为185~200℃;在合成塔的下部,气液两相间的平衡对温度起者决定性的作用.操作温度要低于物系平衡的温度. 5.2.2氨碳比工业生产上,通过综合考虑,一般水溶液全循环法氨碳比应选择在4左右,若利用合成塔副产蒸汽,则氨碳比取3.5以下. 5.2.3水碳比水溶液全循环法中,水碳比一般控制在0.6~0.7;(1)操作压力一般情况下,生产的操作压力要高于合成塔顶物料和

尿素工艺流程简述(副本)

尿素工艺流程简述 1、尿素的合成 CO压缩机五段出口CO气体压力约20.69MPa(绝),温度约125C,进入尿素 合成塔的量决定系统生产负荷。 从一吸塔来的氨基甲酸铵溶液温度约90 C左右,经一甲泵加压至约20.69MPa (绝)进入尿素合成塔,一般维持进料"O/CO (摩尔比)0.65?0.70。从氨泵来的液氨经预热器预热至40?70C进入尿素合成塔,液氨用量根据生产负荷决定,塔顶温度控制在186?190C,进料NH/CC2分子比控制3.8?4.2。 尿塔压力由塔顶减压阀PIC204 (自调阀)自动控制,一般维持19.6MPa(表)物料在塔内停留时间为40分钟,CO转化率》65% 为防止尿塔停车时管路堵塞,设置高压冲洗泵,将蒸汽冷凝液加压到19.6?25.0MPa送到合成塔进出口物料管线进行冲洗置换。 2、中压分解 出合成塔气液混合物减压至1.77MPa(绝)进入预分离器,合成液中的氨大部分被分离闪蒸出来,通过气相管道进入一吸外冷却器,液相进入预蒸馏塔上部,在此分离出闪蒸气后溶液自流至中部蒸馏段,与一分加热器来的热气逆流接触,进 行传质、传热,使液相中的部分甲铵与过剩氨分解、蒸出进入气相,同时,气相中的水蒸汽部分冷凝降低了出塔气相带水量。 出预蒸馏塔中部的液体进入一分加热器,经饱和蒸汽加热后,出一分加热器温度控制在155?160C,保证氨基甲酸铵的分解率达到88%总氨蒸出率达到90% 加热后物料进入预蒸馏塔下部的分离段进行气液分离,分离段液位由LICA302 摇控控制,物料减压后送至二分塔。 在一分加热器液相入口用空压机补加空气,防止一段分解系统设备管道的腐蚀, 加入空气量由流量计指示(约2m i/TUr)通过旁路放空阀调节流量。 3、二段分解(低压分解) 出预蒸馏塔的液体经LRC302减压至0.29?0.39MPa (绝),进入二分塔上部进行闪蒸,液体在填料精馏段与塔下分离段来的气体进行传质、传热,以降低出塔气体温度和提高进二分塔加热器的液体温度。 出二分塔加热物料温度为135?145C,该温度由TRC303自动控制,物料被加热后进入二分塔分离段进行气液分离,二分塔液位由LIC303自动控制。 4、闪蒸

尿素生产工艺流程简介

经蒸发、造粒后包装销售。粗甲醇经精馏得到精甲醇销售。 二氧化碳经净化和压缩后,与氨一起送入尿素合成塔,在适当的温度和压力下,合成尿素,的氮氢混合气压缩到高压,并在高温、有催化剂存在的情况下合成为氨。脱碳解吸出来的换、二次脱硫、脱碳、精脱硫、甲醇、烃化等工艺将气体净化,除去各种杂质后,将纯净 原料煤利用蒸汽和空气为气化剂,在煤气发生炉内产生半水煤气,经一次脱硫、变生产流程说明 一分厂生产流程 一分厂生产流程及说明 1、造气工段 工艺流程说明: 采用间歇式固定常压气化法,即在煤气发生炉内,以无烟块煤或焦炭为原料,并保持一定的炭层,在高温下,交替地吹入空气和蒸汽,使煤气化,以制取合格的半水煤气。经除尘、热量回用降温后送入气柜。自上一次开始送风至下一次开始送风为止,称为一个工作循环,每个循环分吹风、上吹、下吹、二次上吹和吹净五个部分。 各工段流程 2、一脱工段除去焦油等杂质后送往压缩一入。目前使用的脱硫方法为栲胶脱硫法。 S,然后进入冷却清洗塔上段降温后,经静电除焦2后进入脱硫塔,脱除部分H 油等杂质并降低一定温度后由萝茨风机加压送到冷却清洗塔下段降温、除尘 来自造气的半水煤气,经半水煤气气柜出口冷洗塔除去部分粉尘,煤焦

3、变换工段 流程说明: 半水煤气经除油器除去气体挟带的油等杂质后,一氧化碳与水蒸汽借助于催化 剂的作用,在一定的温度下变换成二氧化碳和氢气。通过变换既除去了一氧化碳, 又得到了制合成氨的原料气氢和制尿素所需的原料气二氧化碳,使热量得到有效回 收。本工段采用全低变工艺进行变换。 4.二次脱硫 流程说明: 变换气经过气液分离器后进入脱硫塔脱除变换气中的H2S后送往压缩三入。并经溶液再生,提取单质硫。采用栲胶脱硫法脱硫。 利用二氧化碳气体在碳丙液中溶解度大的特点,除去变换气中的二氧化碳,净 化气经精脱硫脱除微量硫后送往压缩四段。二氧化碳气体经净化、压缩,送至尿素 合成塔。碳丙液对CO2的吸收在低压下符合亨利定律,因此采用加压吸收,减压再生。

常见的几种尿素生产工艺介绍.

常见的几种尿素生产工艺介绍 第一节斯塔米卡邦二氧化碳汽提法尿素工艺 斯塔米卡公司((Stamicarbon.B.V是荷兰国营矿业公司(DSM的子公司,在40年代后期开始研究尿素生产工艺。早期尿素生产由于存在着合成塔等设备的晋严重腐蚀问题,影响生产的正常进行和生产技术的推广。直至1953年,斯塔米卡邦提出在二氧碳原料气中加少量氧气的办法,解决了尿素设备的腐蚀问题,为后来尿素生产的大规模发展开辟了道路。由该公司设计的第一个工业规模尿素厂于1956年投产。在60年代初,斯塔米卡邦与国营矿业公司研究中心一起,开发了新的尿素工艺,即二氧碳化碳汽提法。从工作1964年建设投产日产20吨尿素的实验厂开始,到1967年二氧化碳汽提法尿素工厂正式投产。随后在很多国家建设二氧化碳汽提法尿素工厂。 工艺流程 二氧化碳汽提法尿素生产工艺主要包括:二氧化碳压缩和脱氢、液氨升压、合成和汽提、循环、蒸发造粒、产品贮存和包装、解吸和水解等工序。 (一二氧化碳压缩和脱氢 从合成氨厂来的二氧化碳气体,经过CO2分离罐101——F与工艺空气压缩机101-J供给的一定量的空气混合,空气量为二氧化碳体积的4%,进入二氧化碳压缩机102-J。在二氧化碳压缩机二段进口对二氧化碳气中的氧含量自动栓测。二氧化碳最终压缩到14。1MPa(A进入脱氢反应器101-D,内装铂系催化剂,操作温度:入口 ≥150℃,出口<300℃。脱氢的目的是防止高压洗涤器排出气发生爆炸。在脱氢反应器中H2被选择氧化为H2O。脱氢后二氧化碳含氢及其它可燃气体小于50*10-6。 二氧化碳压缩机102-J是单例蒸汽透平驱动的双缸四段离心式压缩机,带有中间冷凝器和分离器。蒸汽透平机转速,由速度控制器控制并自动调节转速,以适应尿素的生产负荷。多余的二氧化碳由放空管放空,进入二氧化碳压缩机的气量,应超过压缩机的喘振点。为使进口气量小于喘振气量时也不发生故态障,设有自动防喘振系统。

二氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩 从上道工序送来的CO 2气体将所含液滴分离后进入CO 2 压缩机。在压缩机各进 出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。 1.2氨气的加压 合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。 1.3液氨的加压高压合成与CO 2 气提回收 合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。 从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。 从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。在分布器上维持一定的液位,就可以保证气-液的良好分布。

尿素生产工艺流程

. 化肥厂尿素生产工艺流程简介分子量为CO(NH2)2,,分子式为1.尿素的物理性质:化学名称叫碳酰二胺因为人类及哺乳动物的尿液是含氮量最高的固体氮肥46.65%,.60.06.含氮量为尿故称为尿素.年蒸发人尿是发现了它,中含有这种物质,并且由鲁爱耳在17731.335,晶体的比重为在20-40度温度下无味素为无色,,无臭的针状或棱状结晶.. ,包装和贮存要注意防潮尿素易溶于水和氨,也溶于醇克/cm3.在工业上尿素作.主要用作肥料,饲料和工业原料2.尿素的用途和产品标准.尿素也用.用于生产塑料,涂料和黏合剂为高聚物的合成原料,用来制成甲醛树脂,. 尿素技术指标国家指标GB2440--91,制革,颜料等部门.于医药,液氨是合成氨厂的主要产品生产尿素的原料主要是液氨和二氧化碳气体,3.合成尿素用的液氨要求纯度高于二氧化碳气体是合成氨原料气净化的副产品.铁锈等固体杂并不含催化剂粉,油含量小于10PPm,水和惰性物小于0.5%99.5%,15mg/Nm3. 硫化物含量低于98.5%,质.要求二氧化碳的纯度大于主要化学反应,尿素的生产办法和过程尿素的合成分两步进行4.)==NH4COONH3=Q 气液)+CO2(为:NH3(液氨与二氧化碳的净化与提压工业过程为 NH4COONH2==CO(NH2)+H2O-Q1. 2.液氨与二氧化碳合成输送. 造粒4.尿素溶液的蒸发,3.尿素尿素熔融物与未反应物的分离与回收该法是利用碳酸稀溶液吸收未反应的氨与二氧.老系统选用的是水溶液全循环法由于未反应的氨和二氧化,再利用循环泵送回合成塔化碳生成甲胺或碳酸氨溶液,. ,,,碳呈水溶液形态进行循环故动力消耗较小流程也较简单投资也省.. . ..

尿素合成、制造工艺

2.4.3尿素合成工艺 2.4. 3.1主要反应方程式 2NH 3(液)+ CO2(气)= NH 4COO NH 2(液) NH 4COO NH 2= CO( NH 2)2(液)+ H2O 2.4. 3.2工艺流程简述 由造气炉产生的半水煤气脱碳后,其中大部分的二氧化碳由脱碳液吸收、解吸后,经油水分离器,除去二氧化碳气体中携带的脱碳液,进气体混合进入尾气吸收塔,与一段蒸发、二段蒸发工段气相冷凝除去水后残余的气体混合后放空。 尿素制造工艺 尿素, 工艺, 制造 - (1)全循环法 将氨与二氧化碳作用生成氨基甲酸铵,然后脱水生成尿素。未反应的氨和二氧化碳用水吸收生成甲铵或碳酸铵水溶液返回合成系统循环利用。合成压力约19.61 MPa,温度185~190 oc,约62%co,转化为尿素。反应液经两段分解及真空蒸发浓缩至造粒。其反应式如下: 2NH3+COz—NHzCOONH。 NHzCOONH4——CO(NH2)2+H20 (2)二氧化碳气提法 合成压力13.73 MPa,温度180~185℃,转化率57~58%,用二氧化碳作为气提剂,使未转化的甲铵分解成二氧化碳及氨蒸出。气提效率80~83%,气提塔出气在高压冷凝器内冷凝生成甲铵溶液回合成塔。气提塔出液经进一步分解,蒸发,送造粒。 (3)氨气提法 合成压力14.71 MPa,温度185~190℃,转化率60%左右。未转化甲铵在气提塔中用氨气提而分解,出气提塔尿液经两段分解使残余甲铵进一步分解,游离氨馏出,以水溶液形式回收,过剩氨经冷凝成液氨返回系统。 4、等压双气提法 合成压力17.65~19.61 MPa。温度185~190。C,氨/二氧化碳4~5,转化率70~75%。出塔尿液依次经过两个串联的气提塔,分别以氨气、二氧化碳气提分解未转化的甲铵并蒸出部分过量氨。 由于循环法生产尿素存在动力消耗大,一次通过的尿素合成率低等诸多缺点,目前大多厂家采用汽提法生产尿素。汽提法是水溶液全循环法的一项重要改进类型。其实质是在与合成反应相等压力的条件下,利用一种气体通过反应物系(同时伴有加热),使未反应的氨和二氧化碳通过气提法合成。二种气提法简易流程如下:

合成氨及尿素生产工艺指标

云南玉溪银河化工有限责任公司 银化发[2001]69号 云南峨山银河化工有限责任公司 关于颁发《合成氨及尿素生产工艺指标》的通知 公司所属各部门: 工艺指标是工艺操作的核心和灵魂,是工艺参数控制的科学依据,是实现稳产、高产、优质、低耗的要素,更是实现安全生产的有力保障。现将公司总工办根据技改后的生产工艺及规模实际编制的《合成氨及尿素生产工艺指标》发至各生产车间及有关部门,请认真遵照执行。 本工艺指标自下发之日起执行。 附:《合成氨及尿素生产工艺指标》

(此页无正文) 云南峨山银河化工有限责任公司 二○○一年七月二十七日 主题词:工艺指标通知 抄报:公司领导生产处各科室各生产车间 峨山银河化工有阴责任公司总部办2001年7月27日印发

银河化工有限责任公司 合成氨及尿素生产 工艺指标 编制:总工办

前言 我公司6万吨尿素装置及配套的合成装置,在峨山化肥厂装置的基础上做了大量的技术改造。采用了粘土煤球制气,碱法脱硫,中低低就换工艺等,无论从原料路线和工艺步骤都较原来有较大变动。但总的运行还是平稳的,由于生产工艺及规模的改变,以前颁发的工艺指标已不能满足生产的要求。这次由总工办编制的工艺指标,是根据我公司实际情况,参照原化工部颁发的工艺指标及兄弟厂的经验编制的。现发到各生产车间及与生产有关的管理部门,要求认真贯彻执行,在运行中个性,以至完善。 工艺指标是工艺操作的核心和灵魂,是工艺参数控制的科学依据,是实现稳产高产优质低耗的要素,是实现安全生产的有力保障。希望生产一线的操作工人和生产管理者严格执行工艺指标,与生产有关的管理人员要熟悉和掌握工艺指标,要做到生产操作与调度指挥以工艺指标为规范的协调和统一,要充分认识工艺指标的严肃性、科学性和灵活性。要制定切实可行的考核办法,进行工艺指标的分类和分级管理考核,把哪此与安全生产、高产、优质、低耗、延长设备运行周期的重要指标列为厂控制指标。工艺指标合格率由生产管理部门作为重要指标来考核,以期达到安全、高产、优质、低耗的目的。 本指标自发布之日起实施,以前发布的工艺指标与本指标不同的按本指标执行。 总工办 二○○一年六月一日

氮肥行业工艺流程

煤/天然气化工(化肥)工艺流程 概述 整个生产过程可以分为造气、脱硫、压缩、变换、脱碳、合成、甲醇、尿素等主要单元(工段)。上述各单元(工段)的操作在工艺上密切联系,但在地域上分散、在控制上相对独立。 1、造气 造气一般是以块煤为原料,采用间歇式固定层常压气化法,在高温和程控机油传动控制下,交替与空气和过热蒸汽反应。反应方程式: 吹风 C+O2→CO2+Q CO2+C→2CO-Q 上、下吹 C+H2O(g) →CO+H2-Q A、吹风阶段 吹风阶段的主要作用是产生热量,提高燃料温度。 B、上吹(加氮)阶段 上吹阶段的主要作用是置换炉底空气,吸收热量、制造半水煤气,同时加入部分氮气。 C、下吹阶段 下吹阶段作用是制取半水煤气,吸收热量,使上吹后上移的气化层下移。 D、二上吹阶段 二上吹的主要作用是将炉底及进风管道中煤气吹净并回收,确保生产安全。 E、吹净阶段 吹净的主要作用是回收造气炉上层空间的煤气及补充适量的氮气,以满足合成氨生产对氮氢比的要求。 2、变换 工艺简介 经过压缩有一定压力的半水煤气先经过油水分离器,除去煤气中的油物。然后进入饱和塔的下部与热水进行交换后升至一定温度,经过气水分离器分离出煤气中的水份。去除水分的煤气进入预热交换器,与中变炉出口的高温煤气进行两次热交换后,进入中变炉,在触媒的催化作用下,煤气中的一氧化碳发生反应,生成二氧化碳,中变炉的炉体内有三层反应区,在正常的工艺状况下,第一层的反应温度控制在450℃左右,第二层反应温度控制在400℃左右,第三层的反应温度控制在380℃左右。反应后出中变炉的变换气进入与入口水煤气进行热交换的两级热交换器后,再进入低变炉使变换气中的一氧化碳进一步变换,经过两次变换的水煤气成为合格的变换气后,经热水塔,冷却塔之后送入下一工段进行后续处理。 3、脱碳 工艺简介

尿素的工艺和职业危害

尿素的工艺和职业危害 一、尿素的制造工艺: 尿素生产工艺流程简介 新建项目以无烟煤为主要生产原料,首先合成氨和CO2,然后二者再合成尿素。 原料煤经过造气炉造气,形成原料气,原料气经过压缩,进入变换炉进行变换后生成变换气,变换气经过脱硫、脱碳、精脱硫后成为合成气,脱碳后的合成气中的CO2被溶剂吸收后生成的CO2气体作为合成尿素的原料。合成气经过压缩后送入双甲精制制备甲醇,从双甲精制后出来的合成气经过压缩后作为氨合成的原料气,原料气经过氨合成塔后合成液态氨,作为合成尿素的原料。 液氨进入尿素合成塔,与合成装置来的CO2气体在尿素合成塔中合成尿液,尿液经过蒸发去除水分后,进入尿素造粒系统,形成大颗粒尿素成品。 1、原料煤贮运系统 原料煤由汽车运入干煤棚,再由抓斗桥式起重机抓入受煤坑或由汽车直接倒入受煤坑,通过电振给料机给至带式输送机运至筛分厂房,通过园振动筛进行筛分,筛上原煤通过带式输送机送至造气炉炉顶的卸料小车,卸入汽化炉煤仓供汽化炉造气使用,筛下煤通过带式输送机进入热电站的燃料煤系统。 2、燃料煤贮运系统 汽车运来的燃料煤人工卸入干煤棚内贮存,上煤时由抓斗桥式起

重机送入受煤斗,受煤斗的出料口设有电机振动给料机,将燃料煤按需要输送量给进备1带式输送机,经过备2带式输送机转运至筛分破碎厂房,由圆振筛进行筛分,筛上大于8mm的块煤进入破碎机,破碎后的煤给进备3带式输送机上;筛下小于8mm的合格煤也进入备3带式输送机上,再经过备4带式输送机转运至锅炉房上煤层,由备5带式输送机分别给进锅炉的贮煤斗中。 造气系统生产工艺流程及其职业病危害因素的分布 3、造气系统生产工艺 (1)造气 造气过程由吹风、上吹制气、下吹制气、空气吹净五个阶段组成。粒度合格的原料块煤,经皮带运至各造气炉料仓,由自动加煤装置将煤连续均匀地加入造气炉内,与鼓风机鼓入的空气混合进行燃烧,同时将混有少量空气的过热蒸汽分别从炉底和炉上部通入炉内,与炽热的炭层发生反应,在造气炉内发生的主要化学反应有: 以上反应产生的混合气分别称为上行煤气和下行煤气,上、下行煤气进入造气余热回收器回收热量后,进入煤气冷却器,洗涤冷却至常温后送气柜。造气炉产生的吹风气经炉上部进入旋风除尘器除尘后去吹风气回收系统。 (2)原料气压缩工艺 原料气压缩系统压缩机分为四级压缩系统 来自加压炉气柜的0.004Mpa(g)、40℃半水煤气经原料气压缩机的三个一级进气缓冲器后分别进入三个一级气缸进行压缩,从三个

车用尿素生产设备

车用尿素生产设备 一、车用尿素液简介 车尿素(车用尿素,汽车环保尿素)的学名是柴油机尾气处理液。应用于柴油发动机中。它是一种在柴油车SCR技术中必须要用到的消耗品,用来减少柴油车尾气中的氮氧化物污染的液体。其组成成分为32.5%的高纯尿素和67.5%的去离子水。 二、柴油车SCR系统为什么会经常结垢 柴油车载在长期使用车用尿素液过程中,SCR系统经常会出现尿素液泵、管道、喷头堵塞,影响SCR系统工作,从技术角度分析,出现这种现象的原因有两点: 1.使用尿素含量超标的不合格的车用尿素液,造成柴油车SCR系统结晶,很多人误以为是 结垢; 2.生产车用尿素液的水质为非去离子水或去离子水处理不彻底,达不到车用尿素液生产用 水≥15MΩ/cm的水质标准,这样的车用尿素液一旦进入柴油车SCR系统,在系统内高温运行状态下,尿素液里未经去掉的各种离子就会沉积在尿素液泵、管道、喷头上,引起系统结垢,特别是国V的柴油车会出现车辆限速、无力等现象,给车主带来很大的SCR系统维护经济负担。因此,选择合理的去离子水生产工艺及设备就显得尤为重要。 三、什么是去离子水 去离子水(deionized water),又被称为纯水或高纯水。制取去离子水的工艺如下 1、离子交换树脂制取去离子水的传统水处理方式,其基本工艺流程为: 原水→多介质过滤器→活性炭过滤器→精密过滤器→阳床→阴床→混床→后置保安过滤器→用水点。 (特点:污染比较大,自动化程度低,初期投入低) 2、反渗透-离子交换设备制取去离子水,水质稳定,纯度较高,其基本工艺流程为: 原水→多介质过滤器→活性炭过滤器→精密过滤器→反渗透设备→混床→超纯水箱→超纯水泵→后置保安过滤器→用水点。 (特点:污染小,自动化程度高,初期投入中等,价格适中)

尿素生产工艺设计

第一章 尿素生产概述 1.1尿素生产的原理 尿素的合成原料是氨和二氧化碳,这两种原料均来自合成氨装置。尿素合成的条件为: 188℃,15.6MPa ,进料氨与二氧化碳的物质的量比是3.6,水与二氧化碳的物质的量比是 0.67[2]。 一般认为在合成塔尿素的反应分以下两部进行 第一步,氨基甲酸铵的生成。反应式为: 324212()()()NH l CO g NH COONH l Q ++? 第二步,氨基甲酸铵脱水。反应式为: 422222()()()()NH COONH l CO NH l H O l Q +-? 1.2尿素生产的方法 由于这两个反应都是可逆反应,因此氨与二氧化碳不可能全部转化为尿素。在工业生 产条件下,二氧化碳转化率仅在50%-70%之间[3]。为了分离和回收未反应的氨和二氧化碳, 可将合成熔融物加热分解,使气体逸出。但要将逸出的氨与二氧化碳全部或部分返回合成 塔重新合成尿素,这就出现了各种不同的流程。有循环法,半循环法和全循环法。 全循环法又可以分为热气全循环法、矿物油全循环法、气体分离全循环法、水溶液全 循环法及汽提全循环法。 气提全循环法又可以分为二氧化碳汽提法、氨汽提法和双汽提法。

第二章 斯那姆氨汽提工艺 2.1工艺基本原理 汽提是使尿液中的甲铵按下述反应分解为3NH 和2CO 的过程: 4232()2()()NH COONH l NH g CO g Q +-? 这是一个可逆体积增大的反应[4]。我们只要能够供给热量,降低压力或降低气相中3NH 和 2CO 某一组分的分压都可使反应向右方进行,以达到分解甲铵的目的。汽提法是在保持压 力与合成塔相同的条件下,在给热量的同时采用降低气相中3NH 和2CO 某一组分的过程。 当温度为T ℃时,纯态甲铵的离解压力与各组分(3NH 和2CO )的分压的关系按以上化学 方程式可作如下表示:设总压力为P s 则从反应式中可以看到氨分压为2/3P s 二氧化碳分压 为1/3P s 如反应式在温度为t ℃时的平衡常数为K t ,则: 23(2/3)(1/3)4/27t s s s K P P P == 假如氨和二氧化碳之比不是按2:1状态存在,在温度仍为t ℃时,它的总压力为P ,其各 组分的分压为:3NH 的分压 33NH NH P X =??总压氨的分子数=P 2CO 的分压 232CO NH P X =??总压二氧化碳的分子数P 3NH X 和2CO X 分别为气体中氨,二氧化碳的分子分数这样反应式在温度为t ℃时平衡常 数应为: 323 2232()()NH CO NH CO Kt P X P X P X X =???=?? 温度相同,平衡常数应相等,所以当温度为t ℃ 3 23334/27NH CO Ps P X X =?? ?23 s P = 但纯甲胺在某一固定温度下离解力为不变的常数C ,所以

尿素生产工艺流程简介

一分厂生产流程及说明 1造气工段 工艺流程说明: 采用间歇式固定常压气化法,即在煤气发生炉内,以无烟块煤或焦炭为原料,并保持一定的炭层,在高温下,交替地吹入空气和蒸汽,使煤气化,以制取合格的半水煤气。经除尘、热量回用降温后送入气柜。自上一次开始送风至下一次开始送风为止,称为一个工作循环,每个循环分吹风、上吹、下吹、二次 上吹和吹净五个部分。 来自造气的半水煤气,经半水煤气气柜出口冷洗塔除去部分粉尘,煤焦油等杂质并降低一定温度后由萝茨风机加压送到冷却清洗塔下段降温、除尘后进入脱硫塔,脱除部分H 2S,然后进入冷却清洗塔上段降温后,经静电除焦除去焦油等杂质 一分厂生产流程 生产流程说明 原料煤利用蒸汽和空气为气化剂,在煤气发生炉内产生半水煤气,经一次脱硫、变换、二次脱硫、脱碳、精脱硫、甲醇、烃化等工艺将气体净化,除去各种杂质后,将纯净的氮氢混合气压 缩到高压,并在高温、有催化剂存在的情况下合成为氨。脱碳解吸岀来的二氧化碳经净化和压缩 后,与氨一起送入尿素合成塔,在适当的温度和压力下,合成尿素, 经蒸发、造粒后包装销售。 粗甲醇经精馏得到精甲醇销售。 各工段流程 2、一脱工段

后送往压缩一入。目前使用的脱硫方法为栲胶脱硫法。

3、变换工段 流程说明: 半水煤气经除油器除去气体挟带的油等杂质后,一氧化碳与水蒸汽借助于催化剂的作用,在一定的温度下变换成二氧化碳和氢气。通过变换既除去了一氧化碳,又得到了制合成氨的原料气氢和制尿素所需的原料气二氧化碳,使热量得到有效回收。本工段采用全低变工艺进行变换。 4.二次脱硫 流程说明: 变换气经过气液分离器后进入脱硫塔脱除变换气中的H 2S 后送往压缩三入。并经溶液再生,提取单质硫。米用栲胶脱硫法脱硫。 利用二氧化碳气体在碳丙液中溶解度大的特点,除去变换气中的二氧化碳,净化气经精脱硫脱除微量硫后送往压缩四段。二氧化碳气体经净化、压缩,送至尿素合成塔。碳丙液对CO的吸收在低压下符合亨利定律,因此采用加压吸收,减压再生

尿素生产原理、工艺流程及工艺指标

尿素生产原理、工艺流程及工艺指标 1.生产原理 尿素是通过液氨和气体二氧化碳的合成来完成的,在合成塔D201中,氨和二氧化碳反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水,这个过程分两步进行。 第一步:2NH3+CO2NH2COONH4+Q 第二步:NH4COONH2 CO(NH2)2+H2O-Q 第一步是放热的快速反应,第二步是微吸热反应,反应速度较慢,它是合成尿素过程中的控制反应。 1、2工艺流程: 尿素装置工艺主要包括:CO2压缩和脱氢、液氨升压、合成和气提、循环、蒸发、解吸和水解以及大颗粒造粒等工序。 1、2、1 二氧化碳压缩和脱氢 从合成氨装置来的CO2气体,经过CO2液滴分离器与来自空压站的工艺空气混合(空气量为二氧化碳体积4%),进入二氧化碳压缩机。二氧化碳出压缩机三段进脱硫、脱氢反应器,脱氢反应器内装铂系催化剂,操作温度:入口≥150℃,出口≤200℃。脱氢的目的是防止高压洗涤器可燃气体积聚发生爆炸。在脱氢反应器中H2被氧化为H2O,脱氢后二氧化碳含氢及其它可燃气体小于50ppm,经脱硫、脱氢后,进入压缩机四段、五段压缩,最终压缩到14.7MPa(绝)进入汽提塔。 二氧化碳压缩机设有中间冷凝器和分离器,二氧化碳压缩机压缩气体设有三个回路,以适应尿素生产负荷的变化,多余的二氧化碳由放空管放空。 1、2、2液氨升压 液氨来自合成氨装置氨库,压力为2.3MPa(绝),温度为20℃,进入液氨过滤器,经过滤后进入高压氨泵的入口,液氨流量在一定的范围内可以自调,并设有副线以备开停车及倒泵用.主管上装有流量计.液氨经高压氨泵加压到18.34MPa(绝),高压液氨泵是电动往复式柱塞泵,并带变频调速器,可在20—110%的范围内变化,在总控室有流量记录,从这个记录来判断进入系统的氨量,以维持正常生产时的原料N/C(摩尔比)为2.05:1。高压液氨送到高压喷射器,作为喷射物料,将高压洗涤器来的甲铵带入高压冷凝器,高压液氨泵前后管线均设有安全阀,以保证装置设备安全。 1、2、3 合成和汽提 生产原理:合成塔、气提塔、高压甲铵冷凝器和高压洗涤器四个设备组成高压圈,这是本工艺的核心部分,这四个设备的操作条件是统一考虑的,以期达到尿素的最大产率和最大限度的热量回收。 从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,液相加气相物料N/C(摩尔比)为2.9—3.2,温度为165--172℃。 合成塔内设有11块塔板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。物料从塔底至塔顶,设计停留时间1小时,二氧化碳转化率可达58%,相当于平衡转化率90%以上。 尿素合成反应液从塔内上升到正常液位,温度上升到180--185℃,经过溢流管从塔下出口排出,经过合成塔出液阀(HPV2201)汽提塔上部,再经塔内液体分配器均匀地分配到每根气提管中,沿管壁成液膜下降,分配器液位高低,起着自动调节各管内流量的作用,尿液在气提管均匀分配并在内壁形成液膜下降,内壁液膜是非常重要的,否则气提管将遭到腐蚀,由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇,气提管外以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被气提气蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出,气提塔出液温度控制在165--174℃之间。塔底液位控制在40--80%左右,以

化肥厂生产过程及工艺流程

化肥厂生产过程及工艺流程 煤制合成氨、尿素 C+ 0.5 O2 →CO C+ O2 →CO2 CO + H2O→CO2+ H2 H2+N2→NH3 CO2 + 2NH3 →CO (NH2)2 1 过程工艺描述 (1)水煤浆气化制合成气装置 由水煤浆制备工序来的水煤浆送入煤浆槽储存待用。浓度约为63%的水煤浆通过煤浆给料泵加压输送到气化炉顶部工艺烧嘴,并与空分装置来的纯氧分别进入气化炉在6.5MPa(G),约1400℃工艺条件下,水煤浆与纯氧进行部分氧化反应,生成粗合成气。 反应后的粗合成气和溶渣进入气化炉下部的激冷室。在激冷室中,粗合成气经冷却、洗涤,将粗合成气中的大部分碳黑洗去,并和粗渣分开。出激冷室的粗合成气直接进入文丘里洗涤器和碳洗塔进一步洗涤,除去粗合成气中残留的碳黑,然后将水蒸汽/干气比约1.3~1.5的合成气送至变换工序。 溶渣被激冷室底部通过破渣机进入锁斗,定期排入渣池,渣池设有捞渣机将粗渣捞出,装车运往园区免烧砖项目。 渣池中含细渣的灰水通过渣池泵送至真空闪蒸器。 碳洗塔的液位通过控制进入塔内的灰水量来维持,碳洗塔内的黑水分两股排出,一股黑水去高压闪蒸器;另一股由灰水循环泵送至气化炉也进入高压闪蒸器,黑水经减压,闪蒸出黑水中溶解的气体并通过变换冷凝液加热器回收闪蒸汽的热量,通过高压闪蒸分离器,闪蒸出的气体至变换或火炬,水送入脱氧水槽。 (2)净化装置 a. 变换 变换工序主要反应式为: COS+H2O——CO2+H2S+Q CO+H2O——CO2+H2+Q

由气化送来粗煤气经煤气水分离器分离掉少量的冷凝液及灰尘后,经中温换热器温度升高至250℃,进第一中温变换炉。第一中温变换炉分上、下两段,炉内装有两段三层耐硫变换触媒,层间配有煤气激冷管线调温,出第一中温变换炉变换气CO含量为24%(干),温度为420℃左右。变换气经中温换热器降温后进淬冷器,用本工段产生的高温冷凝液淬冷至240℃,然后进入第二中温变换炉,炉内装有两段耐硫变换触媒,出口变换气CO浓度为4.0%(干),温度为358℃左右,进入中变废热锅炉,产生1.0MPa(G)的低压蒸汽,使变换气温度降温进入低温变换炉,低温变换炉装两段耐硫变换触媒,出口变换气CO浓度为1.0%(干),温度升至为222℃左右,进入低变废热锅炉,产生0.4MPa(G)的低压蒸汽,变换气温度降至163℃;经第一水分离器分离出冷凝液后的变换气进入锅炉给水加热器,温度降至140℃,然后进入脱盐水加热器温度降至70℃、进变换气水冷器温度降至为40℃,进水洗塔,在塔底进行气液分离后,气体经塔顶40℃洗涤水洗涤除去NH 3 后送至甲醇洗工段。 第一水分离器的冷凝液经冷凝液泵Ⅰ,升压后送至淬冷器作为淬冷用冷凝液,多余部分送至气化工段。水洗塔塔底出来的冷凝液与煤气水分离器出来的冷凝液一起进入冷凝液气提塔上部,气化来的高闪气进冷凝液气提塔中部。用低压蒸汽气提除氨后的变换冷凝液经冷凝液泵Ⅱ,送气化工段,塔顶气经塔顶冷凝器降温、冷凝、分离后,不凝气送至硫回收处理。 脱盐水站来的脱盐水进入脱盐水加热器与变换气换热温度升至95℃,一部分送锅炉房,另一部分进入除氧器脱氧。除氧器用本工段产生的低压蒸汽吹入脱氧,脱氧后的锅炉给水一部分经中压锅炉给水泵升压至 2.1 MPa(A)分别送至中压废热锅炉、脱硫工段和气化工段;另一部分经低压锅炉给水泵升压到0.8MPa(A),送至低压废热锅炉;第三部分经气化补水泵升压至 5.5MPa(G)后分为三股,第一股经洗涤水冷却器冷至40℃后作为水洗塔用洗涤水,第二股作为气化补水送至气化,第三股送至氨合成工段。 b. 低温甲醇洗 本工段采用低温甲醇洗工艺,主要脱除合成气中CO 2、H 2 S和H 2 O。 为了防止低温时气体所带的水份冻结、堵塞缠绕式换热器的管道,在变换气冷却前注入少量甲醇,气体被冷却至约-7℃后先送入吸收塔,用来自CO 2 吸收塔 的富甲醇液洗涤,除去变换气中的大部分H 2S、COS和CO 2 。 洗涤后的变换气进入CO 2 吸收塔下部,用来自热再生塔的贫甲醇液洗涤,进

相关文档
最新文档