电容触摸 触摸按键 触摸开关 触摸玩具IC

电容触摸  触摸按键 触摸开关 触摸玩具IC
电容触摸  触摸按键 触摸开关 触摸玩具IC

1.概述

JB5531是一款单按键触摸及接近感应开关,其用途是替代传统的机械型开关。该IC 采用CMOS 工艺制造,结构简单,性能稳定。该IC 通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。

2.特点

◆ 工作电压:2.0V ~5.5V

◆ 最高功耗11.5uA ,低功耗模式仅1.5uA(均指在3V 且无负载) ◆ 外部配置引脚设置为多种模式

◆ 高可靠性,芯片内置去抖动电路,可有效防止外部噪声干扰而导致的误动作 ◆ 可用于玻璃、陶瓷、塑料等介质表面

3.封装示意图

4.引脚描述

表1 引脚功能描述

NC OLH RST SLS MOT TCH NC

VDD HLD FST GND ODO OUT NC

OUT GND TCH

HLD VDD OLH

图1 SOP -14/SOT23-6L 封装示意图

5.功能描述

JB5531可通过功能引脚设置为多种模式。功能引脚悬空时,配置位自动设置为默认值(Default)。

5.1.1 快速/低功耗模式(FST)

通过对PIN 脚FST 的设置,可配置为快速模式或者低功耗模式,当该PIN 脚悬空时,默认上拉为高电平,置为快速模式。

芯片设置为FST=1 (快速模式)时,触摸响应时间约40ms ;设置为FST=0 (低功耗模式)时,触摸响应时间约160ms 。快速模式的功耗约为低功耗模式的功耗的4倍。 5.1.2 保持/同步模式(HLD)

当PIN 脚HLD 悬空时,默认下拉为低电平,置为同步模式。

设置HLD=0,则选择同步模式,此时PIN 脚OUT 及ODO 的状态与触摸回应同步:只有检测到触摸时有输出回应;当触摸消失时,OUT 及ODO 的状态恢复为初始状态。

设置HLD=1,则选择保持模式,此时PIN 脚OUT 及ODO 的状态受在触摸回应控制下保持,当触摸消失后仍保持为回应状态;再次触摸并响应后恢复为初始状态,如下图所示。

图2 同步模式示意图

图3 保持模式示意图

注:Td1为TOUCH 响应延迟时间,Td2为TOUCH 撤销延迟。

Td1

Td1

Td1

Td1

5.1.3 最大开启时间模式(MOT)

此模式只在同步模式下有效,当PIN脚MOT悬空时,默认上拉高电平,禁止最大开启时间复位功能。

设置MOT=O,同步模式下触摸响应后,如持续检测到触摸存在达到约75S(3V),则自动复位并校准,同时置PIN脚OUT及ODO为未检测到TOUCH的状态。

5.1.4 输出模式选择(OLH、OUT、ODO)

JB5531可设置多种输出模式,当PIN脚(OLH)悬空时,默认下拉为低电平,置为高电平有效模式。

表3 输出模式菜单

5.1.5灵敏度调节

.1 设置PIN脚SLS。当该PIN脚悬空时,默认上拉为高电平,采样时间长度设置为1.5ms。设置SLS=0时,采样时间长度设置为3.0ms,此时芯片对触摸感应响应的灵敏度高于SLS=1时的灵敏度。

.2 外接调节电容Cj。调节电容值的范围是0pF~75pF,电容值的增加将导致灵敏度降低。

.3 改变连接到TCH的TOUCH PAD的面积和形状。如需增加触摸感应灵敏度,可适当增大TOUCH PAD的面积;但TOUCH PAD面积增大到一定程度后,面积的继续增加几乎不能对灵敏度产生影响。

.4 TOUCH PAD到TCH引脚的导线长度,及PCB的布局,都会对灵敏度产生一定的影响。

6.绝对最大值

7.电气参数

表5电气参数表

8.引脚位置图

图4 PAD脚位图

表6 脚位分布表

9.应用电路图

图5 应用电路示意图

图6 SOT23-6应用电路示意图

1.产品使用时请注意上电需自检1-2秒左右。

2.HLD接VDD为ON/OFF控制模式;HOLD悬空时为LEVEL-HOLD控制模式。

3.OLH接VDD时OUT输出低电平;OLH悬空时OUT输出高电平。

4.0-75P电容调节触摸灵敏度,电容越大灵敏度越低。

5.C2>10μF,滤除杂讯、稳定电源用,避免IC灵敏度漂移或者 TOUCH检测误动作。

以下说明可供应用时参考:

1.RST PIN内置上拉电阻,应用时该 PIN可悬空;也可外接复位电路,RST=1 时,芯片处于复位状态。

2.其余各配置 PIN,包括 FST、HLD、OLH、SLS及 MOT,当实际应用时认为无需更改默认配置值,该 PIN

同样可悬空,芯片上电时将自动置为默认值。

3.TOUCH PAD可直接使用 PCB 板的铜箔,或者独立的金属片。请将 TOUCH PAD 尽量远离干扰源,如使

用多层 PCB时,TOUCH PAD 的背面请尽量避免穿通信号线,以免噪声导致芯片误动作。

4.从TOUCH PAD 到 IC 管脚 TCH不要与其他快速跳变的信号线并行或交叉。当使用长线连接 TOUCH PAD

与芯片时,请与 TOUCH PAD 联机并行或双绞走一条接地的屏蔽线。

5.TOUCH PAD需用 GROUND 保护,请参考图 2。

6.TOUCH PAD上可覆盖玻璃、塑料等材料,或可直接触碰金属片,但不建议直接触碰金属片时(触碰时可

能有人体静电放电,将对芯片产生损害),可在 TOUCH PAD 上覆盖薄膜。

7.TOUCH的灵敏度,与 TOUCH PAD 的形状及面积、TOUCH PAD 上覆盖物厚度及材质、外接调节电容 Cj

大小、TOUCH PAD 到芯片联机长度等有直接关系,请根据实际应用对以上参数进行调整。

8.Cj 指调节灵敏度的电容,电容值大小 0pF~75pF(0pF 指 Cj处不接入任何电容),电容值的增加将导

致灵敏度的降低。

9.VDD与 GND间需并联滤波电容 C0以消除噪声,建议值≥10uF或更大。请提供稳定的供电电源,如电

压漂移或者快速变化,将导致该芯片灵敏度漂移或者 TOUCH检测误动作。

图6 TOUCH PAD参考画法

电容式触控电路设计的七个步骤

电容式触控电路设计的七个步骤 文章来自赣州宇辉仪器设备有限公司https://www.360docs.net/doc/f36864424.html, 中心议题: 电容式触控电路设计的七个步骤 电容式触控技术在厨房设备中的应用已经有几年了,例如在烤箱和煎锅的不透明玻璃面板后面采用分离按键实现。这些触摸控制键逐渐替代了机械按键,因为后者具有使用寿命短、不够卫生等方面的问题,而且还有在面板上开孔安装按键的相关成本,图1是电容式感应技术原理示意图。 图1 技术原理示意图 电容式感应技术由于具有耐用、较易于低成本实现等特点,而逐渐成为触摸控制的首选技术。此外,由于具有可扩展性,该技术还可以提供其它技术所不能实现的用户功能。在显示屏上以软按键方式提供用户界面,这通常被称为触摸屏。 触摸输入滚动/指示功能器件,例如iPod音乐播放器上的点击式转盘,这类器件在消费市场已经获得广泛的认可,正在逐渐出现在更多的消费设备市场。有两种基本类型的滚动器件:第一种是绝对报告类型,提供直接位置输出报告;另外一种是相对类型,这类器件提供用来增加或减少某个值的直接报告。 使用电容式感应的IC设计感应开关电路板与其它电路的开发流程略有不同,因为电容式开关的设计上会受到机构与其它电路设计上的影响,会有比较多的调整程序,所以需要一个比较复杂的开发流程,现就以出道较早且具有代表性的“Quantum ”产品的开发流程及要点介绍给大家,希望对需要的朋友有所帮助。 1.机构设计 a.面板的材质必须是塑胶,玻璃,等非导电物质。 b. 在机构设计阶段同时也必需设计操作流程,以选择合适的产品,如果是按键的产品,要考虑是否有复合按键的设计,或是综合滑动操作及按键操作等,如果

是以滑动操作的产品,就必须考虑是否需要切割出按键。 c.由於感应电极与面板接触点之间不能有空隙,所以机构设计上必须考虑将感应验路板直接黏贴在外壳面板的内侧,以及考虑面板的组装方式。 d.同样的,感应电极与手指之间不能有金属层夹在中间,所以面板上不可以有金属电镀及含金属超过15%的喷漆等会形成导电层的设计。 e.如果必须电镀或高金属含量漆,请在按键区域的边缘保留一圈不要电镀或喷漆,用以隔绝其他感应开关。 f.如果面板是有弧度而非平面,可以利用软板、弹簧、导电橡皮等导电物将感应电极延伸到面板上,并在面板内侧制造出感应电极,如果面板与感应电极之间有空隙也可以用这个方式填补空隙,或加厚感应电极区域的面板。 g.机构设计的外壳厚度会影响感应电极的大小,所以必须先完成机构设计,才能接续开发流程。 h.如果感应电路板後面有大片金属或电路板,必须保留若干空隙,以避免灵敏度降低或干扰感应电极,如果是金属板,金属板必须接地,空隙保留至少0.3mm 以上,如果是电路板,尽量减少高频电路经过,并保留至少1.0mm的空隙。 i.有上述状况的感应电路板,虽然保留了足够的间距,最好能将感应电极再加大,以利後续调整灵敏度的步骤。 j.感应电极可以用电路板铜箔来做,亦可以采用FPC软性电路板,ITO蚀ORGACON (CARBON)印刷等导电物质。 2. 决定感应电极的尺寸 a. 依照机构设计的面板厚度决定感应电极的最小尺寸,面板厚度1mm时感应电极最小3mm直径的圆,面板厚度7mm时感应电极最小10mm直径的圆,在机构及电路板空间的允许下尽量将感应电极加大。

FTC334E 触摸芯片

F T C334E触控按键芯片 概述: 触摸感应检测按键是近年来迅速发展起来一种新型按键。它可以穿透绝缘材料外壳(玻璃、塑料等等),通过检测人体手指带来的电荷移动,而判断出人体手指触摸动作,从而实现按键操作。电容式触摸按键不需要传统按键的机械触点,也不再使用传统金属触摸的人体直接接触金属片而带来的安全隐患以及应用局限。电容式感应按键做出来的产品可靠耐用,美观时尚,材料用料少,便于生产安装以及维护,取代传统机械按钮键以及金属触摸。 F T C334E是专业的电容式触摸按键处理芯片,采用最新高精度数字电容测量技术,能做到防各种干扰、防面板水珠影响、适应各种电源供电等。能支持6个触摸按键功能,输出采用6通道独立输出,带灵敏度选项口。采用专用电路处理信号,能够轻松过E M S(C/S)方面的测试!。适用各种E M S测试要求高的电子产品的应用。 特点: —超强抗E M C干扰,能防止功率大到5W的对讲机等发射设备天线靠近触摸点干扰。 —极简单外围电路,最简单的应用外围只需要一颗参考电容。(视客户要求如需要提高E S D 和E M C则需每个按键接1颗电阻) —防水淹干扰,成片水珠覆盖在触摸面板上不影响按键的有效识别。 —超宽工作电压范围3.0V—5.5V,能应用在目前广泛应用的3.3V系统和3.0V电池系统。—电源电压变化适应功能,内置电压补偿电路,电源电压在工作范围内变化时自动补偿,不影响芯片正常工作。 —环境温度湿度变化自动适应,环境缓慢适应技术的应用,使得芯片无限长时间连续工作不会出现灵敏度差异。 —可调灵敏度,可以通过外接电容容量来调整灵敏度以适应不同的设计。 —提供二进制编码直接输出接口,方便用户系统对接。 —上电快速初始化,在300m S左右内芯片就可以检测好环境参数包括自动适应,按键检测功能开始工作。 —灵敏度自动适应,各按键引线如果因为长短不一造成寄生电容大小不同,能够自动检测并适应,不同按键灵敏度做到一致。 —S O P16L封装

电容式触摸按键PCB布线

`电容式触摸按键 1. 电源 A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大 B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。在做电源变化时,如果纹波不好控制, 可采用LDO经行转换 C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。 如果电源干扰的纹波比较大时可以采用如下的方式: 2.感应按键 A. 材料 根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等 但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。 B. 形状: 原则上可以做成任意形状,中间可留孔或镂空。我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应 C. 大小 最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加 D. 灵敏度 一般的感应按键面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状、面积应该相同,以保证灵敏度一致。 灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。 CIN电容的选择: CIN电容可在0PF~50PF选择。电容越小,灵敏度越高,但是抗干扰能力越差。电容越大,灵敏度越低,但是抗干扰能力越强。通常,我们推荐5PF~20PF E. 按键的间距 各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。 如图:各个按键距离比较远,周围空白的都用地线隔开了。但注意地线要与按键保持一定的距离

电容式触摸屏项目可行性研究报告

电容式触摸屏项目可行性研究报告 xxx实业发展公司

摘要 消防、卫生及安全设施的设置必须贯彻国家关于环境保护、劳动安全的法规和要求,符合相关行业的相关标准。项目承办单位所选择的产品方案和技术方案应是优化的方案,以最大程度减少建设投资,提高项目经济效益和抗风险能力。项目承办单位和项目审查管理部门,要科学论证项目的技术可靠性、项目的经济性,实事求是地做出科学合理的研究结论。 该电容式触摸屏项目计划总投资16320.82万元,其中:固定资产投资12503.57万元,占项目总投资的76.61%;流动资金3817.25万元,占项目总投资的23.39%。 达产年营业收入35355.00万元,总成本费用28215.53万元,税金及附加320.03万元,利润总额7139.47万元,利税总额8444.25万元,税后净利润5354.60万元,达产年纳税总额3089.65万元;达产年投资利润率43.74%,投资利税率51.74%,投资回报率32.81%,全部投资回收期4.55年,提供就业职位572个。 项目基本情况、项目背景、必要性、项目调研分析、产品规划、项目建设地方案、土建工程说明、工艺可行性分析、环境保护可行性、项目职业保护、项目风险情况、项目节能评价、项目实施方案、项目投资估算、项目经济评价分析、总结评价等。

电容式触摸屏项目可行性研究报告目录 第一章项目基本情况 第二章项目承办单位基本情况 第三章项目背景、必要性 第四章项目建设地方案 第五章土建工程说明 第六章工艺可行性分析 第七章环境保护可行性 第八章项目风险情况 第九章项目节能评价 第十章实施进度及招标方案 第十一章人力资源 第十二章项目投资估算 第十三章项目经济评价分析 第十四章总结评价

感应按键原理

电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。

◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N) 电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x 之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 ?PCB上开关的大小、形状和配置 ?PCB走线和使用者手指间的材料种类 ?连接开关和MCU的走线特性 我们测试了下图中这12种不同开关。目的是为了发现开关的形状尺寸会如何影响开关的空闲和被接触的状态,还可以发现哪一种开关的空闲电容最大,就不容易被PCB上的寄生电容而影响。测试结果表明,在特定区域中的开关越大且走线越多,则此开关的闲置电容便越高。图中的环状开关具有最低的电容,所以当开关动作时,可显现最大的电容相对变化。

延时触摸开关

触摸延时开关 现代建筑中,楼梯照明开关常采用触摸延时开关。其功能为:当人用手触摸开关时,照明灯点亮并持续一段时间后自动熄灭。这种开关既节电,又使用方便。 实现延时的电路和器件形式很多,但其基本原理都依据了RC电路中电容C两端电压不能突变的特性。 1.实训目的 了解RC电路中电容C在充、放电的过程中所起的延时作用; 掌握三极管直接耦合形式的放大和开关电路; 了解NPN管和PNP管的互补连接方式。 2.实训器材 NPN小功率三极管VT1(3DG6),VPN小功率三极管VT29013(9014),NPN小功率三极管VT39012,1/8W碳膜电阻器R11KO,1/8碳膜电阻器R2(2.2KO),1/8W碳膜电阻器R3(100KO),1/8碳膜电阻器R4... 3.实训内容 首先用万用表或者晶体管特性测试仪判断三极管的极性和管脚。 按图6.4所示,将VT1VtR1R2R6在面包板上接好,在R6的悬空端连接一段软导线代替金属片M。接上12V电源,用电压表测量VT2集电极电位在手触摸M前后的变化,看是不是从高电平(12V)跳变到低电平。 LED发光正常后,将C接入电路。通电后触摸M,用手表计时,观察LED发光持续时间,并与表6.1所列时间相比较。 安装实用的触摸延时照明电路。 4.操作要点 如果没有触摸金属片M时,发光二极管就已经亮了、说明VT1的穿透电流Iceo太大,可按图6.4虚线连接1Ko或阻值更小的电阻R7,加以分流。 5.工作原理 由三极管和RC电路组成的触摸延时电路,只要适当改装,就可以构成一个触摸延时开关。人体本身带有一定电荷,当人的手接触导体时,这些电荷就经过人手转移到导体上,形成瞬间的微弱的电流。这一微弱电流经过三极管放大后,就可以控制较大的负载开关动作。图6.4是由金属片M、三极管放大RC延时以及三极管开关电路构成的触摸延时电路。 VT1和VT2组成直接耦合的两级放大电路,VT3构成开关电路。金属片M和限流电阻R6接在VT1的基极,当其悬空时,由于基极开路,VT1,VT2处于截止状态,因此VT3页截止,LED中无电流流过而不发光。当人手接触金属片M时,人体电荷R6流入VT1,基极VT1迅速导通将此瞬间电流放大后驱动VT2饱和导通,使得VT2的集电极电位降为低电平,并使VT3也随之导通,LED中有电流流过而发光。 在VT2瞬间饱和导通的同时,集电极电流对电容C快速充电至接近12V,但瞬间电流消失后,VT1VT2截止,高立信由于C分别与R3和VT3发射结及R2构成放电回路的时间常数较大,使C所储存的电荷放电比较慢,VT3在一段时间内仍保持导通,LED继续发光,直到VT3的集电极电流减小到不足以使得LED发光。 图6.5为一种实际的触摸式延时照明电路,该电路采用可控硅作为照明灯的控制开关。可以把可控硅看做是一种有控制端的二极管,当它的控制极接高电平时,可控硅触发导通(即二极管导通),只有在控制极变为低电平且流过二极管的电流为0时,二极管才重新截止。

电容式触摸按键设计指南

Capacitive Touch Sensor Design Guide October 16, 2008 Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3) (3) (5) (9) (11) (11) (17) (20) Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3 YU-TECH-0002-012-1 1. 2. ( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4 YU-TECH-0002-012-1 3. 4. Front Panel Sensor Pad Sensor Pad Electroplating Or Spray Paint Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5 YU-TECH-0002-012-1 1. (FPC) ITO (Membrane) ITO ITO ( 10K ) FPC ITO MEMBRANE PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6 YU-TECH-0002-012-1 2.ITO LCD ITO ( 10K ) 3. 1mm 8mm ( 8mm X 8mm ) 1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm 18mm X 18mm ( ) 196.85 mil (5mm) 0.254mm(10mil) 2mm 5mm 2mm

触摸屏行业及产业链分析报告

平板电脑用触摸屏市场规模预测........................................... 全球平板电脑出货量和触摸屏渗透率....................................... 3.触控板的产业链条.......................................................... 3.1.触控板的产业链条......................................................... TPK介绍............................................................... 联手苹果开创触摸屏历史............................................... TPK对电容式触摸屏的产业链有很强的掌控力 ............................. TPK的outsourcing策略............................................... 其他主要模组公司介绍...................................................

3.8.触屏Sensor制造行业 ..................................................... 全球Sensor销售额预测.................................................. Sensor产业分析........................................................ Glass和Film之争....................................................... 4.3.苹果中小尺寸触摸屏sensor供需分析........................................ 5.In Cell Touch.............................................................. 5.1.概念..................................................................... 5.2.In Cell Touch的现状...................................................... 5.3.In-cell现阶段的机会 ......................................................

电容式触摸按键解决方案模板

电容式触摸按键解 决方案

电容式触摸按键解决方案 一、方案简介 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用。由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键。 触摸按键方案优点: 1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本。 2、其感测部分能够放置到任何绝缘层(一般为玻璃或塑料材料)的后面,很容易制成与周围环境相密封的键盘。以起到防潮防水的作用。 3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用。从根本上解决了各种金属面板以及各种机械面板无法达到的效果。其可靠性和美观设计随意性,能够直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘),而且给您的产品倍增活力! 4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求。 二、原理概述 如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块“覆铜焊盘”,触摸按键与周围的“地信号”构成一个感

应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化。根据这个电容量的变化,能够检测是否有人体接近或接触该触摸按键。 接地板一般放置在按键板的下方,用于屏蔽其它电子产品产生的干扰。此类设计受PCB上的寄生电容和温度以及湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整。 基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化。 图1 PCB上构建开放式电容器示意图 三、方案实现 该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,

触摸式延时控制开关

目录 1.摘要 (2) 2.触摸式延时开关的功能 (2) 3.设计 (3) 4.工作原理 (3) 5.系统原理图 (5) 6.实物图 (5) 7.测试结果与分析 (6) 8.注意事项 (6) 9.心得体会 (6)

1.摘要 目前的家用电器,如电视机、VCD、DVD、功放机等一般都配备了遥控器及智能化控制技术,给人们的使用带来了极大的方便。随之而来的家用小电器如电灯的控制也在向自动化、智能化操作方面发展,只有这样才能满足现代信息社会的要求。在幅员广阔的农村,夜晚熄灯后到处是一遍漆黑,起夜开灯犹如瞎子乱摸,很不方便。如果把千家万户都使用的照明灯开关作成触摸式延时开关等,一定会受到社会的欢迎。 2.触摸式延时开关的功能 触摸式延时开关具有轻便、无躁声等优点。P为触摸片,当人体触及到P上时,人体感应信号经F1、F2变成脉冲信号,经后级电路处理后去控制M导通或关闭。 本触摸延时开关适合于宿舍楼,办公大楼的楼梯和过道灯的定时自动关灯控制或洗手间等公共场合。

3.设计 要求 1、使用时触摸开关的金属片即导通工作,一段时间后开关自动关闭。 2、应用控制,开关自动检测对地绝缘电阻,控制更可靠无误动作。 3、无触点电子开关,延长负载使用寿命。 4、触摸金属片地极零线电压小于36V的人体安全电压,使用对人体无害. 5、独特的两制设计,直接代替开关使用,可带动各类负载(日光灯、节能灯、白炽灯、风扇等)。 4.工作原理 使用时,只要用手指摸一下触摸电极,灯就点亮,延时1分钟左右后会自动熄灭。可以直接取代普通开关,不必改室内布线。 触摸式延时开关电路虚线右面是普通照明线路,左部是电子开关部分。VD1~VD4、VS组成开关的主回路,IC组成开关控制回路。平时,VS 处于关断状态,灯不亮。VD1~VD4输出220V脉动直流电经R5限流,VD5稳压,C2滤波输出约12V左右的直流电供IC使用。此时LED发光,指示开关位置,便于夜间寻找开关。

1键电容式触摸开关介绍

单键触摸芯片又叫单键触摸ic(1键电容式触摸开关)。阿达电子公司主要单键触摸芯片有: AR101/AR101-C/AR101-D/ADA01-B/ADA01-C。 阿达电子公司单键触摸芯片芯片(单键触摸芯片)介绍: AR101-D:AR101是一款专门针对小体积、低功耗、宽电压、高性价比而设计的电容式触摸感应IC,可直接取代传统的机械式的轻触按键:自锁式按键和非自锁式按键。 ADA01(B版)1键电容式触摸开关:ADA01(B版)是一款专用标准IC,其功能具有:单键电容式触摸开关,广泛适用于楼道电容式触摸开关、墙壁电容式触摸开关、电动马达启动开关、按摩椅用电容式触摸开关、电源电容式触摸开关、台灯电容式触摸开关、门铃电容式触摸开关、床头灯电容式触摸开关、卫生间电容式触摸开关、壁橱电容式触摸开关。 ADA01-B1键触摸延时开关:ADA01(B版)是一款专用标准IC,其功能具有:单键触摸延时开关,延时时间可调,广泛适用于楼道电容式触摸开关、墙壁电容式触摸开关、电动马达启动开关、按摩椅用电容式触摸开关、电源电容式触摸开关、台灯电容式触摸开关、门铃电容式触摸开关、床头灯电容式触摸开关、卫生间电容式触摸开关、壁橱电容式触摸开关 ADA01-C 1键触摸IC:ADA01(C版)是一款专用标准IC,其功能具有:单键电容式触摸开关,广泛适用于楼道电容式触摸开关、墙壁电容式触摸开关、电动马达启动开关、按摩椅用电容式触摸开关、电源电容式触摸开关、台灯电容式触摸开关、门铃电容式触摸开关、床头灯电容式触摸开关、卫生间电容式触摸开关、壁橱电容式触摸开关

ADA01(C版)1键触摸延时开关:ADA01(C版)是一款专用标准IC,其功能具有:单键触摸延时开关,延时时间可调整,广泛适用于楼道电容式触摸开关、墙壁电容式触摸开关、电动马达启动开关、按摩椅用电容式触摸开关、电源电容式触摸开关、台灯电容式触摸开关、门铃电容式触摸开关、床头灯电容式触摸开关、卫生间电容式触摸开关、壁橱电容式触摸开关。 AR101:工作电压:2.4V~5.5V 封装:SOT23-6 功耗:1.5uA@3v 输出信号特征:TTL(ON/OFF),自锁式开关,可保持输出电平; TTL非自锁式开关,触摸撤离,输出恢复原有状态。应用范围:可替代传统的机械按键,可用于玩具、礼品、消费电子、灯具、家电、智能控制等。

电容式触摸感应IC工作原理

电容式触摸感应IC工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 一,触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状和面积应该相同,以保证灵敏度一致。通常在绝大多数应用里,12mm×12mm是个典型值。

4. 触摸PAD之间距离 各个触摸PAD间的距离要尽可能的大一些(大于5mm),这样可以减少它们形成的电场之间的相互干扰。当用PCB铜箔做触摸PAD时,若触摸PAD间距离较近(5mm~10mm),触摸PAD必须用铺地隔离。如果各个触摸PAD距离较远,也应该尽可能的铺地隔离。适当拉大各触摸PAD间的距离,对提高触摸灵敏度有一定帮助。 三、触摸面板选择 1. 触摸面板材料 面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚**乙烯(pvc)、尼龙、树脂玻璃等,按键正上方1mm以内不能有金属,触摸按键50mm以内的金属必须接地,否则金属会影响案件的灵敏度。在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的涂料。 2. 触摸面板厚度 通常面板厚度设置在0~10mm之间。不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。 3. 双面胶 触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm比较合适,推荐采用3M468MP,其厚度0.13mm。要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。空气会对触摸按键的灵敏度影响很大。所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。

触摸延时开关的工作原理及电路图

触摸延时开关的工作原理及电路图 一、工作原理 触摸式延时开关有一个金属感应片在外面,人一触摸就产生一个信号触发三极管导通,对一个电容充电,电容形成一个电压维持一个场效应管管导通灯泡发光。当把手拿开后,停止对电容充电,过一段时间电容放电完了,场效应管的栅极就成了低电势,进入截止状态,灯泡熄灭。 触摸式延时开关电路虚线右面是普通照明线路,左部是电子开关部分。VD1~VD4、VS组成开关的主回路,IC组成开关控制回路。平时,VS处于关断状态,灯不亮。VD1~VD4输出220V脉动直流电经R5限流,VD5稳压,C2滤波输出约12V左右的直流电供IC使用。此时LED 发光,指示开关位置,便于夜间寻找开关。 IC为双D触发器,只用其中一个D触发器将其接成单稳态电路,稳态时1脚输出低电平,VS关断。当人手触摸一下电极M时,人体泄漏电流经R1、R2分压,其正半周使单稳态电路翻转,1脚输出高电平,经R4加到VS的门极,使VS开通,电灯点亮。这时1脚输出高电平经R3向电容C1充电,使4脚电平逐渐升高直至暂态结束,电路翻回稳态,1脚突变为低电平,VS失去触发电压,交流电过零时即关断,电灯熄灭。 二、按钮触摸开关 按动按钮开灯后,电路能自动延时关灯,电路如图二所示。D1为开关所在的安装位置做指示,D2~D5组成桥式整流,将50Hz的的交流电整流为100Hz的脉动直流电压,按下K1,电流经过R3限流后通过D6为C1充电,同时V1的控制极得到触发电压,V1导通,灯泡点亮。松手后K1自动复位断开,C1开始放电,为V1的控制极继续提供触发电压,V1继续导通,灯泡继续亮,当C1两端电压低于0.7V时, V1控制极失去有效的触发电压,此时V1阳极的脉动电流到0点时,与阴极电压相等而关断,灯泡熄灭,这就是单向可控硅的“过0关断”。调整R2的阻值,使C1有效放电时间达到40~60秒钟最好。图三电路多了一只用三极管组成的反相器,利用C1充电时间做灯泡点亮的延时时间。平时,Q1由R2提供偏压而饱和导通,使V1控制极失去有效触发电压,灯泡熄灭。按下按钮接通K1后,Q1基极为0V,Q1截止,V1控制极得到触发电压而导通,灯泡点亮,接通K1的同时,也为C1提供了放电的闭合回路,C1放电很快完成。松手后,K1复位自动断开,C1在R2限流下开始缓慢充电,此时Q1基极电压小于0.7V而继续截止。当C1两端电压≥0.7V时,Q1开始导通,使V1失去触发电压而过0关断,灯泡熄灭。R2的阻值和C1的容量,决定延时的时间长短。

单片机 电容触摸按键 报告

任务:MSP-EXP430G2 板上P1.0 上接了一个LED,而在配套的LaunchPad 扩 展板上,将MSP430G2553 的P2.0 和P2.5 引出作为电容触摸按键。要求按下P2.0 后LED 亮,按下P2.5 后LED 灭,程序运行过程中不阻塞CPU,并且实现低功耗运行。 硬件连接:如图所示 程序代码: TouchIN.c: #include "MSP430G2553.h" #define KEY_NUM 2 /*触摸按键数目,根据需要修改*/ //=============具体触摸按键IO宏定义,根据需要添加代码=============== #define KEY0_INIT P2DIR &= ~BIT0; P2SEL &= ~ BIT0; P2SEL2 |= BIT0 /*按键1开启振荡*/ #define KEY1_INIT P2DIR &= ~BIT5; P2SEL &= ~ BIT5; P2SEL2 |= BIT5 /*按键2开启振荡*/ #define ALL_OSC_OFF P2SEL2 &= ~(BIT0 + BIT5) /*关闭全部触摸振荡*/ /*门限频率的取值取决于定时扫描的时长,3300对应的是1.9ms定时情况,实际定时可取1ms~20ms*/ const unsigned int FREQ_THRESHOLD[KEY_NUM]={3300,3300}; /*参考值,需用仿真器查看后调整*/ //-----静态局部变量---- static unsigned int Freq[KEY_NUM]={0}; //当前测频值

static unsigned char Key_Buff[KEY_NUM][4]={0}; // 软件FIFO static unsigned char Key_Num=0; //按键编号 //-----全局变量,复杂程序中可以移植到Global.h统一管理----- unsigned char TouchIN=0; //相当于PxIN寄存器作用,支持8个触摸按键 void Key_Measure_Freq() { Freq[Key_Num]=TAR; //当前编号按键的频率被测得 ALL_OSC_OFF; //关闭所有振荡IO Key_Num++; //切换下一振荡IO if (Key_Num>=KEY_NUM) Key_Num=0; //各触摸按键循环交替 switch (Key_Num) { case 0 : KEY0_INIT; break; //振荡IO初始化 case 1 : KEY1_INIT; break; default: break; } TA0CTL = TASSEL_3+MC_2+TACLR; //增计数清0,并开始计数 } void Key_FIFO() //存储连续4次测量数据 { Key_Buff[Key_Num][0]=Key_Buff[Key_Num][1]; Key_Buff[Key_Num][1]=Key_Buff[Key_Num][2]; Key_Buff[Key_Num][2]=Key_Buff[Key_Num][3]; if( Freq[Key_Num]

电容式触摸按键布线

电容式触摸按键布线分享 1):电容式触摸按键特点及应用 与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中! 2):电容式触摸按工作基本原理 所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理! 3): 电容式触摸按电容构成及判断 PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。 电容式触摸按键布板要求 1): PCB板的电容构成因素: PCB板中电容构成因素如右图: 其中代表PCB板最终生成电容

代表空气中的介质常数 代表两板电介质常数 代表两极板面面积 代表两板距离 2): PCB板的布局 电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:

JL223B 单键电容式触摸按键IC_V1.2(3)

J L223B_SPEC JL223B 规格说明书 版本 1.2 2014-03-08 单键触摸开关 本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。该产品不授权适用于救生、维生器件或系统中作为关键器件,本公司拥有不事先通知而修改产品的权利 。

1.概述 JL223B是单键电容式触摸按键专用检测传感器IC。采用最新一代电荷检测技术,利用操作者的手指与触摸按键焊盘之间产生电荷电平来确定手指接近或者触摸到感应表面。没有任何机械部件,不会磨损,感测部分可以放置到任何绝缘层(通常为玻璃或者塑料材料)的后面,很容易制成与周围环境相密封的键盘。面板图案随意设计,按键大小、形状自由选择,字符、商 标、透视窗等可任意搭配,外形美观、时尚,而且不褪色、不变形、经久耐用。从根本上改变了各种金属面板以及机械面板无法达到的效果。其可靠性和美观设计随心所欲,可以直接取代现有普通面板(金属键盘、薄膜键 盘、导电胶键盘)。不需要对现有的程序做任何改动。具有外围元件少、成本低、功耗少等优势。 2.特点 l工作电压:2.0V-5.5V; l工作电流极低:3.5uA; l灵敏度可通过外部电容值来调整; l可实现同步输出模式及电平切换模式输出; l带有自校准的独立触摸按键控制; l高抗干扰性:内置稳压电路,环境自适应算法等多种措施; l带6秒自校准功能; l SOT23-6封装 3.应用场合 智能锁、智能手环、无线蓝牙耳机、移动电源、LED灯、玩具、MP4、触摸 空气清新器、触摸音箱、触摸台灯、触摸指纹识别打火机等。

触摸式按键开关电路

触摸式按键开关电路 一、教学目的 1、了解CD4013集成电路的逻辑功能和引脚功能。 2、了解触摸式按键开关电路的基本功能。 3、掌握触摸式按键开关电路的制作步骤及各项操作技能。 4、掌握触摸式按键开关电路的功能调试和参数的测量。 二、实训原理 1、CD4013集成电路是一个双D触发器其逻辑功能如下 2、CD4013集成电路的外形和引脚功能如下

3、触摸式按键开关电路的电路原理图如下 4、触摸式按键开关电路的工作原理 按下开关S1 9V电源通过R1、R2分压给电容C1、C2充电给CD4013的3脚提供一个触发脉冲使CD4013的1脚得到一个高电平通过R4使V1饱和导通,继电器吸合灯炮发光。再按下开关S1CD4013的3脚得到一个触发脉冲使CD4013的1脚得到一个低电平通过R4使V1截止继电器断开灯炮熄灭。反复操作灯炮依次亮灭。 三、触摸式按键开关电路的实训准备 1、工具的准备 30W或40W的烙铁一把 万用表一块 焊锡丝 剪钳一把,起子一把 9V直流稳压电源 2、元件的准备 CD4013芯片一块

集成块座一个 按键开关一个 碳膜电阻10千欧一个,100千欧二个,5.1千欧一个 瓷片电容103一个,203一个 整流二极管4001一个 9013三极管一个 继电器220V/6A一个 灯炮40W/220V一个 万能板一块 四、触摸式按键开关的安装步骤和要求 1、元件的识别 a.认识集成电路CD4013的引脚排列和缺口标记相对应的 位置,找出电源和接地的引脚 b.识别电阻的色环参数,电容器的参数,并用万用表检查验 证 c.识别三极管的极性,判别其好坏 d.用万用表检查开关好坏 2、电路板设计要求 a.万能板9.6*15cm b.先将体积小及矮的元件紧贴万能板安装、焊好、焊平。 c.再装高度更高的元件装好、焊好。 d.元器件排列整齐,集成块座。电阻须贴面安装,电容、三

触摸屏产业发展分析精编版

触摸屏产业发展分析公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

触摸屏产业发展分析 近几年消费性电子信息产品的市场快速成长,配合“人机接口”的设计概念,趋向人机互动模式,因而带动了触控面板(Touch Panel)的蓬勃发展,最明显的应用市场以信息家电IA,以及各种个人化以及小型化的便携式电子产品如PDA、e-Book、Handheld PC等为最大宗。 一、前言: 近几年消费性电子信息产品之市场快速成长,配合“人机接口”的设计概念,趋向人机互动模式,因而带动了触控面板(Touch Panel)的蓬勃发展,最明显的应用市场以信息家电IA,以及各种个人化以及小型化的便携式电子产品如PDA、e-Book、Handheld PC等为最大宗。如<图一>所示,即为全球触控面板技术的应用市场类别,主要为公共信息查询系统、商业应用、便携式专业运算以及消费性应用等,左图为1998年,右图为2004年。若根据触控面板大厂MicroTouch Systems 预测,2003年触控面板市场值将达20亿美元,约为1998年的4倍。另外,根据富士通预测,2004年全球市场更可达25亿美元。由右图2004年的市场应用分布得知,触控式面板的最大应用市场为消费性产品(占触控面板产值60%),相较于1998年仅占13%大幅提升,而此更为众多厂商所寄望的市场大饼。在消费性电子产品以外市场的应用比例亦将降低,预估2004年所占比例分别为商业应用20%、便携式专业运算12%、公共信息查询系统8%。 图一、全球Touch Panel市场产品应用类别 资料来源:富士通

如何设计电容感应式触摸开关

如何设计电容感应式触摸开关 电容感应式触摸开关,需要稳定的单火线电源处理以及稳定可靠的触摸感应芯片,做到防误触发、防各种电磁干扰、负载干扰、环境干扰、甚至需要防水防尘功能等智能触摸开关功能要求。 1.电容式传感的基本原理 电容传感技术为开发人员提供了一种与用户互动的全新方式,在设计一个电容感应式触摸开关时,需要考虑许多不同的因素。从以往的使用经验来看,在各种不同的工作条件下,开关的灵敏性必须与多种情况相兼容。本节我们要讨论在设计电容感应式触摸开关PCB触点图形时,各种不同的排板设计对开关灵敏度的影响,包括电容式传感技术如何使器件具有更高的可靠性以及管理电容式传感技术的控制器如何通过提供更多功能为客户带来增值服务和降低维护成本。 机械开关比较容易磨损,甚至磨坏产品外壳,导致缺口或裂口处侵入污染物。电容式传感器就不会发生损坏产品外壳的情况,也不会出现缺口粘连物,更不会出现磨损。因此,采用这种技术的开关器件是替代多种机械开关产品的理想选择。 如下图所示,电容式开关主要由两片相邻的电路极板构成,而根据物理原理,两片极板之间会产生电容。如果手指等导体靠近这些极板,平行电容(parallelca PAC i-tance)就会与传感器相耦合。将手指置于电容式传感器上时,电容量会升高;移开手指,电容量则会降低,通过测量电容量就可以判断手指的碰触。 电容式传感器由两片电路极板及相互之间的一定空间所构成。这些电路极板可以是电路板的一部分,上面直接覆盖绝缘层,当然,也可以使极板顺应各种曲面的弧度。

构建电容式开关的要素包括:电容器、电容测量电路系统、从电容值转换成感应状态的局部智能装置。 典型的电容式传感器电容值介于10~30pF之间。通常来说,手指经由Imm绝缘层接触到传感器所形成的耦合电容介于1~2pF的范围。越厚的绝缘层所产生的耦合电容愈低。若要传感手指的触碰,必须实现能够检测到1%以下电容变化的电容传感电路。 增量求和调制器是一种用于测量电容的高效、简单的电路,下图给出了典型的拓扑结构。相位开关使传感器电容向积分电容中注入电荷。该电压持续升高,直到大于参考电压为止。比较器转为高电压,使放电电阻器开始工作。在积分电压降至参考电压以下时,该电阻器停止工作。比较器提供所需的负反馈,使积分器电压与参考电压相匹配。 2.传感器充电电流 在第1阶段,传感电容(Csensor)的充电达到供电电压水平;在第2阶段,电荷被传输至积分电容(Cint)。反馈使积分电容上的电压接近参考电压(kVdd)的值。每次启动该开关组合都会传输一定量的电荷。对于下式显示的充电电流而言,电荷传输的速度与开关频率(fc)成正比 3.放电电流

相关文档
最新文档