实验三 信号卷积的MATLAB实现(DOC)

实验三 信号卷积的MATLAB实现(DOC)
实验三 信号卷积的MATLAB实现(DOC)

实验三信号卷积的MATLAB实现

一、实验名称:

信号卷积的MATLAB实现

二、实验目的:

1.增加学生对卷积的认识

2.了解MATLAB这个软件的一些基础知识

3.利用MATLAB计算信号卷积

4.验证卷积的一些性质

三、实验原理:

用MATLAB实现卷积我们先必须从信号下手,先把信号用MATLAB语句描述出来,然后再将这些信号带入到我们写好的求卷积的函数当中来计算卷积。在本章中我们将信号分为连续信号和离散序列两种来实现卷积并验证卷积的一些性质。

MATLAB强大的图形处理功能及符号运算功能,为我们实现信号的可视化提供了强有力的工具。在MATLAB中通常有两种方法来表示信号,一种是用向量来表示信号,另一种则是用符号运算的方法来表示信号。用适当的MATLAB 语句表示出信号后,我们就可以利用MATLAB的绘图命令绘制出直观的信号波形。

连续时间信号,是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干不连续点以外,信号都有确定的值与之对应的信号。从严格意义上来讲,MATLAB并不能处理连续信号,在MATLAB中,是用连续信号在等时间间隔点的样值来近似地表示连续信号的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB中连续信号可用向量或符号运算功能来表示。

1.向量表示法

对于连续时间信号f(t),我们可以用两个行向量f和t来表示,其中向量t是行如t=t1:p:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为中止时间,p为时间间隔。向量f为连续信号f(t)在向量t所定义的时间点上

的样值。例如对于连续信号f(t)=sin(t),我们可以用如下两个向量来表示:t=-10:1.5:10;f=sin(t)

用上述向量对连续信号表示后,就可以用plot命令来绘出该信号的时域波形。Plot命令可将点与点间用直线连接,当点与点间的距离很小时,绘出的图形就成了光滑的曲线。命令如下:

plot(t,f)

title(‘f(t)=sint’)

xlabel(‘t’)

axis([-10,10,-1.1,1.1])

绘制的信号波形如图3.1所示,当把时间间隔p取得更小(如0.01)时,就可得到sint较好的近似波形,如图3.2所示。

图3.1 p=1.5的sint近似波形

图3.2 p=0.01的sint近似波形

2.符号运算表示法

如果信号可以用一个符号表达式来表示它,则我们可用ezplot命令绘制出信号的波形。例如对于连续信号f(t)=/2t e ,我们可以用符号表达式表示为:syms t

f=sym(‘exp(-t/2)’)

f= exp(-t/2)

然后用ezplot命令绘制其波形:ezplot(f,[-6, 6])

该命令绘制的信号波形如图3.3所示

图3.3 指数信号波形

利用上面两种表达方式我们可以描述出很多种连续信号,常用的信号有:阶跃信号,门信号,斜线信号,指数信号等等。

接下来我们看看离散时间信号,一般说来,离散时间信号用f(k)表示,其中变量k为整数,代表离散的采样时间点。

f(k)可表示为:

f(k)={...f(-2),f(-1),f(0),f(1),f(2)…}

↑k=0

在MATLAB中,用一个向量f即可表示一个有限长度的序列。但是,这样的向量并没有包含其对应的时间序号信息。所以,要完整地表示一个离散信号需要用两个向量。

如序列:f(k)={1,2,-1,3,2,4,-1}

↑k=0

在MATLAB中应表示为:

k=[-3,-2,-1,0,1,2,3]或是k=-3:3;f= [1, 2,-1, 3, 2, 4,-1]

在用MATLAB表示离散序列并将其可视化时,我们要注意以下几点:第一,与连续时间信号不同,离散时间信号无法用符号运算来表示;第二,由于在MATLAB中,矩阵的元素个数是有限的,因此,MATLAB无法表示无限序列;第三,在绘制离散信号波形时,要使用专门绘制离散数据的stem命令,而不是plot命令。如对于上面定义的二向量f和k,可用如下stem命令绘图:stem (k, f),得到对应序列波形图,如图3.4所示。

图3.4 随机序列的波形

同样的,单位阶跃序列,正弦序列,离散时间指数序列等的离散信号我们都可以用类似的方法描述并绘制出图形。

信号的时域变换包括信号的平移、反折、倒相及信号的尺度变换。我们就分别介绍连续时间信号和离散时间信号的各种时域变换。

1、连续信号的时域变换

如前所述,MATLAB可以有两种方法来表示连续信号。用这两种方法均可实现连续信号的时域变换,但用符号运算的方法则较为简便。

(1).移位

对于连续信号f(t),若有常数t0>0,延时信号f(t-t0)是将原信号沿正t轴方向平移时间t0,而f(t+t0)是将原信号沿负t轴方向移动时间t0。我们可用下面的命令来实现连续信号的平移及其结果可视化,其中f是用符号表达式表示的连续时间信号,t是符号变量,subs命令则将连续信号中的时间变量t用t-t0替换:y=subs(f,t,t-t0); ezplot(y)

(2).反折

连续信号的反折,是指将信号以纵坐标为轴反折,即将信号f(t)中的自变量t 换为-t。实现如下:

y=subs(f,t,-t); ezplot(y)

(3).尺度变换

连续信号的尺度变换,是指将信号的横坐标进行展宽或压缩变换,即将信号f(t)中的自变量t换为at,当a>1时,信号f(at)以原点为基准,沿横轴压缩到原来的1/a;当0

y=subs(f,t,*t); ezplot(y)

(4).倒相

连续信号的倒相是指将信号f(t)以横轴为对称轴对折得到-f(t)。实现如下:y=-f; ezplot(y)

对于以上的命令,可在画图命令之后加入坐标轴的调整的命令(即加入axis( )命令),以使画出的图形更清晰、直观。

2、离散时间序列的时域变换

与连续信号不同的是,在MATLAB中,离散序列的时域变换不能用符号运算来实现,而必须用向量表示的方法,即在MATLAB中离散序列的变换需表示成两个向量的变换。

1).离散序列反折

离散序列的反折,即是将表示离散序列的两向量以零时刻的取值为基准点,以纵轴为对称轴反折,向量的反折可用MATLABA中的fliplr函数来实现,具体实现如下:

function [f,k]=lsfz(f1,k1)

f=fliplr(f1);k=-fliplr(k1); %调用此函数实现向量f1和k1的反折

stem(k,f,’filled’)

axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5])

2).离散序列的平移

离散序列的平移可看作是将离散序列的时间序号向量平移,而表示对应时间序号点的序列样值不变,当序列向左移动k0个单位时,所以时间序号向量都减小k0个单位,反之则增加k0个单位。实现如下:

function [f,k]=lsyw(ff,kk,k0)

k=kk+k0;f=ff;

stem(k,f,’filled’)

axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5])

3).离散序列的倒相

离散序列的倒相可看作是将表示序列样值的向量取反,而对应的时间序号向量不变,得到的离散时间序列。实现如下:

function [f,k]=lsdx(ff,kk)

f=-ff;

k=kk;

stem(k,f,’filled’)

axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5])

这些时域变换,我们可以把我们在第一节中描述过的信号带入其中,来看看信号时域变换的结果如何。除此以外,我们通过时域变换也可以锻炼我们描述信号的能力,一些复杂信号,往往都是一些简单信号经过一系列的时域变换得到。

前面的内容,其实是给以下的学习做的准备,我们在了解如何描述信号以后,接下来就只要把信号带入卷积运算中就可以了。

在MATLAB中,conv( )函数可以帮助我们快速求出两个离散序列的卷积和。conv函数的调用格式为:f=conv(f1,f2)

其中f1为包含序列f1(k)的非零样值点的行向量,f2为包含序列f2(k)的非零样值点的行向量,向量f则返回序列f(k)=f1(k)*f2(k)的所有非零样值点行向量。

在求信号卷积之前,我们先来看看在MATLAB中conv( )这个程序是如何来实现的。我们可以通过看它的流程图来了解,流程图如图3.5所示:

图3.5 conv( )函数流程图

由于conv是针对离散时间序列的函数,我们先从离散的信号入手[12]。1、离散时间信号的卷积

我们试举一例来看conv的功能,已知序列f1(k)和f2(k)如下所示:

f1(k)=1,(0≤k≤2) f2(k)=k,(0≤k≤3)

则调用conv( )函数求上述两序列的卷积和的MATLAB命令为:

f1=ones(1,3);

f2=0:3;

f=conv(f1,f2)

运行结果为:f=0 1 3 6 5 3

由这个例子可以看出,函数conv( )不需要给定序列f1(k)和f2(k)非零样值点的时间序号,也不返回序列f(k)=f1(k)*f2(k)的非零样值点的时间序号。因此,要

正确地标识出函数conv( )的计算结果向量f,我们还必须构造序列f1(k)、f2(k)及f (k)的对应序号向量。我们可以看出f(k)的序号向量k是由序列f1(k)和f2(k)的非零样值点的起始序号及他们的时域宽度决定的。在此,我们自己可以构造一个实用一点的函数dconv( ),该函数实现的功能为:可以在计算出卷积f (k)的同时,还可以绘出序列f1(k)、f2(k)及f (k)在时域内的波形图。并返回f (k)的非零样值点的对应向量。程序如下所示:

function [f,k]=dconv(f1,f2,k1,k2)

%the function of compute f=f1*f2

%f: 卷积序列f(k)对应的非零样值向量

%k: 序列f(k)的对因序号向量

%f1: 序列f1(k)非零样值向量

%f2: 序列f2(k)非零样值向量

%k1: 序列f1(k)的对应序号向量

%k2: 序列f2(k)的对应序号向量

f=conv(f1,f2) %计算序列f1与f2的卷积和f

k0=k1(1)+k2(1); %计算序列f非零样值的起点位置

k3=length(f1)+length(f2)-2; %计算卷积和f的非零样值的宽度

k=k0:k0+k3 %确定卷积和f非零样值的序号向量

subplot(2,2,1)

stem(k1,f1) %在子图1绘序列f1(k)时域波形图

title('f1(k)')

xlabel('k')

ylabel('f1(k)')

subplot(2,2,2)

stem(k2,f2) %在子图2绘序列f2(k)时波形图

title('f2(k)')

xlabel('k')

ylabel('f2(k)')

subplot(2,2,3)

stem(k,f); %在子图3绘序列f(k)的波形图

title('f1(k)与f2(k)的卷积和f(k)')

xlabel('k')

ylabel('f(k)')

对于下面两个离散序列,我们可以调用dconv( )函数来求离散序列的卷积。

MATLAB命令如下:

f1=[1 2 -1 -3 -2 4 ];

k1=1:6;

f2=ones(1,5);

k2=-2:2; %f1,f2两个信号的向量表示

[f,k]=dconv(f1,f2,k1,k2) %子函数调用

运行程序可以绘制出波形图如图3.6所示。

图3.6 离散序列的卷积

需要注意的是,调用conv( )函数计算序列卷积时,该函数将向量f1和f2以外的序列样值均视为零,因此,当序列f1(k)或f2(k)为无限长序列时调用conv( )函数就可能出现误差。如果碰到无限长序列时候,我们必须将其截断才能求带入到conv( )函数中。此时,函数将把截断区域外的区间视为零,故conv( )计算出的卷积只有部分是真实的。

2、连续信号的卷积

在第一章中我们对连续信号的卷积(卷积积分)做了分析,卷积积分运算实际上可用信号的分段求和来实现。用MATLAB实现连续信号f1(t)与f1(t)卷积的过程如下:

1.将连续信号f1(t)与f1(t)以时间间隔Δ进行取样,得到离散序列f1(kΔ)与f1(kΔ);

2.构造与f1(kΔ)和f1(kΔ)相对应的时间向量k1和k2(注意,此时时间序号向量k1和k2的元素不再是整数,而是取样时间间隔Δ的整数倍的时间间隔点);

3.调用conv( )函数计算卷积积分f(t)的近似向量f(nΔ);

4.构造f(nΔ)对应的时间向量k。

根据以上步骤我们自己可以比较容易写出求连续信号卷积的函数程序sconv( ),该函数实现的功能为:在计算连续信号的卷积的同时绘出信号及卷积结果的波形,程序如下:

function [f,k]=sconv(f1,f2,k1,k2,p)

%计算连续信号卷积积分f(t)=f1(t)*f2(t)

%f: 卷积积分f(t)对应的非零样值向量

%k: f(t)的对应时间向量

%f1: f1(t)的非零样值向量

%f2: f2(t)的非零样值向量

%k1: f1(t)的对应时间向量

%k2: f2(t)的对应时间向量

%p: 取样时间间隔

f=conv(f1,f2); %计算需要序列f1与f2的卷积和f

f=f*p; %将f进行采样

k0=k1(1)+k2(1); %计算序列f非零样值的起点位置

k3=length(f1)+length(f2)-2; %计算卷积和f的非零样值的宽度

k=k0:p:k3*p; %确定卷积和f非零样值的时间向量

subplot(2,2,1)

plot(k1,f1) %在子图1绘f1(t)时域波形图

title('f1(t)')

xlabel('t')

ylabel('f1(t)')

subplot(2,2,2)

plot(k2,f2) %在子图2绘f2(t)时域波形图

title('f2(t)')

xlabel('t')

ylabel('f2(t)')

subplot(2,2,3)

plot(k,f) %画卷积f(t)的时域波形

title('f(t)=f1(t)*f2(t)')

xlabel('t')

ylabel('f(t)')

给定下面两个连续信号,我们调用sconv( )函数来求两连续信号的卷积。f1(t)=2[U(t)-U(t-4)] f2(t)=U(t)-U(t-2)

MATLAB命令如下:

p=0.01;

k1=0:p:4; f1=2*ones(1,length(k1))

k2=0:p:2; f2=ones(1,length(k2)) %f1,f2两个信号的向量表示[f,k]=sconv(f1,f2,k1,k2,p) %子函数调用

运行程序,绘制卷积结果波形如图3.7所示。

图3.7 连续时间信号的卷积

为了能比较熟练的运用MATLAB计算卷积,我们可以将我们比较熟悉的信号都带入到上面的程序中去,当然也可以自己描述一些信号来求其卷积。四、实验设备:

计算机MATLAB软件

五、实验的预习:

1、认真阅读教科书中有关卷积的这部分内容,了解其原理和计算方法。

2、了解MATLAB的相关知识,包括它的功能,简单的函数用法等等。

六、实验内容及具体步骤:

1.在老师提示和引导下用MATLAB 来表示常见信号

打开电脑,双击桌面上的matlab6.5的快捷方式,进入到MATLAB界面,然后进入编辑界面【file】-【new】,或者直接点击新建空白页按钮,可以看到出现一个命名为untitled的编辑窗口,这就是我们的程序输入窗口。我们先做准备工作,敲入一些简单的信号并输出,了解一下它的功能。

常见连续信号的表示:阶跃信号门信号正弦信号指数信号等等

常见离散序列的表示:随机离散序列单位阶跃序列正弦序列离散时间指数序列

将描述各个信号的函数键入以后,保存到MATLAB根目录下的work文件

夹中,并按照各个信号的性质进行命名。然后对各个函数运行一下,看是否和实际的函数一致。编译程序【debug】-【run】,或者直接按F5就可以进行。程序不大,编译很快就会完成,成功的编译会出现名为figure的窗口,可以看到信号的波形。

2.针对一些信号做一下时域变换

时域变换主要是在时域范围内对信号进行信号的平移、反折、倒相以及信号的尺度变换。

1)、移位

y=subs(f,t,t-t0);

ezplot(y)

2)、反折

y=subs(f,t,-t);

ezplot(y)

3)、尺度变换

y=subs(f,t,a*t)

ezplot(y)

4)、倒相

y=-f

ezplot(y)

给定一个信号,对此信号做以上这些时域变换操作,将写好的程序保存到根目录work文件夹中,然后对程序进行编译运行,编译成功后,观察图形窗口中显示的波形与原来信号的波形之间的关系。

对信号做时域的变换可以增加学生对MATLAB的认识,也可以巩固对信号的表示。同时我们也可以用这些变换来表示一些复杂的信号。

3.利用MATLAB计算两个信号的卷积

在MATLAB中我们采用它自带的函数conv( )来对信号进行卷积

1)、求离散序列的卷积

打开一个空白编辑窗口,先将要卷积的两个信号表示出来,然后将两个信号带入到conv( )函数中,键入画图命令stem( )函数。把写好的程序存入到MATLAB 根目录下的work文件夹中,按F5进行编译运行。观察输出序列并记录下来。

改变输入序列重做上面的实验,保存,编译,观察和记录输出序列。 同样观察波形在幅度和时域范围的变化。

需要注意的是,调用conv( )函数计算序列卷积和时,该函数将向量f 1和f 2以外的序列样值均视为零,因此,当序列f 1(k )或f 2(k )为无限长序列时调用conv( )函数就可能会产生误差。所以我们必须对诬无限长序列进行截断到(1~n ),再调用conv( )函数。而conv( )函数会将0~n 以外均视为零,conv( )计算出的卷积和样值点只有部分是真是的。

这里为了方便求解,把求卷积和过程和绘图命令写在同一个函数dconv 中,在计算离散卷积时只要调用函数就可以了。

2)、求连续信号的卷积

打开一个空白编辑窗口,先将要卷积的两个信号表示出来,然后将两个信号带入到conv( )函数中,再敲入画图命令plot( )函数。把写好的程序存入MATLAB 根目录下的work 文件夹中,按F5进行编译运行,编译成功后可以观察波形窗口的输出波形,记录下来。

为了能更加深大家的印象,可以换不同的信号来做卷积运算。只需要把信号表示部分做更改就可以了。做上面一样的操作,观察记录波形。

同样,我们可以把计算卷积和画图的操作写成一个函数sconv ,而使用时只需表示信号,再调用此函数就可以了。

波形要观察和记录的内容:

1、波形在幅度上的变化;

2、波形在时域范围内的变化;

4.验证信号卷积特性:

卷积的特性有:交换律、结合律、分配律。这里主要验证它的结合律和分配律。

1)、验证结合律1212[()*()]*()()*[()*()]x n h n h n x n h n h n

要验证结合律,我们要把其中两个信号先进行卷积,再与第三个信号相卷积。将写好的程序保存,编译运行,将得到的信号保存下来。

将刚刚用过的三个信号调换位置,重复上面的操作。将程序保存,编译运行。可以看到所得信号与上面保存的信号是一样的。说明卷积满足结合律。

2)、验证分配律1212()*[()()]()*()()()x n h n h n x n h n x n h n +=+

要验证分配律,我们先把两个信号相加,表示出来,然后与第三个信号相卷积。写好程序,保存,编译运行。

再把这两个信号分别与第三个信号进行卷积,然后再把两个信号叠加。保存程序,编译运行。

观察比较前后两个程序的输出。输出一致,说明卷积满足分配律。

建议:将实验中的程序保存,而且把输出波形都以图片.jpg 的格式保存下来,我们可以方便的比较实验的结果 (如在验证卷积特性时,等式左右两边的波形图应该是一样的),在实验报告中也会用到。

七、思考题

1、某系统的冲激响应为()()t h t e U t -=,系统的激励为()2*sin

()2t x t U t π=,

试编程求出该系统的零状态响应,并绘出响应波形。

2、实验中没有用连续信号来验证卷积的性质,试仿照离散序列的程序写出用连续信号验证卷积结合律特性的程序,并用简单信号来证明程序正确性。 八、实验报告要求:

(1)简述实验目的记实验原理。

(2)按照实验步骤上的实验过程,把重要的程序和实验结果都记录下来。

(3)总结实验中的主要结论。

(4)回答思考题。

(5)实验心得体会。

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)'); (2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x);

>> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)'); 因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]); (3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔: t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕') >> t=-0.1:0.0001:0.1; x=cos(100*t)+cos(3000*t); >> plot(t,x);title('杨婕婕朱艺星'); >> xlabel('x=cos(100*t)+cos(3000*t)');

信号(MATLAB)实验指导书

《信号与系统》实验指导书 张建奇骆崇编写 浙江工业大学之江学院信息工程分院 2012年2月

目录 实验一MATLAB的基本使用 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容与要求 (8) 四、实验报告 (9) 实验二时域波形的MATLAB实现 (10) 一、实验目的 (10) 二、预习要求 (10) 三、实验原理 (10) 四、实验内容与要求 (18) 五、实验报告 (19) 实验三用MATLAB对系统时域分析 (20) 一、实验目的 (20) 二、预习要求 (20) 三、实验原理 (20) 四、实验内容与要求 (29)

实验一MATLAB的基本使用 一、实验目的 1、了解和掌握MATLAB的基本操作 2、了解MATLAB的库函数 3、会用MATLAB进行简单的操作。 二、实验原理 1、界面操作 MATLAB是“MATrix LABoratory”的缩写(矩阵实验室),它是由美国Mathworks公司于1984年正式推出的一种科学计算软件,由于其强大的功能,在欧美的一些大学里MATLAB已经成为许多诸如数字信号处理、自动控制理论等高级教程的主要工具软件,同时也成为理工科学生,必须掌握的一项基本技能。 当需要运行程序时,只需选择桌面上(或开始)中的MATLAB6.5应用程序图标即可 通常情况下,MATLAB的工作环境主要由一下几个窗口组成: 命令窗口(Command Window)

工作区间浏览器(Workspace) 历史命令窗口(Command History) 图形窗口(Figure) 文本编辑窗口(Editor) 当前路径窗口(Current Directory) MATLAB的命令窗与命令操作 当用户使用命令窗口进行工作时,在命令窗口中可以直接输入相应的命令,系统将自动显示信息。 例如在命令输入提示符“>>”后输入指令: >>t=[1,2,3;4,5,6;7,8,9]; 按回车键(Enter)后,系统即可完成对变量t的赋值。 MATALB提供了非常方便的在线帮助命令(help),它可提供各个函数的用法指南,包括格式、参数说明、注意事项及相关函数等内容。 2、图形窗 MATLAB图形窗(Figure)主要用于显示用户所绘制的图形。 通常,只要执行了任意一种绘图命令,图形窗就会自动产生。

信号与系统 MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: :学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标围。 实验程序: (1))()(t t f δ= t=-1:0.01:3 %设定时间变量t 的围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (2))()(t t f ε= t=-1:0.01:3 %设定时间变量t 的围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (3)at e t f =)( a=1时:

t=-5:0.01:5 %设定时间变量t 的围及步长 f=exp(t) %调用指数函数exp () plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的围 a=2时: t=-5:0.01:5 f=exp(2*t) % 调用指数函数exp () plot(t,f) title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f) title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f = t=-5:0.01:5 f=rectpuls(t,2) % 用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω= ω=1时: t=-20:0.01:20 f=sin(t)./t % 调用正弦函数sin (),并用sin (t )./t 实现抽 样函数 plot(t,f)

实验1 用MATLAB进行信号频谱分析(推荐文档)

实验1 用MATLAB 进行信号频谱分析 一、实验目的 ㈠ 初步掌握MATLAB 产生常用离散时间信号的编程方法。 ㈡ 学习编写简单的FFT 算法程序,对离散信号进行幅频谱分析。 ㈢ 观察离散时间信号频谱的特点。 二、实验原理 ㈠ 常用的离散时间信号 在 MATLAB 语言主要是研究离散信号的。常用的离散信号有: 1.单位取样序列 ???≠==000 1)(n n n δ 2.单位阶跃序列 ?? ?<≥=0 01 )(n n n u 3.实指数序列 R a n a n x n ∈?=;)( 4.复指数序列 n e n x n j ?=+)(0)(ωσ 5.正(余)弦序列 )c o s ()(0θω+=n n x n ? 6.周期序列 n N n x n x ?+=)()( ㈡ 离散信号的产生 离散信号的图形显示使用stem 指令。 在 MATLAB 中的信号处理工具箱中,主要提供的信号是离散信号。

由于MATLAB 对下标的约定为从1开始递增,例如x=[5,4,3,2,1,0],表示x(1)=5,x(2)=4,X(3)=3… 因此要表示一个下标不由1开始的数组x(n),一般应采用两个矢量,如 n=[-3,-2,-1,0,l ,2,3,4,5]; x=[1,-l ,3,2,0,4,5,2,1]; 这表示了一个含9个采样点的矢量:X(n)={x(-3),x(-2),x(-1),x(0),x(1),x(2),x(3),x(4),x(5)}。 1.单位取样序列 ?? ?≠==δ0 001)(n n n 这一函数实现的方法有二: 方法一:可利用MATLAB 的zeros 函数。 x=zeros(1,N); %建立一个一行N 列的全零数组 x(1)=1; %对X (1)赋1 方法二:可借助于关系操作符实现 n=1:N; x=[n==1]; %n 等于1时逻辑关系式结果为真,x=1;n 不等于1时为假,x=0 如要产生 ?????≤<<=≤≤=-δ2 0210 100)(10)(n n n n n n n n n n n n 则可采用MATLAB 实现: n=n1:n2; x=[(n-n0)==0];%n=n0时逻辑关系式结果为真,x=1;n ≠n0时为

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2 sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');

(2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x); >> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');

因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]);

(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕')

MATLAB实验报告

实验一 名称:连续时间信号分析 姓名:王嘉琦 学号:201300800636 班级:通信二班 一、实验目的 (一)掌握使用Matlab 表示连续时间信号 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉常用信号的波形和特性 (二)掌握使用Matlab 进行连续时间信号的相关运算 1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换 2、学会运用Matlab 进行连续时间信号微分、积分运算 3、学会运用Matlab 进行连续时间信号相加、相乘运算 4、学会运用Matlab 进行连续时间信号卷积运算 二、实验条件 Matlab 三、实验内容 1、利用Matlab 命令画出下列连续信号的波形图。 (1))4/3t (2cos π+ 代码: k=2;w=3;phi=pi/4; t=0:0.01:3; ft=k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('余弦信号')

(2) )t (u )e 2(t -- 代码: k=-1;a=-1; t=0:0.01:3; ft=2-k*exp(a*t); plot(t,ft),grid on axis([0,3,2,3]) title('指数信号')

(3))]2()(u )][t (cos 1[--+t u t π 代码: k=1;w=pi;phi=0; t=0:0.01:2; ft=1+k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,0,2]) title('余弦信号')

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

基带信号眼图实验——matlab仿真

基带信号眼图实验——matlab 仿真

————————————————————————————————作者:————————————————————————————————日期: ?

数字基带信号的眼图实验——matla b仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATL AB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 () n s n a t nT δ-∑() H ω() n s n a h t nT -∑基带传输抽样判决 图3-1?基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基 带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? ?(3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 ?? ?(3-2) 频域应满足:

信号与系统 MATLAB实验报告

《信号与系统》MATLAB 实验报告 院系: 专业: 年级: 班号: 姓名: 学号: 实验时间: 实验地点: 实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。 实验程序: (1))()(t t f δ= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2))()(t t f ε= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数

title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3)at e t f =)( a=1时: t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp () plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的范围 a=2时: t=-5:0.01:5 f=exp(2*t) %调用指数函数exp () plot(t,f) title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f) title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f = t=-5:0.01:5 f=rectpuls(t,2) %用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω= ω=1时:

根据Matlab的信号与系统实验指导材料

基于Matlab 的信号与系统实验指导 实验一 连续时间信号在Matlab 中的表示 一、实验目的 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉这些信号的波形和特性 二、实验原理及实例分析 1、信号的定义与分类 2、如何表示连续信号? 连续信号的表示方法有两种;符号推理法和数值法。 从严格意义上讲,Matlab 数值计算的方法不能处理连续时间信号。然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被Matlab 处理,并且能较好地近似表示连续信号。 3、Matlab 提供了大量生成基本信号的函数。如: (1)指数信号:K*exp(a*t) (2)正弦信号:K*sin(w*t+phi)和K*cos(w*t+phi) (3)复指数信号:K*exp((a+i*b)*t) (4)抽样信号:sin(t*pi) 注意:在Matlab 中用与Sa(t)类似的sinc(t)函数表示,定义为:)t /()t (sin )t (sinc ππ= (5)矩形脉冲信号:rectpuls(t,width) (6)周期矩形脉冲信号:square(t,DUTY),其中DUTY 参数表示信号的占空比

DUTY%,即在一个周期脉冲宽度(正值部分)与脉冲周期的比值。占空比默认为0.5。 (7)三角波脉冲信号:tripuls(t, width, skew),其中skew 取值范围在-1~+1之间。 (8)周期三角波信号:sawtooth(t, width) (9)单位阶跃信号:y=(t>=0) 三、实验内容 1、验证实验内容 直流及上述9个信号 2、程序设计实验内容 (1)利用Matlab 命令画出下列连续信号的波形图。 (a ))4/3t (2cos π+ (b ) )t (u )e 2(t -- (c ))]2()(u )][t (cos 1[--+t u t π (2)利用Matlab 命令画出复信号) 4/t (j 2e )t (f π+=的实部、虚部、模和辐角。 四、实验报告要求 1、格式:实验名称、实验目的、实验原理、实验环境、实验内容、实验思考等 2、实验内容:程序设计实验部分源代码及运行结果图示。

实验一----信号的MATLAB表示及信号的运算

实验一----信号的MATLAB表示及信号的运算

信号的MATLAB表示及信号的运算 一、实验目的 1.掌握的MATLAB使用; 2.掌握MATLAB生成信号的波形; 3.掌握MATLAB分析常用连续信号; 4.掌握信号的运算的MATLAB实现。 二、实验工具 1.台式电脑一台; 2.MATLAB7.1软件环境; 三、实验内容 编写程序实现下列常用函数,并显示波形。 1.正弦函数 f(t)=Ksin(wt+a); 2.矩形脉冲函数f(t)=u(t)-u(t-t0); 3.抽样函数 sa(t)=sint/t; 4.单边指数函数 f(t)=Ke-t; 5.已知信号f1(t)=u(t+2)-u(t-2), f2(t)=cos(2pt),用MATLAB绘制f1t)+f2(t)和f1(t)*f2(t)的波形。

四、实验要求 预习信号的时域运算和时域变换(相加、相乘、移位、反折、尺度变化、例项)相关知识。 五、实验原理 在某一时间区间内,除若干个不连续的点外,如果任意时刻都可以给出确定的函数值,则称信号为连续时间信号,简称为连续信号。MATLAB提供了大量生成基本信号的函数,所以可利用连续信号在等时间间隔点的取值来近似表示连续信号,这些离散的数值能被MATLAB处理,并显示出来。 六、实验步骤 1.打开MATLAB7.1软件,并在老师的指导和带领下逐步熟悉此软件; 2.编写正弦函数程序: clear all; t=-8:.01:8; k=2;w=1;a=pi/4; f=k*sin(w*t+a); plot(t,f);

grid; xlabel('t'); ylabel('f(t)'); axis([-8 8 -3 3]); 3.编写矩形脉冲信号函数程序: clear all; t=-4:0.001:4; T=1; f1=rectpuls(t,4*T); f2=cos(2*pi*t); plot(t,f2+f1); axis([-4 4 -1.5 2.5]); grid on; figure plot(t,f2.*f1); axis([-4 4 -1.5 1.5]); grid on;

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告 一、实验目的 1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。 2.学会运用MATLAB表示常用连续时间信号的方法 3.观察并熟悉一些信号的波形和特性。 4.学会运用MATLAB进行连续信号时移、反折和尺度变换。 5.学会运用MATLAB进行连续时间微分、积分运算。 6.学会运用MATLAB进行连续信号相加、相乘运算。 7.学会运用MATLAB进行连续信号的奇偶分解。 二、实验任务 将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。 三、实验内容 1.MATLAB软件基本运算入门。 1). MATLAB软件的数值计算: 算数运算 向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。 矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开; 矩阵的不同行之间必须用分号”;”或者ENTER分开。2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。 举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名” 2.MATLAB软件简单二维图形绘制 1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y) 2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表 示第p个区域,表达为subplot(mnp)或者subplot(m,n,p) 3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin]) 4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’) 5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’) 6).输出:grid on 举例1: 举例2:

信号与系统实验(MATLAB版) (1)

《信号与系统MATLAB实现》实验指导书 电气信息工程学院 2014年2月

长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。 MATLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。

数字信号处理实验报告MATLAB

1文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

2文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 00.2 0.4 0.6 0.8 1 1.2 1.4 再在命令窗口输入:[y,n] = segshift(x,n,n0);n=0:5;n0=3;stem(n,y)按ENTER 键出图如下图1。 2. 在命令窗口输入: m = -fliplr(n); m1 = min([m,n]); m2 = max([m,n]); m = m1:m2; x1 =[ zeros(1,(length(m)-length(n))),x]; xe = 0.5*(x1 + fliplr(x1)) xo = 0.5*(x1 - fliplr(x1)) subplot(1,2,1),stem(m,xe), ylabel(xe), subplot(1,2,2),stem(m,xo), ylabel(xo), 得下图二, 图 二 图 一 3.将如下文件另存为: sigadd.m 文件 function [y,n] = sigadd(x1,n1,x2,n2) % 实现 y(n) = x1(n)+x2(n) % ----------------------------- % [y,n] = sigadd(x1,n1,x2,n2) % y = 在包含n1 和 n2 的n 点上求序列和, % x1 = 在 n1上的第一序列 % x2 = 在 n2上的第二序列(n2可与 n1不等) n = min(min(n1),min(n2)):max(max(n1),max(n2)); % y(n)的长度 y1 = zeros(1,length(n)); y2 = y1; % 初始化 y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % 具有y 的长度的 x1 y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % 具有y 的长度的x2 y = y1+y2; 在命令窗口输入:x1=[1,0.5,0.3,0.4];n1=-1:2;x2=[0.2,0.3,0.4,0.5,0.8,1];n2=-2:3; [y,n] = sigadd(x1,n1,x2,n2) 得:y = 0.2000 1.3000 0.9000 0.8000 1.2000 1.0000 n = -2 -1 0 1 2 3 再在命令窗口输入:

信号matlab仿真实验复习

一. 生成一个基频为20Hz ,幅度为±1的周期方波信号; (1)试确定该信号的周期? (2)画出该信号5个周期内的波形;画出该信号的幅度频谱图; (3)该信号谱线间隔和频带宽度是多少,对它进行时域采样,采样频率Fs 至少为多少? (4)设计一个IIR/FIR 低通滤波器,滤去该周期信号中80Hz 以后的频率成分,要求通带截止频率80Hz ,阻带截止频率90Hz ,通带纹波小于3dB ,阻带衰减大于50dB ,用matlab 命令画出滤波器的频率响应,以及滤波后的信号波形和频谱。 答:1.周期为0.05秒; 3.谱线间隔为20Hz, 带宽为40Hz ,采样频率至少为80Hz 。 Fs=1000; N=256; % 时域/频率采样点 t=0:1/Fs:(N-1)/Fs; x=square(2*pi*20*t); %产生幅度为[-1,1],频率为20Hz 的方波 subplot(2,1,1) %方波绘图 plot(t,x); title('5个周期的矩形波') axis([0,0.1,-1.5,1.5]) T=0.05; %求方波的频谱 t1=0:1/Fs:(T-1/Fs); xn=square(2*pi*20*t1); Xk=fft(xn,N); Xk=fftshift(abs(Xk)); Xkl=Xk/N; subplot(2,1,2) plot(Fs/N*[0:1:N-1],Xkl) title('方波信号的频谱') [n,Wn]=buttord(80/500,90/500,3,50); %确定butterworth 滤波器的阶次 butterworth 低通滤波 %器:通带截止频率80Hz ,阻带截止频率90Hz ,通带纹波小于3dB ,阻带衰减大于50dB , %以上参数可以变化 [b,a]=butter(n,Wn); %确定滤波器传递函数 y=filter(b,a,x); %滤波 figure %滤波器频率特性 freqs(b,a); title('低通滤波器频率特性') ; figure subplot(2,1,1) plot(t,y) ;title('矩形波通过低通滤波器后的波形') ;axis([0,0.1,-1.5,1.5]) subplot(2,1,2) N=512; %可适当增减 fy=fftshift(fft(y,N)); %矩形波通过低通滤波器后的频谱 f=(-N/2:(N/2-1))*2; f=f*Fs/N; plot(f,abs(fy)/N) ;title('矩形波通过低通滤波器后的频谱') 二.设有连续信号()cos(240)f t t π=??, (1)利用DFT 计算该连续时间信号的频谱,采样频率至少应取多少?80HZ (2)以采样频率Hz F s 1000=对信号)(t f 采样得)(t f a ,请画出两个周期内的离散 信号)(t f a 的波形;[要求横

信号与系统MATLAB实验报告

实验报告 实验课程:信号与系统—Matlab综合实验学生姓名: 学号: 专业班级: 2012年5月20日

基本编程与simulink仿真实验 1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++100 11-8015012 n n n n n n 。实验程序: Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End 实验结果; qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1) ans=4.6170e+004。 1-2试利用两种方式求解微分方程响应 (1)用simulink对下列微分方程进行系统仿真并得到输出波形。(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d t t t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况! 试验过程 (1)

(2) a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)

连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r t t t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。 实验程序: a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');

相关文档
最新文档