电磁感应中动量定理和动量守恒定律的运用

电磁感应中动量定理和动量守恒定律的运用
电磁感应中动量定理和动量守恒定律的运用

(4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在

的平面高考物理电磁感应中动量定理和动量守恒定律的运用向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值1以初速度(1)如图1所示,半径为rv,一电阻也为的匀强磁场中,两轨道间距为L滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:为R的电阻,整个轨道处在竖直向下的磁感应强度为B00不计摩擦。时的速度为v,求:MN质量为m的金属棒ab 从处由静止释放经时间t到达轨道最低点cdR0

D.1:1 B.1:2 C.2:1 A.1:1 过程中通过棒的电量。)棒从(1ab到cd cd(2)棒在处的加速度。

2如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边(2)),那么线圈vv(v垂直磁场边界滑过磁场后,速度为﹤(长为aaL)的正方形闭合线圈以初速度v﹤00倍,导轨右侧水平且处A.完全进入磁场中时的速度大于(v3FH间宽度的、EFGH 等高平行放置,EG间宽度为/+v)2 5: 如图所示,光滑导轨0

habm2 )+v完全进入磁场中时的速度等于( B.v/ 的金属棒,现让从离水平轨道cd于竖直向上的匀强磁场中,左侧呈弧形升高。ab、是质量均为0全过程中感应电流产生的焦耳棒的最终速度;(2) (1)ab高处由静止下滑,设导轨足够长。试求:、cd 2 /+vvC.完全进入磁场中时的速度小于()0以上情况均有可能 D. 热。

质量,垂直于导轨放置AB导体棒电阻不计d导轨宽在水平光滑等距的金属导轨上有一定值电阻)3(R,,AB,求vB.磁感应强度为,整个装置处于垂直导轨平面向上的匀强磁场中m ,为现给导体棒一水平初速度0. 在导轨上滑行的距离

如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为8.(12丰台期末12分)如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量6、:,已知两根导体棒的质量均为m、电阻均为R,L,导轨上平行放置两根导体棒ab 和cd构成矩形回路。时,的速度达到10m/sa,释放b,当b相同的导体棒a和b,与导轨紧密接触且可自由滑动。先固定,导体棒均可沿导轨无摩其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B、ab1s再释放a,经过后,a的速度达到12m/s,则(1)此时的速度大小是多少?(2)若导轨很长,求:v,两导体棒在运动中始终不接触。ab擦的滑行。开始时,导体棒cd静止、有水平向右的初速度0棒最后的运动状态。b 中电流的大小和方向;1)开始时,导体棒ab(达到最大速度的过程中,矩形回路产生的焦耳热;2)从开始到导体棒cd (

3cd(3)当ab棒速度变为棒加速度的大小。v时,

04

的匀强磁场与导轨所在平面垂直,B=0.5T:两根平行的金属导轨,固定在同一水平面上,磁感强度7、的平行金属杆甲、乙导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均为m=0.10kg

时刻,R=0.50可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为Ω。在t=0

作用于金属杆甲上,使金属杆在导两杆都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F

a=1.37 m/sT=5.0s轨上滑动。经过,金属杆甲的加速度2,求此时两金属杆的速度各为多少?

为MNQP1/4圆弧部分竖直放置、直的部分固定于水平地面,R相距L的光滑金属导轨,半径为的9、如图,

静cd垂直导轨且接触良好,cd范围内有方向竖直向下、磁感应强度为B的匀强磁场.金属棒ab和电m、cd没有接触.已知ab的质量为ab止在磁场中,从圆弧导轨的顶端由静止释放,进入磁场后与.、电阻为r.金属导轨电阻不计,重力加速度为g3m阻为r,cd的质量为到达圆弧底端时对轨道的压力大小(1)求:ab L b ab(2)在图中标出刚进入磁场时cd棒中的电流方向B ab速度的一半,(3)若cd离开磁场时的速度是此刻ad 离开磁场瞬间,cdab受到的安培力大小求:QN R

c MP

,放在如图所示b棒的质量为Mb,a棒的质量为m,10、(20分)如图所示,电阻均为R的金属棒a.的四分之一圆弧轨道,右端的平行光滑的金属轨道,左端为半径为r分)如图所示,宽度为L12.(201光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;的竖的半圆轨道,中部为与它们相切的水平轨道。水平轨道所在的区域有磁感应强度为B为半径为r2棒始终不相碰。棒与b开始给a棒一水平向左的的初速度v,金属棒a.b 与轨道始终接触良好.且a0由静止开b置于水平轨道上,另一根质量为M的金属杆直向上的匀强磁场。一根质量为m的金属杆a 请问:始终运动(b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点始自左端轨道最高点滑下,当b 1)当a.b在水平部分稳定后,速度分别为多少?损失的机械能多少?(棒的b,a、mg,此过程中通过a的电荷量为q且a、b未相撞),并且a在最高点对轨道的压力大小为b棒已静止在水平轨道上,且棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,(2)设ba 棒不相碰,然后达到新的稳定状态,最后a的末速度为多少?,b棒与a 运动到右端半圆轨道最高点过程中,求:由静止释放到aR、R,其余部分电阻不计。在b电阻分别为21? )整个过程中产生的内能是多少(3

的最大加速度是多大?)在水平轨道上运动时b(1bB到达右端半圆轨道最高点过程中释放到a(2)自b

系统产生的焦耳热是多少?ar 1

r2 a刚到达右端半圆轨道最低点时b的速度是多大?(3)

,在左端斜轨道部分高如图所示放置,间距为d=100cm13.两足够长且不计其电阻的光滑金属轨道,圆弧分11.(18)1/4RL如图所示,电阻不计的两光滑金属导轨相距,放在水平绝缘桌面上,半径为的,b处放置一金属杆a,斜轨道与平直轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆h=1.25m,方向竖直向下的匀强磁场中,末端与桌面部分处在竖直平面内,水平直导轨部分处在磁感应强度为B以初速bB=2T。现杆Rb电阻R=2Ω,=5Ω,在平直轨道区域有竖直向上的匀强磁场,磁感强度杆A.的cdab边缘平齐。两金属棒、垂直于两导轨且与导轨接触良好。棒cdr2 mab质量为,电阻为,棒ba;的平均电流为0.3Aa杆滑到水平轨道过程中,通过杆bv度=5m/s 开始向左滑动,同时由静止释放杆a,从圆弧顶端无初速度释。重力加速度为,电阻为质量为mrgab 静止在水平直导轨上,棒cd。开始棒0,其)运动方向为正b运动图象如图所示(a下滑到水平轨道后,以aa下滑到水平轨道时开始计时,A.ab始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒cd放,进入水平直导轨后与棒2,求,g=10m/s中m,=2kgm=1kg 与棒3: 1落地点到桌面边缘的水平距离之比为。求:cd ba b v;a落到水平轨道瞬间杆a的速度(1)杆离开导轨时的速度大小;cd和棒ab)棒1(B a

在斜轨道上运动的时间;2)杆a ()棒2(在水平导轨上的最大加速度;cd d R

b产生的焦耳热。(3)在整个运动过程中杆(3)两棒在导轨上运动过程中产生的焦耳热。c

14.(12分)如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水15.(2014届海淀期末10分)如图21所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计。平导轨左端有宽度为d、方向竖直向上的匀强磁场I,右端有另一磁场II,其宽度也为d,但方向竖直水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为与导轨垂直放置,bB,方向竖直向上;磁场Ⅱ的磁感应强度大小为m向下,磁场的磁感强度大小均为B。有两根质量均为、电阻均为R的金属棒a和b2B,方向竖直向下。质量均为m、电阻均为R的金属棒a和bC棒置于磁场II中点C、D处,导轨除、D两处(对应的距离极短)外其余均光滑,两处对棒可产生总垂直导轨放置在其上,金属棒b置于磁场Ⅱ的右边界CD处。现将金属棒棒从弯曲导轨某处由静止释放。的最大静摩擦力为棒重力的K倍,a当只有一根棒作切割磁感线运动时,a

从弯曲导轨上某一高处由静止释放,使其沿导轨运动。设两金属棒运x??v?动过程中始终与导轨

垂直且接触良好。它速度的减小量与它在磁场中通过的距离成正比,即。求:1h(1棒运动,判断时会使bb 棒的运动方向并求出h)若a棒释放的高度大于,则a棒进入磁场I00mg,将金属

棒)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为a从距水平面高(15

为多少?v度h处由静止释放。求:0Iv的速度从磁场a进入磁场I,结果棒以h2()若将a 棒从高度小于的某处释放,使其以速度00?金属棒a刚进入磁场Ⅰ时,通过金属棒b的电流大小;2?若金属棒a在磁场Ⅰ内运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放中穿出,求在为多少?Pbqb棒穿过磁场I过程中通过棒的电量和两棒即将相碰时棒上的电功率a b时的高度h应满足的条件;M

B (2)若水平段导轨是光滑的,将金属棒a仍从高度h 处由静止释放,使其进入磁场Ⅰ。设两磁场区域B a N

足够大,求金属棒 a在磁场Ⅰ内运动过程中,金属棒b中可能产生焦耳热的最大值。P C b I II

Q D

M

C

N

Q

图21

参考答案:④1、

,联立以上各式解得:

2、

(2)根据系统的总能量守恒可得:

以及导轨所组成的闭合回路中产生感应电流,于)棒先向下运动时,在当和16、解析(

,分别是棒后,经过时间棒受到向下的安培力,t棒受到向上的安培力,且二者大小相等。释放4

以为研究对象,根据动量定理,则有:和

S

=2:1:S。21

自由下滑,机械能守恒:(1)5、

代入数据可解得:

棒产生的加速度、,)在棒向下运动的过程中,棒产生的加速度(2

逐渐减小,感应电流也逐渐减小,则。当棒的速度与棒接近时,闭合回路中的

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

电磁感应中动量定理和动量守恒

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN 间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静 止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。 求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v ﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

高中物理典型问题分析:两道与动量结合的电磁感应问题!

高中物理典型问题分析:两道与动量结合的电磁感应问题! 与传统高考试题不同,浙江新高考选考试卷中,将电磁感应与动量结合是一种常见题型。 ?例题: 1、如图,光滑平行异形导轨ABCD 与abcd,导轨的水平部分BCD处于竖直向上的匀强磁场中,BC段导轨宽度为CD段轨道宽度的2倍,轨道足够长。金属棒P的长度刚与BC段轨道的宽度相同,金属棒Q 的长度刚好与CD段轨道宽度相同,金属棒P的电阻金属棒Q的电阻的2倍。将质量都为m 的金属棒P 和Q分别置于轨道上的AB 和CD段,将P棒距水平轨道高为h 的地方由静止释放,使其自由下滑,求: (1)P棒刚进人磁场时的速度v0 (2)P棒和Q棒的最終速度。 (3)整个过程中P棒上产生的焦耳热。 2、科研人员设计了一种磁性板材,可以在其周围产生勾强磁场,现为测试 其性能,做了如下实验。将足够长的磁性板固定 在小车A 上,产生的匀强磁场磁感应强度大小为 B,方向竖直向上,如图甲所示,磁性板上表面 光滑,与小车的总质量为M,小车静止于光滑水 平面上;小车右侧有一质量为m的绝缘光滑滑块 C,滑块上表面与磁性板处于同一水平高度上; 滑块C上有一质量也为m、匝数为n、边长为L、 总电阻为R 的正方形线框D.俯视图如图乙所示。现让线框D、滑块C一起以v0 向左匀速运动,与A 发生碰撞(不计一切摩擦)。 (1)锁定小车A,C与A 碰撞后立即停止运动,当D进人磁场瞬间,求线圈产生感应电流的大小和方向(从上往下看) (2)锁定小车A,C与A 碰撞后立即停止运动,当D刚好完全进人磁场恰好

静止,求线圈产生的焦耳热。 (3)释放小车A ,C与A 碰撞后黏在一起,当D还未完全进入磁场时已与小车保持相对静止,求线圈产生的焦耳热。 ?参考答案: 第1题:

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点 电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。本文结合例题分析应用动量定理解决电磁感应问题的思维起点。 一、 以累积公式q=It 结合动量定理为思维起点 直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。在时间△t 内安培力的冲量BLq t BLI t F =?=?,式中q 是通过导体截面的电量。利用该公式结合动量定理是解答此类问题思维起点。 例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。 析与解:当右棒运动时,产生感应电动势,两棒中有感 应电流通过,右棒受到安培力作用而减速,左棒受到安培力 作用而加速。当它们的速度相等时,它们之间的距离最大。 设它们的共同速度为v ,则据动量守恒定律可得: mv 0=2mv ,即02 1v v = 对于左棒应用动量定理可得: BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2= ? 由上述各式可得: x =220L B R mv 。 v

浙江选考版高考物理一轮复习增分突破五电磁感应与动量观点综合问题.docx

增分突破五电磁感应与动量观点综合问题 增分策略 1.应用动量定理解题的基本思路 (1)确定研究对象,在中学阶段用动量定理讨论的问题,其研究对象一般仅限于单个物体或能看成一个物 体的系统。 (2)对物体进行受力分析,可以先求每个力的冲量,再求各力冲量的矢量和——合力的冲量;或先求合力,再求其冲量。 (3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号。 (4)根据动量定理列方程,如有必要还需要其他补充方程。最后代入数据求解。 2.应用动量定理的注意事项 (1)一般来说,用牛顿第二定律能解决的问题,用动量定理也能解决,如果题目不涉及加速度和位移,用动量定理求解更简单。动量定理不仅适用于恒力,也适用于变力。为变力时,动量定理中的力F应理解为变力在作用时间内的平均值。 (2)动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中 的F是物体或系统所受的合力。 3.电磁感应与动量的结合主要有两个考点 (1)对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在 磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理F安Δt=ΔP,而又由于F 安Δt=BILΔt=BLq,q=NΔΦR总=NBLxR总,ΔP=mv2-mv1,由以上四式将流经杆的某一横截面积的电荷量q、杆位移x及速度变化结合一起。 (2)对于双杆模型,除受到的安培力之外,受到的其他外力之和为零时,与动量守恒结合考查较多。 典例1如图所示,一质量为m的金属杆ab,以一定的初速度v0从一光滑平行金属轨道的底端向上滑 行,轨道平面与水平面成θ角,两导轨上端用一电阻相连,磁场方向垂直轨道平面向上,轨道与金属杆ab 的电阻不计并接触良好。金属杆向上滑行到某一高度h后又返回到底端( ) A.整个过程中合外力的冲量大小为2mv0 B.上滑过程中电阻R上产生的焦耳热等于下滑过程中电阻R上产生的焦耳热

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

电磁感应动量定理应用

电磁感应与动量的综合 1.安培力的冲量与电量之间的关系: 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即t F I ?=安 冲 而F =B I L (I 为电流对时间的平均值) 故有:安培力的冲量t L I B I ??=冲 而电量q =I Δt ,故有BLq I =冲 因只在安培力作用下运动 BLq =mv 2-mv 1 BL P q ?= 2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ?Φ=????Φ=??=??= 若磁感应强度是匀强磁场,R BLx R S B R q =?=?Φ= 以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。 例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分 布在宽度为L 的区域内,现有一个边长为a (a

动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版

A B R v 0 B 导轨与导体棒问题 一、单棒问题 【典例1】如图所示,AB 杆受一冲量作用后以初速度v 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止.AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2 C ,求:上述过程中 (g 取10m/s 2 )(1)AB 杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s 时,其加速度为多大? 【答案】(1) 0.1m ;(2)0.9s ;(3)12m/s 2 . (2)根据动量定理有:﹣(F 安t+μmgt )=0﹣mv 0 而F 安t=BLt=BLq ,得:BLq+μmgt=mv 0, 解得:t=0.9s (3)当杆速度为2m/s 时,由感应电动势为:E=BLv 安培力为:F=BIL ,而I= 然后根据牛顿第二定律:F+μmg=ma 代入得: 解得加速度:a=12m/s 2 , 25.(20分) 如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。 如图(b),已知管道中固定着两根平行金属导轨MN 、PQ ,两导轨间距为r ;运输车的质量为m ,横截面是半径为r 的圆。运输车上固定着间距为D 、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R ,每段长度为D 的导轨的电阻也为R 。其他电阻忽略不计,重力加速度为g 。 (1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ; (2)在水平导轨上进行实验,不考虑摩擦及空气阻力。 ①当运输车由静止离站时,在导体棒2后间距为D 处接通固定在导轨上电动势为E 的直流电源,此时导体棒1、2均处于磁感应强度为B ,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象) ②当运输车进站时,管道内依次分布磁感应强度为B ,宽度为D 的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo 从如图(e)通过距离D 后的速度v 。 【典例3】 如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

电磁感应中动量定理和动量守恒定律的运用

高考物理电磁感应中动量定理和动量守恒定律的运用(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方为 R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,R D质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。两轨道间距为 cd时的速度为 MN间接有阻值 L,一电阻也为 V,不计摩擦。求: (4)如图3所示,在水平面上有两条导电导轨MN、PQ导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁 感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的 电阻均为R两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆 V0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: X n X X X F X jh> A.1:1 B.1:2 C.2:1 D.1:1 X X X X X K K --- 片 X X X X X K X M K 户TT X X X X X X ■3 1以初速度 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为长为a (a < L)的正方形闭合线圈以初速度V0垂直磁场边界滑过磁场后, A.完全进入磁场中时的速度大于( B.完全进入磁场中时的速度等于( C完全进入磁场中时的速度小于( D.以上情况均有可能V0+V) V0+V) V0+V) 12 /2 /2 L的区域内,现有一个边速度为 V(V< V0),那么线圈 L- X X X X [K X M j X X 1 X X :X X 图2 X : X : X * * X ? 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向 上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求:(1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳 热。 ,导体棒AB垂直于导轨放置,质量 V0,求AB (3)在水平光滑等距的金属导轨上有一定值电阻R导轨宽d电阻不计 为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度在导轨上滑行的距离.

动量守恒定律的典型例题

动量守恒定律的典型例题 【例1】 把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? [] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】 一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s 2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】 一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】 质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二

个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何? 【例5】 甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】 两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少? 【分析】 由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系

电磁感应中动量定理和动量守恒定律的运用

. . 高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

动量定理动量守恒在电磁感应中导轨与导体棒的应用解析版

A B R v0 B 导轨与导体棒问题一、单棒问题 【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=,电阻为R=2Ω,其余的电阻不计,磁感强度B=,棒和导轨间的动 摩擦因数为μ=,测得杆从运动到停止的过程中通过导线的电 量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s时,其加速度为多大 【答案】(1);(2);(3)12m/s2. (2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0 而F安t=BLt=BLq,得:BLq+μmgt=mv0, 解得:t= (3)当杆速度为2m/s时,由感应电动势为:E=BLv 安培力为:F=BIL,而I= 然后根据牛顿第二定律:F+μmg=ma 代入得: 解得加速度:a=12m/s2, 25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。

如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电 阻为R,每段长度为D的导轨的电阻也为R。其 他电阻忽略不计,重力加速度为g。 (1)如图(c),当管道中的导轨平面与水平面 成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ; (2)在水平导轨上进行实验,不考虑摩擦及空气阻力。 ①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象) ②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。 【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则 ( ) A.随着ab运动速度的增大,其加速度也增大 B.外力F对ab做的功等于电路中产生的电能

相关文档
最新文档