仿人竞速机器人的设计

仿人竞速机器人的设计
仿人竞速机器人的设计

仿人竞速机器人的设计

摘要

随着智能控制技术与检测传感技术的飞速发展,智能机器人将在以后的工业生产和家庭生活中得到广泛应用,本系统相当于一个简单的智能机器人,是具有自动检测障碍物、黑白线和金属块的多功能智能小车。

本系统采用了AVR系列单片机中的Atmega 16作为智能小车的检测和控制核心。路面黑白线检测使用了反射式红外光电传感器,障碍物检测采用了超声波传感器,金属块的检测采用了金属接近开关。驱动采用的是直流电机,电机控制方式为对单片机I/O口进行扫描和单向PWM从而控制小车的转向和速度。基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,并采用了AVR系列中的Atmega 16稳定高速的执行软件程序的特点,从而实现对小车的精确控制。

关键字: Atmega 16 超声波反射式红外光电检测传感器

Abstract

With the development of intelligent control technology and detect-sensor technology,intelligent robot will use broad in industry and family life. We can consider this system as a ordinary robot ,it is an abstract which has some functions of detecting barriers ,black and while runway and mental.

Based on the microcontroller Atmega sensors are applied to detect black lines,ultrasonic sensors are applied to detect barriers and mental approach switch sensor is applied to detect introducing PWM to the system,we are able to control motor revolving speed dynamically and one of the most striking features of the design is its software algorithm which enables the car to run and detect accurately.

1 系统设计

1.1设计要求

设计一仿人机器人,能够实现以下功能:

(1)机器人能够自动检测到黑白跑道,并且沿着黑色跑道运行。

(3)机器人能够在运行过程中自动沿黑线跑弯道。

1.2总体设计方案

1.2.1设计思路

图1.2.1智能仿人机器人系统总体设计框图

整个系统可以分为传感器检测部分、控制器模块和电机驱动及LCD显示部分。传感器检测部分由反射式红外光电检测黑白跑道模块组成。反射式红外光电传感器运用其对白色物体发出的光将反射回来,而对黑色物体发出的光被吸收的原理产生不同的信号来检测黑白跑道,将检测到的信号送入控制器模块(MCU),从而可以控制机器人始终沿黑色跑道运行的功能。

机器人设计了LCD显示模块。总体框图如图1.2.1所示,为实现各模块的功能,分别设计了几种不同的方案并进行了论证。

1.2.2 方案论证与比较

(1)黑白跑道检测模块方案的论证与比较

小车要在黑色跑道上运行,所以对黑白跑道的检测的精度要求很高,关于黑白跑道检测有以下两种方案:

方案一:采用反射式红外光电检测传感器。该传感器运用用检测黑色跑道时红外线被吸收,而检测白色跑道时红外线被反射信号不同

的原理,而区分黑白跑道。这种传感器具有价格便宜,检测电

路简单的优点。

方案二:ccd与cmos感光传感器。由于仿人机器人的行进速度较慢,所以不需要太多的预处理,以红外传感器的处理距离足以实现比

赛,而且感光传感器的价格叫昂贵,处理速度慢,占用资源多,

经过比较分析,从经济性和必要性选择方案一。

(2)控制器模块方案的论证与比较

方案一:采用多片ATMEL公司的AT89S52作为控制器。由于本设计对控制器的运算速度要求较高,AT89S52难以达到较快的速度,

且该设计程序较大,AT89S52仅有8K的ROM,片外ROM将增

加硬件工作量。

方案二:采用AVR系列的Atmega 16作为控制器。由于Atmega 16是一种高速度、低功耗且具有16KB系统内可编程Flash的8位

AVR微控制器。本设计中对控制器的运算速度的要求,Atmega

16是可以满足的。并且该单片机的价格便宜,功能强大,适

合选用。

从硬件和软件的工作量、以及成本考虑,选择方案二。

(3)电机的选择与论证

方案一:采用步进电机。步进电机的一个显著特点就是具有快速启停能力,如果负荷不超过步进电机所能提供的动态转矩值,就能

够立即使步进电机启动或反转。另一个显著特点是转换精度

高,正转反转控制灵活。

方案二:采用普通直流电机。直流电动具有优良的调速特性,调速平滑、方便,调整范围广;过载能力强,能承受频繁的冲击负载,可

实现频繁的无级快速启动、制动和反转;能满足生产过程自动

化系统各种不同的特殊运行要求。

由于普通直流电机更易于购买,并且电路相对简单,所以采用直流电机

作为动力源。

(4)电源选择

方案一:采用单一电源供电方案。这样供电比较简单;但由于电动机

启动瞬间电流很大。而且PWM驱动的电动机电流波动较大,

会造成电源电压不稳,可能会使传感器误检测,严重时可能

造成单片机程序跑飞、复位等异常现象。此方案缺点十分明

显。

方案二:双电源供电方案。将电机驱动电源与单片机及传感器电源完

全隔离,利用光电耦合器进行连接。但这样可以彻底解决电

机运行对系统稳定性的影响,从而提高了系统的可靠性。

经分析本系统选择方案二。

2 单元电路设计

1 控制电路设计

控制电路中的Atmega 16是一个稳定高速的单片机,16KB系统内可编程Flash。整个系统还有超声波发射接收电路、反射式红外光电检测电路、金属接近开关检测金属块电路、液晶显示电路和电机驱动电路。

2 直流电动机PWM驱动模块的电路设计

图2.1.1直流电动机PWM驱动模块的原理图直流电动机PWM驱动模块的原理图如图2.1.1所示。对小车前后轮电机的驱动采用直流电机专用驱动芯片L298。单片机Atmega 16具有4个8位I/O口(PA 口,PB口,PC口,PD口),此处运用PB口的输出数据和定时器产生的PWM波通过光耦隔离控制L298,其中改变IN1和IN2、IN3和IN4可控制电机的方向,PWM 控制电机速度。

2 黑白跑道检测模块电路的设计

黑白跑道检测模块电路的原理图如图所示,采用了反射式红外光电传感器ST178,它的工作原理是:在检测到白线时,红外线被反射回来,在检测到黑线时,无红外线反射回来,利用这两种信号的不同,送到单片机中处理,就可以检测黑白跑道了。

图黑白跑道检测模块电路的原理图

3 系统的软件设计

系统的软件设计采用了C语言编程,程序是在Windows XP环境下采用ICC AVR软件编写的,ICC AVR软件提供丰富的库函数和功能强大的集成开发调试工具,可以完成编辑、编译、连接、调试、仿真等整个开发流程。

黑白跑道检测子程序

黑白跑道及金属块检测子程序的流程图如图3. 1所示。黑白跑道检测采用了2个反射式红外光电传感器,装在机器人的左右脚,传感器检测到黑线时,小车将向检测到的方向调整,从而可以行进在黑白跑道的黑线上。

图黑白跑道检测子程序的流程图

仿人型机器人设计说明书

目录 1前言 (1) 1.1仿人机器人的概念........................................................ 错误!未定义书签。 1.2课题来源 (1) 1.3技术要求 (1) 1.4国内外研究现状及发展状况[] 2........................................ 错误!未定义书签。 1.4.1 国内研究现状 (1) 1.4.2 国外研究现状 (2) 1.4.3 发展趋势 (3) 1.5本课题要解决的主要问题及解决方案 (4) 2 总体方案设计 (6) 2.1仿人机器人臂手部结构的确定 (6) 2.2仿人机器人上身尺寸的确定 (6) 2.3结构的设计 (6) 2.4仿人机器人自由度的确定 (6) 2.5电机的选择 (7) 3 机器人驱动装置的设计 (8) 3.1 肩部步进电机的选择 (9) 3.2 肘部步进电机的选择 (9) 3.3 腕部及头部电机选择 (10) 4.仿人机器人机械传动件的设计 (11) 4.1齿轮的设计 (11) 4.1.1 肩部齿轮的设计与校核 .............................................. 错误!未定义书签。 4.1.2 肘腕部齿轮设计 (13) 4.1.3 头部齿轮的设计 (14) 4.2轴的设计与计算 (15) 4.2.1 轴的结构设计........................................................... 错误!未定义书签。 4.2.2 轴的强度计算 (16) 5. 仿人型机器人连接板的设计及校核 (21) 5.1肩部连接板的设计与校核 (21) 5.2电机支撑板的设计与校核 (22) 6. 仿人型机器人三维造型及运动仿真 (23) 6.1仿人型机器人三维造型 (23) 6.2仿人型机器人运动仿真 (24) 6.3仿人型机器人舞蹈运动分析 (24) 6.4仿人机器人重力分析 (25) 7 结论 (26) 参考文献 (27) 致谢 (29) 附录 (30)

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

仿人机器人

听讲座《仿人机器人的发展和最新技术》心得首先江山老师通过一段精彩视频让我们对机器人有了大概的了解;接着江山老师对ALDEBARAN Robotics公司进行了简单介绍并从自由度、传感器两个方面向大家介绍了针对实物做硬件的过程;随后江山老师详细讲解了电子架构和软件环境的相关知识并介绍了世界机器人大赛的相关情况;在讲座的最后,江山老师还现场向我们展示了真实的机器人。这场讲座让人印象十分深刻。 仿人机器人开始于20世纪60年代的双足步行机器人,迄今已成功研制出的各种能静态或动态步行的双足机器人样机及在双足机器人领域理论研究上的成果推动了仿人机器人的快速发展。加藤一郎于1973年,从工程角度研制出世界上第一台真正意义上的仿人形机器人WABOT-1。1980年出现WL-9DR(Dynam’s Refined)双足机器人,用步行运动分析及重复试验设计步态轨迹,用以控制机器人的步行运动。1986年,加藤实验室又成功研制了WL-12步行机器人,该机器人实现了步行周期2.6s、步幅30cm的平地动态步行。1996年11月公司首次展示了研制成功的第一台仿人机器人P2,它成为世界上第一台人性化自主双腿步行机器人。1997年10月HONDA公司又推出了仿人形机器人P3,是一台完全自立的人性化双腿步行机器人。在此基础上,ASIMO才得以诞生,2004年12月15日,日本本田技研工业株式会社推出了新一代“ASIMO”机器人,它是世界上首批遥控式双足直立行走机器人。 仿人机器人步态模式可分为静态步行、准动态步行和动态步行。在静态步行中,机器人的质心在地面上的投影始终不超越支撑多边形的范围;而在动态步行中,质心的投影在某一时刻可以超越支撑多边形。研究表明,动态行走时关节驱动力矩较静态行走时小,是仿人机器人研究的必然发展方向和实现目标。仿人机器人步态规划不仅取决于地面条件、下肢结构、控制的难易程度,而且必须满足运动平稳性、速度、机动性和功率等要求。为提高仿人机器人的智能化,仿人机器人中安装了大量的传感器,如力传感器、力矩传感器、陀螺仪、视觉传感器、接近觉传感器、声学传感器等多种传感器。而六维力/力矩传感器具有可以同时测量3自由度力和3自由度力矩的优越性,使得常被安装在机器人脚底用于测量地面反力。机器人的控制从某种程度上,可以说是基于传感器的控制。 仿人机器人是能够与人相互影响的最理想的机器人,它能够通过与环境的交互不断获得新知识,而且还能用它的设计者根本想象不到的方式去完成各种任务,它会自己适应非结构化的、动态的环境。开展仿人型机器人研究,不仅能够促进传感控制、人工智能等多学科发展,而且将大大提高我国机器人技术的系统集成能力和控制水平。通过提高机器人的智能化、机动性、可靠和安全性以及与人类环境的完美的融入性,使得仿人机器人融入人类的生活,和人类一起协同工作,从事一些人类无法从事的工作,以更大的灵活性给人类社会带来更多的价值。

基于Android的智能聊天机器人的设计与实现

基于An droid 的智能聊天机器人的设计与实现 学院名称: 业: 级: 号: 名: 任课教师: 安卓智能聊天机器人开发(一) 这个聊天机器人有点像前段时间很火的一个安卓应用一一小黄鸡 应用的实现其实很简单,网上有许多关于智能机器人聊天的接口, 我们只需要去 调用对应的接口,遵守它的 API 开发规范,就可以获取到我们想要的信息 开发步骤: 首先我们需要到这个图灵机器人的官网去注册一个账号,他会给我们一个唯一 Key ,通过这个Key 和对应的API 开发规范,我们就可以进行开发了。 然后在这个(/cloud/access api.jsp )网址里可以找到相关的开发介绍 比如:请求方式,参数,返回参数,包括开发范例,一些返回的编码等信息 这里是官方提供的一个调用小案例(JAVA ),这里我也顺带贴一下 这里我使用的接口是 图灵机器人(/) 这个接口给我们返回的是 就 可以实现这个应用。 Json 字符串,我们只需要对它进行Json 字符串解析,

/** 调用图灵机器人平台接口 * 需要导入的包: commons-logging- httpclient- */ public static void main(String[] args) throws IOException { String INFO = URLEncoder.encode(" 北京今日天气 ", "utf-8"); String requesturl = "/api?key= Apikey&info="+INFO; HttpGet request = new HttpGet(requesturl); HttpResponse response = HttpClients.createDefault().execute(request); //200 即正确的返回码 if(response.getStatusLine().getStatusCode()==200){ String result = EntityUtils.toString(response.getEntity()); "返回结果: "+result); 第一篇讲下关于如何调用接口,从网上获取数据,包括解析 Json 字符串 第二篇会把这些获取的数据嵌入到安卓应用 首先,先写一个工具类, 这个工具类是用来获取用户输入的信息并返回服务器提 供的数据的 这里面用到了一个第三方提供的JAR 包,Gson 它是谷歌提供给我们用来使Json 数据序列化和反序列化的 关于Gson 的使用我之前写过一篇笔记,不熟悉的朋友可以看看: Gson 简要使 用笔记(/p/3987429.html ) 代码如下:具体看注释 Package ; import ; import ; import ; 注册激活返回的 好了, 接下来开始实战吧,这个应用我打算写成两篇文章

小型仿人机器人系统设计的方法

小型仿人机器人系统设计的方法 摘要:小型仿人机器人是近几年的研究热点,一个小小的仿人机器人中涉及了 多种学科领域例如电子工程、仿生学、信息工程、机械工程等,目前研制出与人 类相似度较高、功能相对完善的机器人一直是科学家的目标。本文主要探究仿人 机器人的设计原理以及设计方法,对一些程序进行详细分析,为以后的科技制造 提供参考意见。 关键词:小型;仿人机器人;系统设计;方法 小型仿人机器人凭借着与人类相似的外表、行为等一些外在特征以及经济化、人性化的 功能,更容易激起科技界的研究欲望,这种情况下,很容易推动我国科学技术与信息技术的 发展。 1.分析小型仿人机器人的设计理念 1.1分析仿人机器人的智能系统 从宏观方面来看,小型仿人机器人的智能系统必须拥有较高的运行速度,因为机器人在 启动的时候,视频采集系统、命令发送系统、显示系统、发音系统以及信息处理系统都得同 时运行,因此,对CPU内核的速率要求较高;小型仿人机器人做出的所有行为都是以采集的 视频信息为基础的,所以智能系统的研究重点是视频处理系统,综上所述,仿人机器人的智 能系统所具备的程序功能比较完善,需要的内存空间也比较大,因此,保障智能系统的运行 速度,能更好的推广仿人机器人的使用。 从微观方面来看,小型仿人机器人的智能系统必须具备音频、通信、摄像头、A/D、多路IO以及显示屏等设备[1]。 1.2分析智能系统的硬件设备 上文中分析了智能系统宏观方面的需求,对于控制器,常见的DSP以及单片机等系统是 不能满足其需求的,因此,可以在CPU处理器的基础上添加外围功能电路,这样既解决了运 行空间不足、运行速度较慢的缺陷,又实现了低成本的目的。 1.3分析组织层的硬件设备 本次研制的小型仿人机器人,其关节被设置成了19个自由节,在之后的使用过程中肯定会提高其关节自由度,进而更好的实现手臂功能、行走功能、俯身功能等一系列仿人运动。 综上所述,一个仿人机器人的关节自由度至少为19个。 此外,组织层还得确保小型仿人机器人运动过程中的稳定性,当组织层接收到运动信号时, 必须将信号输送给每一个关节,共同展开运动。 1.4A/D转换电路 在当前的设计过程中,由于CMOS数模转换器的高效性,可以将模拟信号同步输进八个 通道中,同时还能将信号转换成二进制模式。在这种情况下,很好的保障了小型仿人机器人 的运行效率。 2.分析控制系统的硬件 执行层硬件,其主要功能是发布信息、采集信息、控制小型仿人机器人运动、转换电源等,这也是控制系统的外围电路。发布信息时,控制系统会自动连接智能系统,借助发音器、显示器等一些机械设备,将信息输送给外界;采集信息时,智能系统中的摄像头、传感器、 电位计均是获取信息的来源;控制小型仿人机器人运动时,当每一个关节得到运动指令后, 会有控制系统协调完成,确保机器人活动过程中的稳定性;转换电源时,控制系统会将电源 输送给每一个部件,保障智能系统、组织层均能正常运行。 3.小型仿人机器人中控制系统的设计原理及组成 3.1控制系统中的软件功能框图 此次研制小型仿人机器人时,研究人员的设计理念为模块化程序设c1-思想,通过程序的 编写、翻译、检验,机器人便可开始使用。控制系统中的软件功能框图为下图1,其主要包 括摄像头、视频处理器、通信设备、语音输出设备、A/D采样设备、主程序控制器等。

仿人机器人

仿人机器人 仿人形机器人是机器人以其外观等,在此基础上,人体的互动,让made-for-human工具或环境。在一般仿人机器人的头部有一个躯干,两臂和两条腿,虽然有些形式的仿人机器人可以模型只身体的一部份,例如,腰部以上。一些仿人机器人也许还有一个'面子',用“眼睛”和“口”。机器人是机器人,从美学的角度,就像一个人类建造的。 介绍 TOSY的TOPIO,仿人形机器人,可以打乒乓球。[1] 仿人形机器人是一个机器人,因为它可以适应它环境的改变或本身并继续达到它的目标。这是最主要的区别和其他种类的人形机器人。在此背景下,一些仿人形机器人的能力方面,其中可能包括: (如充电?自我维持自身) 自主学习(了解或?获得了新的能力,没有外界援助的基础上,调整战略环境和适应新环境,新情况) 避免有害的情况下人们0.9%,财产,本身 互动?安全人类和环境 像其他机械的机器人,人形参阅以下基本元件,工作太:感觉和计划和控制。因为他们尽量的模拟人类的结构和行为,他们是仿人机器人的自主系统,通常是复杂多其他种类的机器人。

这影响到所有的机器尺度复杂性(机械、空间、时间、功率密度、系统和计算复杂性),但这也较明显的在功率密度和系统复杂性鳞片。首先,目前多数的人形不够结实的话甚至跳,这一切发生的时候,因为功率/重量比,不如在人体内。动态平衡德克斯特能跳,但是差到目前为止。另一方面,有很好的算法人形建设几个方面,但它是非常困难的,合并所有成一个有效率的系统(该系统技术的计算复杂性高)。如今,这些是主要的困难,仿人机器人的发展要处理。 仿人机器人的设置是为了模仿一些相同的体力劳动和脑力劳动,人类经历日报。科学家和专家来自许多不同的领域,包括工程,认知科学,语言和语言学结合他们的努力创造一个机器人为类人是不可能的。他们的创造者的目标是:有一天机器人将能够彼此都清楚人类智力,原因和表现得像人类。如果机器人都有能力这样做,他们最终可能工作在凝聚力和人类创造出一个更有生产力及高质量的未来。另一个重要的好处是理解的发展,机器人的人体生物、心理过程,从看似简单的行为的概念走到意识和灵性。 目前有两种方法来创建一个机器人。第一个模型机器人像一套刚性连接,互联的关节。这种结构是一个类似,可以发现,在工业机器人。虽然这种方法用于大部分的仿人机器人的出现,一个新开展的研究工作,在一些使用在生物力学中获取的知识。在此一,仿人形机器人的底线是很相似的人类骨骼。 目的

工业机器人设计方案

工业机器人设计方案 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。工业机器人机械手是工业自动控制领域中经常遇到的一种控制对象。工业机器人机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。 目录 1.工业机器人特点有以下几个 2. 工业机器组成结构及工作原理 3.工业机器人有哪些 1.工业机器人特点有以下几个

(1)可编程。生产自动化的进一步发展是柔性启动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统中的一个重要组成部分。(2)拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。(3)通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。(4)工业机器技术涉及的学科相当广泛,归纳起来是机械学和微电子学的结合-机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展水平。

工业机器人操作机的设计方法和步骤

工业机器人操作机的设计方法和步骤 (1)确定工作对象和工作任务开始设计操作机之前,首先要确定工作对象、工作任务。 1)焊接任务:如果工作对象是一辆汽车或是一个复杂曲面的物体,工作任务是对其进行弧焊或点焊,则要求机器人的制造精度很高,弧焊任务对机器人的轨迹精度和位姿精度及速度稳定性有很高的要求,点焊任务对机器人的位姿精度有很高的要求,两种任务都要求机器人具备摆弧的功能, 同时要能在狭小的空间内自由地运动,具备防碰撞功能,故机器人的自由度至少为六个。 2)喷漆任务:如果工作对象是一辆汽车或是一个复杂曲面的物体,工作任务是喷涂汽车的内部和车门或是复杂曲面物体的表面,则要求机器人手腕要灵活,能够在狭小的空间内自由地运动,具备防碰撞功能;要求机器人能够在长时间内连续稳定可靠地工作;同时要求机器人具备光滑的流线型外表面,漆、气管线最好能从其横臂和手腕内部通过,使机器人外表不易积漆积灰,不会污染已喷好的工作对象,且漆、气管线也不易损坏;因喷漆机器人是在易燃易爆的工作环境中工作,故要具备防爆的功能。同时对机器人的轨迹精度和位姿精度及速度稳定性也有较高的要求。机器人的自由度至少应为六个。 3)搬运任务:如果工作对象比较笨重,工作任务是定点搬运,定位精度要求高,则对机器人的承载能力和定位精度有高的要求。如果工作对象比较轻巧,工作任务也是定点搬运,但要求轻拿轻放,且定位精度要求高,则对机器人的速度稳定和定位精度有高的要求。 4)装配任务:对机器人的速度稳定密和位姿精度有很高的要求。 有些机器人能完成多种工作任务,如MOTOMAN - SKI20系列机器人,既可以用于搬运也可以用 于点焊,具有快速、精巧、强有力和安全性高的特点;另一种MOTOMAN—SK6/ SK16系列机器人, 可以完成弧焊、搬运、涂胶、喷釉和装配多种任务,具有高速、精巧和可靠性高的特点。 设计新型机器人时,要充分考虑以上诸多因素,并应多参考国内外同类产品的先进机型,参考其设计参数,经过反复研究和比较,确定出所要机械部分的特点,定出设计方案。下面以一台六自由度交流伺服通用机器人为例讲一下设计过程。 (2)确定设计要求 1 )负载:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人 的负载。一般喷漆和弧焊机器人的负载为5?6kg。 2 )精度:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人未端的最大复合速度和机器人各单轴的最大角速度。 3 )精度:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人 的重复定位精度、如弧焊机器人的重复定位精度为土0.4mm ABB公司开发的Model 5003型喷漆机器人的重复定位精度为土1mm同时要确定构成机器人的零件的精度、臂体的尺寸精度、形位精度和传动链的间隙,如齿轮的精度和传动间隙;还要确定机器人上所用的元器件的精度,如减速器的传动精度、轴承的精度等等。

工业机器人毕业设计

工业机器人 摘要 在当今大规模制造业中,企业为提高生产率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上重要的成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动程度极大的工作,工作方式一般采取示教在线的方式。 本文将设计一台圆柱坐标型的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的大臂、小臂、底座和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台:在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、以及控制元件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

目录 摘要 1绪论 (1) 1.1 工业机器人研究的目的和意义 (1) 1.2 工业机器人在国内外的发展现状与趋势…………………….. 1.3 工业机器人的分类 1.4 本课题研究的主要内容 2 总体方案的确定 2.1 结构设计概述 2.2 基本设计参数 2.3 工作空间的分析 2.4 驱动方式 2.5 传动方式确定 3 搬运机器人的结构设计 3.1 驱动和传动系统的总体结构设计 3.2 手爪驱动气缸设计计算 3.3 进给丝杠的设计计算 3.4 驱动电机的选型计算

3.5 手臂强度校核 4 搬运机器人的控制系统 4.1 机器人控制系统分类 4.2 控制系统方案分析 4.3 机器人的控制系统方案确定 4.4 PLC及运动控制单元选型 5 结论与展望 致谢

工业机器人培养方案

工业机器人技术专业人才培养方案(2016级、三年制) 专业名称:工业机器人技术 专业代码: 招生对象:普通高中毕业生及同等学历者 学制与学历:三年制大专

一、制订人才培养方案的依据 为了适应社会经济建设的高速发展,满足社会对工业机器人技术应用高技能人才的需求,进一步推动高等职业教育体制改革,根据《国家中长期教育改革和发展规划纲要(2010-2020年)》、《国民经济和社会发展第十三个五年规划》、《机械工业十三五规划》、《教育部关于加强高职高专教育人才培养工作的意见》(教高[2000]2号)、《教育部关于以就业为导向深化高等职业教育改革的意见》(教高[2004]1号)与《关于全面提高高等职业教育教学质量的若干建议》(教高[2006]16号)、《教育部财政部关于支持高等职业学校提升专业服务产业发展能力的通知》(教职成[2011]11号)、《中国制造2025》及教育部关于发展高等职业教育相关文件精神,结合我公司实际情况,加强工业机器人技术专业的建设,制定了本专业人才培养方案。 二、培养目标与规格 培养目标:本专业培养拥护党的基本路线,德、智、体、美等全面发展,具有良好的科学文化素养、职业道德和扎实的文化基础知识。具有获取新知识、新技能的意识和能力,能适应不断变化的工作需求。熟悉企业生产流程,具有安全生产意识,严格按照行业安全工作规程进行操作,遵守各项工艺流程,重视环境保护,并具有独立解决非常规问题的基本能力。掌握现代工业机器人安装、调试、维护方面的专业知识和操作技能,具备机械结构设计、电气控制、传感技术、智能控制等专业技能,能从事工业机器人系统的模拟、编程、调试、操作、销售及工业机器人应用系统维护维修与管理、生产管理及服务于生产第一线工作的高素质高技能型人才。 (一)专业知识 1.具有常用电子元器件、集成器件、单片机的应用知识; 2.具有传感器应用的基本知识; 3.具有应用机械传动、液压与气动系统的基础知识; 4.具有PLC、变频器、触摸屏、组态软件控制技术的应用知识; 5.具有交流调速技术的应用知识; 6.具有机械系统绘图与设计的知识; 7.具有计算机接口、工业控制网络和自动化生产线系统的基础知识; 8.具有工业机器人原理、操作、编程与调试的知识; 9.具有检修工业机器人系统、自动化生产线系统故障的相关知识; 10.具有安全用电及救护常识。 (二)职业能力 1.读懂机器人应用系统的结构安装图和电气原理图的能力; 2.测绘简单机械部件生成零件图和装配图,跟进非标零件加工,完成装配工作的能力;

基于Android的智能聊天机器人的设计与实现

基于Android的智能聊天机器人的设计与实现 学院名称: 专业: 班级: 学号: 姓名: 任课教师: 安卓智能聊天机器人开发(一) 这个聊天机器人有点像前段时间很火的一个安卓应用——小黄鸡

应用的实现其实很简单,网上有许多关于智能机器人聊天的接口,我们只需要去调用对应的接口,遵守它的API开发规范,就可以获取到我们想要的信息 这里我使用的接口就是——图灵机器人(、tuling123、com/openapi/)

这个接口给我们返回的就是Json字符串,我们只需要对它进行Json字符串解析,就可以实现这个应用。 开发步骤: 首先我们需要到这个图灵机器人的官网去注册一个账号,她会给我们一个唯一Key,通过这个Key与对应的API开发规范,我们就可以进行开发了。 然后在这个(、tuling123、com/openapi/cloud/access_api、jsp)网址里可以找到相关的开发介绍 比如:请求方式,参数,返回参数,包括开发范例,一些返回的编码等信息

这里就是官方提供的一个调用小案例(JAVA),这里我也顺带贴一下 /** 调用图灵机器人平台接口 * 需要导入的包:commons-logging-1、0、4、jar、httpclient-4、3、1、jar、httpcore-4、3、jar */ public static void main(String[] args) throws IOException { String INFO = URLEncoder、encode("北京今日天气", "utf-8"); String requesturl = "、tuling123、com/openapi/api?key= 注册激活返回的Apikey&info="+INFO;

仿人形机器人的设计

赛伯乐人形机器人:第一部分- 设计 伊斯梅特·灿德德,穆罕默德·萨利姆·纳赛尔,蒋树声叶Tosunoglu萨布里佛 罗里达国际大学 机械工程学院 西弗拉格勒街10555 迈阿密,佛罗里达州33174 305-348-6841 cdede00阿2@https://www.360docs.net/doc/f413727641.html, 摘要 创造类人型机器人的目的是设计一个可以完成人类复杂动作,具有自主决策功能,能够帮助人类,甚至完成人类无法完成的任务的机器人。建立类人型机器人一直吸引了世界各地的科学家,虽然目的看似简单,但这是一个艰巨的任务。在这篇文章中,我们将呈现一种命名为赛伯乐的仿人机器人的概念,像双足动物一样行走,然后切换到四足的运动模式。第一部分的主要内容是,理想的系统标准,设计方案和最终设计选定以及通过运动学的分析得到仿人机器人的模拟方案。 关键字:仿人形机器人,赛伯乐机器人,双足,四足 1.引言 构建人形机器人的目的是简单地设计一个可以完成人类复杂运动和能够真诚地帮助人类的机器人。尽管其目的简单,但是要完成这个任务相当困难。例如前本田工程师实现了他们梦想建立一个进的仿人机器人,花了超过18年的时间,在这段时间里他们不断的学习,探究和实验,也走了不少的弯路。[1] 行走过程分为两个主要部分即静态和动态步行。静态步行人形机器人包括完整的移动身体的齿轮的基地脚区域,与此同时其他脚抬起并前进。这种机器人是从运动学角度(轨迹,或位移控制)来设计和控制的,结果是有相当大的脚以一个缓慢的速度行走。一个静态步行双足足动物,如本田P3的人形机器人,“不移动很像人并且能量效率低下。它移动与nonpendular外观相似,本田2000机器人在行走时需要大约2kw功率,他需要的功率是同样大小人类的肌肉工作功率的20倍[1]。动态稳定性需要快速行走和多样的地形。在行走时重心不在支撑腿区域内时,机器人在下一个动态平衡区域时就会失衡。 被动动态步行可增加到三分之一组不同类型的步行过程。无动力玩具士兵或企鹅早在一个世纪前就已经发明,它们可以沿着缓坡行走而没有任何电机的控制。通过对它们的腿和胳膊的长度和大众的仔细选择,这些玩具在行走时保持平衡而消耗很少的能量(来自重力)。这种模型以一种固定的方式行走,但他们的结构很简单。使用这个作为起点,可以添加更多的自由度,可以添加驱动和控制实现更加流畅的运动。 研究的目的是趋向于设计简单且能够实现更多功能。为此,我们选择了一个静态步行具有能力从两足改变到四足模式运动,以下部分提供一段到目前为止人形机器人研究历程。最后,介绍了最终设计理念的选择过程,最终设计的详细解释和提出离了初步的步态定义。 2、仿人机器人的发展历程 机器人的研究与应用在过去的三十年有了明显提高,机器人开始用于工业主要在装配生产线上。当他们发展得更智能的时候,在人们的日常生活中与人们的相互作用不断提高。 仿人机器人研究加速使得机器人智力水平的增加成为人类日常生活的一部分。以下阐述了机器人从简单的机械发展到动作形态都像人的类人型机器人的历程[2]。 古希腊的工程师ctesibus 让器官和水中与移动数字结合起来。 1774年瑞士发明家彼埃尔和Henri-louis jacquet-droz创造一些最复杂的机器人,他们的自动抄写员研制成功。这个栩栩如生的男孩可以画写任何长达40个字符的消息。一个女性的机器人演奏钢琴又是他们的另一重大发明之一。 1801约瑟提花发明了一种用打孔卡操作的纺织机器,这台机器被称为一个可编程纺织

仿人机器人发展概况 调查

仿人机器人发展概况 摘要:介绍了国内外仿人机器人的发展特点,以行走机构为主要内容详细分析了日本、美国等几种仿人机器人的主要技术及其技术指标,根据国外的样机设计,分析了仿人机器人的控制设计中的一些问题,就国外仿人机器人发展对中国仿人机器人发展的差异提出了看法。 关键词: 仿人机器人,技术,双足步行 1概述 仿人机器人在过去的10多年特别是近5年中发展迅猛,自从有关综述文章发表以来,情况有了很大改变。 行走机构是仿人机器人的关键技术,对于仿人机器人的研究是从对行走机构的研究开始的,日本旱稻田大学在1973年研制成功了最早具有记载的双足步行人形机构WABOT-1。本文重点论述世界范围内仿人机器人的近期发展,对行走机构的发展做重点介绍。 2 仿人机器人近期发展特点 现如今,世界各个国家都进行仿人机器人的研究,据韩国的一个经常更新的仿人机器人网站统计,2005年3月5日,世界上共有76各仿人机器人项目正在进行中,其中日本36个,美国10个,韩国7个,英国4个,中国3个,瑞典2个,澳大利亚、泰国、新加坡、保加利亚、伊朗、意大利、奥地利、俄罗斯等国各有1个,从统计数字可以看出当时日本在此领域的领先地位及其他各国的竞争实力。2005年2月18日出版的《科学》杂志上介绍了一种全新的行走机构,康奈尔大学、麻省理工学院和荷兰Delft理工大学的研究人员分别展示了基于这种行走机构的样机。 这种行走机构的概念来自一个简单的玩具:行走企鹅。这个企鹅臀部有两个没有动力的关节分别支撑两条直腿,该企鹅可以沿着斜坡摇摇晃晃的行走而下,这就是被动动力行走者。问题是在平地上企鹅不会行走,研究人员贡献在于设计了仅用少量驱动器就可以在平地上行走的行走机构。以Asimo为代表的传统仿人机器人每一个关节都用一个驱动器。新行走机构则不同,它的关节分为有驱动和无驱动两种,以康奈尔的设计为例,机器人每条腿的自由度为5个(臀1,膝2,踝2),其中只有一个踝关节用电机驱动,其他都是被动的,双手摆动各有一个自由度,通过机械结构由双腿带动,左腿带动右臂,右腿带动左臂。走动时,感知到左足触地时,右踝驱动右足踢开地面,使右腿摆动至左腿前方,完成一步,反之亦然。新行走机构的特点是节省能源,据说只需要通常行走机构的十分之一的动力,另外,新型步行机器人走路时一起一伏,跟人没什么两样。Delft设计和康奈尔的设计大致相同,只是采用气动驱动,MIT的设计则为每条腿有6个自由度,其中两个踝部关节用电机驱动,其他都是被动的。从录像看,康奈尔和的机器人的行走姿态是令人满意的,但似乎它们只能有一种走法.不象每Delft

工业机器人设计与实现毕业设计

工业机器人毕业设计 目录 摘要 1绪论 (1) 1.1 工业机器人研究的目的和意义 (1) 1.2 工业机器人在国内外的发展现状与趋势…………………….. 1.3 工业机器人的分类 1.4 本课题研究的主要内容 2 总体方案的确定 2.1 结构设计概述 2.2 基本设计参数 2.3 工作空间的分析 2.4 驱动方式 2.5 传动方式确定 3 搬运机器人的结构设计 3.1 驱动和传动系统的总体结构设计 3.2 手爪驱动气缸设计计算 3.3 进给丝杠的设计计算 3.4 驱动电机的选型计算 3.5 手臂强度校核

4 搬运机器人的控制系统 4.1 机器人控制系统分类 4.2 控制系统方案分析 4.3 机器人的控制系统方案确定 4.4 PLC及运动控制单元选型 5 结论与展望 致谢

1 绪论 1.1 工业机器人研究的目的和意义 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统 (FMS)、自动化工厂(FA)、计算机集成制 造系统(CIMS)的自动化工具。广泛采用 工业机器人、不仅提高产品的质量与数量而且 也保障人身安全、改善劳动环境、减轻劳动强 度、提高劳动生产率、节约材料消耗以及降低 生产成本有着十分重要的意义。与计算机、网 络技术一样,工业机器人的广泛应用正在日益 改变着人类的生产和生活方式。 20世纪80年代以来,工业机器人技术逐渐成熟、并很快得到推广,目前已经在工业生产的许多领域得到应用。在工业机器人逐渐得到推广和普及工程中,下面三个方面的技术进步起着非常重要的作用。 1驱动方式的改变 20世纪70年代后期,日本安川电动机公司研制出了第一台全自动的工业机器人而此前的工业机器人基本上采用液压驱动方式。但与采用液压驱动的机器人相比,采用伺服电动机驱动机器人在响应速度、精度、灵活性等方面都有很大的提高。因此它逐步代替了采用液压驱动的机器人成为工业机器人驱动方式的主流。在此过程中,谐波减速器、RV减速器等高性能减速机构的发展也功不可没。近年来,交流伺服驱动已经逐渐代替传统的直流伺服驱动方式,直线电动机等新型驱动方式在许多应用领域也有了长足发展。 2信息处理速度的提高 机器人的动作通常是通过机器人的各个环节的驱动电动机的运动而实现的。为了是机器人完成各种复杂动作,机器人控制器需要进行大量计算并在此基础上向机器人的各个环节的驱动电动机发出必要的控制指令。随着信息技术的不断发展,CPU的计算能力有了很大的提高,机器人控制器的性能也有了很大提高,高性能机器人控制器甚至可以同时控制20多个关节。机器人控制性能的提高,也进一步促进了工业机器人本身性能的提高并扩大了工业机器人的应用范围。近年来,随着信息技术和网络技术的发展已经出现了多台机器人通过网络共享信息并在此基础上进行协调控制的技术趋势。 1.2 工业机器人在国内外的发展现状与趋势 目前,工业机器人有很大一部分应用于制造业的物流搬运中,极大的促进物流自动化,随着生产的发展,搬运机器人的各方面的性能都得到了很大的改善和提高。气动机械手大量应用到物流搬运机器人领域。在手爪的机械结构方面根据

智能聊天机器人

智能聊天机器人(小黄鸭)软件开发 课程名:模糊系统 小组成员:曹杰何敢谢新明 任课教师:於世为

目录 目录 ............................................................................................. 错误!未定义书签。 一、小黄鸭的背景 (2) 二、小黄鸭的原理 (2) 2.1 训练 (2) 2.1.1分词方法 (2) 2.1.2词库设计 (3) 2.2 匹配 (4) 三、属于自己的小黄鸭制作(简要步骤+截图说明) (6) 3.1 代码编写 (6) 3.2构建运行环境 (6) 3.3申请获取官方API Key (6) 3.4生成项目 (6) 3.5修改源代码 (6) 3.6修改项目其他项 (6) 四、文档附件说明 (7) 五、小黄鸭代码(含小组接口设计) (12) 5.1 AboutBox1.cs文件 (12) 5.2Form1.cs文件 (13) 5.3Program.cs文件 (17) 5.4 Simjosn.cs文件 (22) 5.5 AssemblyInfo.cs文件 (23) 5.6 AboutBox1.Designer.cs文件 (23) 六、总结 (29) 、

一、小黄鸭的背景 小黄鸭是根据人人网上的小黄鸡为模板,而进行的一个开发,小黄鸭与小黄鸡应该来说是一样的,小黄鸭智能聊天机器人也是一样采用通过调用韩国智能聊天机器人Simsimi的数据库来,当然,前提是获取到了网络接口(这个应该很容易),进而实现计算机和软件之间的通信 二、小黄鸭的原理 AI聊天机器人小黄鸡的工作可以被分成两个部分:训练+匹配。(其实很多AI的东西都可以被这么划分,比如人脸识别,语音识别等等) 2.1 训练 Simsimi中的“教学”,就是训练的过程,目的在于构建或是丰富词库。 流程描述如下: S1:用户通过教学界面向系统提出一个话题与相应应答; S2:系统对该话题进行分词,判断该话题在系统知识库中应存放的位置; S3:在系统知识库中添加该话题及相应应答。 可以看到,这里涉及到两个问题:给出一个话题,系统是如何分词的?词库要如何设计才能又快又准地应答? 2.1.1分词方法 有人认为我教小黄鸭“埃菲尔铁塔上45度角仰望星空”回答是“呵呵”,那下次它再看到“埃菲尔铁塔上45度角仰望星空”整句话的时候才会有相应回答。但实际上,下次只要它看到“埃菲尔铁塔”就会“呵呵”了好嘛。 这是因为聊天机器人的存储并不以句子为单位(那样太费时费空间),而是以词。于是,分词,几乎成为聊天机器人的核心。 英文分词好说,人家用空格什么的就搞定了,但中文不一样,对于一句话,人们可以用自己的认识区分词语,而机器人要怎么做,就是中文分词算法的研究范畴了。

仿人机器人自主学习之路

仿人机器人的自主学习之路-机械制造论文 仿人机器人的自主学习之路 文/罗定生 罗定生北京大学机器感知与智能教育部重点实验室副教授 中国电子学会教育工作委员会副秘书长使机器人具备智能,目前对人类来说还是一项巨大挑战,甚至“智能的本质是什么?”这个问题都还没有确切的答案。但是以人的智能行为能力为蓝本,从机器人环境知觉组织、交互与协作、知识获取与推理、自主认知与高级决策等角度展开机器人的智能性研究,正成为现阶段机器人领域研究的主题。设计和制造机器人并使之具有类人的智能,是人类文明进步与科技发展的目标之一。自上世纪中叶第一台可编程机械手及工业机器人问世以来,机器人的研究取得了丰硕的成果,并在包括工业、医学、农业、建筑业、军事等领域得以广泛应用。由于机器人技术综合了多个学科的研究成果,代表了高科技发展的前沿,因此机器人成为体现各国科技实力的一项重要指标,引发了全球研究的热潮。 探索的步伐从未停歇 综观机器人研发的历程,从最早我国西周出现的“歌舞伶人”、古希腊人发明的“自动机(Automata)”,到当下各国研发的各类先进的机器人,人类对机器人的研究经历了从探索概念原型、面向程控机械、注重自主功能到强调高智能水平等发展阶段。 1954年,第一台可编程机器人(机械手)和1959年第一台工业机器人相继问世,标志着真正意义上的机器人诞生;1968年美国斯坦福研究所研制出名为Shakey的第一台自主移动机器人,机器人以独立可移动个体的身份出现在世人

面前;1969年日本早稻田大学加藤一郎实验室研制了第一台以双脚走路的人形机器人,与人们长期期待的真正像人一样的机器人梦想实现了接轨。 机器人学涉及众多学科的技术革新以及来自人们生产生活的大量实际需求,促使机器人技术飞速发展。然而,重中之重是机器人行业巨大潜在价值引发了各国政府的强大支持、各大公司及科研院所的产学研整合。正是这些力量的汇聚,架构了一个前景广阔的机器人产业。 随着与机器人学紧密相关各学科的不断突破和迅猛发展,机器人的研发有了坚实的基础。20世纪末,一系列各种各样各具特色的机器人井喷式地涌现。在2015年6月份由美国国防先进项目研究局(DARPA)举办的挑战赛上,登台亮相了一批来自世界各国的先进机器人。几乎每一款先进机器人的研制都有其相对应的强大力量作支撑——美国国防先进项目研究局(DARPA)支持下的波士顿动力研究所(Boston Dynamics)大狗(BigDog)机器人、Petman机器人、美国麻省理工学院(MIT)Atlas机器人与猎豹(Cheetah)机器人、欧盟框架计划(EUFP6, EUFP7, Horizon 2020)支持下的iCub 、日本产业技术综合研究所(AIST)HRP系列机器人、日本本田公司的ASIMO机器人,以及韩国高等科技研究院的HUBO机器人等。 尽管机器人的研发取得了长足的进展,然而,如何使机器人具备智能仍然是一项具有极大挑战的课题。而首先要回答的问题便是:机器人能否具备智能?这是一个哲学性质的命题,对这一命题的完美解答,是以另一个问题的回答为基础的,那就是“智能的本质是什么?”(该问题与物质、宇宙、生命被学者并列为自然界的四大奥秘)。目前看来,在包括脑科学与认知科学在内的众多相关学科取得更大的根本性突破进展之前,该问题是无法予以完美解答的。

相关文档
最新文档