水温控制系统设计

水温控制系统设计
水温控制系统设计

毕业设计(论文)

题目:水温控制系统设计与研究系:信息工程系

摘要

本设计以89c52单片机为核心,采用了温度传感器AD590,A/D采样芯片ADC0804,可控硅MOC3041及PID算法对温度进行控制。该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。本设计实现了水温的智能化控制以及提供完善的人机交互界面及多机通讯接口,系统由前向通道模块(即温度采样模块)、后向控制模块、系统主模块及键盘显示摸块等四大模块组成。本系统的特点在于采用PC机及普通键盘实现了多机通信。关键字:单片机;温度传感;信号处理

Abstract

The single computer 89c52 is used as a core in this design. Some important IC sush as AD590 ADC0804 MOC3041 was used in this system.we adopt PID to control the temperature. The system include four part---The previous model ,The last model ,keybord model ,The main control model. Adopt annularity pulse distributor to come true to Stepper Motor speed regulation , the corner under the control of. Display having realized time , the temperature here on the basis, And realize under the control of, display to the electric motor by PC machine

Key word:SCM; Temperature sensing; Signal processing

目录

第一章引言 (1)

1.1总体方案论证 (2)

第二章模块方案论证 (2)

2.2.1控制方法论证 (3)

2.2.2 系统组成论证 (4)

2.2.3 单片机系统选择 (4)

2.2.4 温度控制方案论证 (4)

2.2.5 键盘显示电路论证 (6)

第三章总体设计 (7)

第四章硬件电路设计与计算 (8)

4.1 主机控制部分 (8)

4.2 温度采样电路 (8)

4.3 温度控制电路 (10)

4.4 键盘与数字显示部分 (10)

4.5 微机控制及图形显示部分 (12)

第五章软件设计 (13)

5.1 键盘显示程序流程: (13)

5.2 主程序流程图: (14)

第六章测试方法与测试结果 (16)

6.1 系统测试仪器: (16)

6.2 测试方法: (16)

6.3 测试结果 (16)

第七章设计总结 (18)

附录 (19)

致谢 .......................... 错误!未定义书签。参考文献 . (27)

第一章引言

该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。所以,本例采用以单片机为核心的直接数字控制系统。

本设计的任务与要求为一升水由1kw的电炉加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。主要性能指标

a.温度设定范围:30-90℃,最小区分度为1℃。

b.控制精度:温度控制的静态误差≤1℃。

c.用十进制数码显示实际水温。

d.能打印实测水温值。

扩展功能

a.具有通信能力,可接受其他数据设备发来的命令,或将结果

传送到其他数据设备。

b.采用适当的控制方法实现当设定温度与环境温度突变时,减

小系统的调节时间和超调量。

c.温度控制的静态误差≤1℃。

d.能自动显示水温随时间变化的曲线。

1.1总体方案论证

(1)、方案一:此方案是采用传统的模拟控制方法(方案框图如图2-1-1),选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定加热或者不加热。器特点是电路简单,易于实现,但是系统所得结果的精度不高并且调节动作频繁,系统静差大,不稳定。系统受环境的影响大,不能实现复杂的控制算法,而且不易实现对系统的控制及对温度的显示,人机交换性能差。

图2-1-1模拟控制框图

(2)、方案二:采用单片机89c52为核心。采用了温度传感器AD590采集温度变化信号,A/D采样芯片ADC0804将其转换成数字信号并通过单片机处理后去控制温度,使其达到稳定。使用单片机具有编程灵活,控制简单的优点,使系统能简单的实现温度的控制及显示,并且通过软件编程能实现各种控制算法使系统还具有控制精度高的特点。该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。所以,本例采用以单片机为核心的直接数字控制系统。

比较两种方案,方案二明显的改善了方案一的不足及缺点,并具有控制简单、控制温度精度高的特点。因此本设计电路采用方案二。

第二章模块方案论证

本电路以单片机为基础核心,系统由前向通道模块、后向控制模块、系统主模块及键盘显示摸块等四大模块组成。现将各部分主要元件及电路做以下的论证。

2.2.1控制方法论证

由于水温控制系统的控制对象具有热存储能力大,惯性也较大的特点。

水在容器内的流动或热量传递都存在一定的阻力,因而可以归于具有纯滞后

的一阶大惯性环节。一般来说,热过程大多具有较大的滞后,它对任何信号

的响应都会推迟一段时间,使输出与输入之间产生相移。对于这样一些存在

大的滞后特性的过渡过程控制,一般来说可以采用以下几种控制方案:

a.输出开关量控制

对于惯性较大的过程可以简单地采用输出开关量控制的方法。这种方法

通过比较给定值与被控参数的偏差来控制输出的状态:开关或者通断,因此

控制过程十分简单,也容易实现。但由于输出控制量只有两种状态,使被控

参数在两个方向上变化的速率均为最大,因此容易硬气反馈回路产生振荡,

对自动控制系统会产生十分不利的影响,甚至会因为输出开关的频繁动作而

不能满足系统对控制精度的要求。因此,这种控制方案一般在大惯性系统对

控制精度和动态特性要求不高的情况下采用。

b.比例控制(P控制)

比例控制的特点是控制器的输出与偏差成比例,输出量的大小与偏差之

间有对应关系。当负荷变化时,抗干扰能力强,过渡时间短,但过程终了存

在余差。因此它适用于控制通道滞后较小、负荷变化不大、允许被控量在一

定范围内变化的系统。使用时还应注意经过一段时间后需将累积误差消除。

c.比例积分控制(PI控制)

由于比例积分控制的特点是控制器的输出与偏差的积分成比例,积分的

作用使得过渡过程结束时无余差,但系统的稳定性降低。虽然加大比例度可

以使稳定性提高,但又使过渡时间加长。因此,PI控制适用于滞后较小、负

荷变化不大、被控量不允许有余差的控制系统,它是工程上使用最多、应用

最广的一种控制方法。

d.比例积分加微分控制(PID控制)

比例积分加微分控制的特点是微分的作用使控制器的输出与偏差变化的

速度成正比例,它对克服对象的容量滞后有显著的效果。在比例基础上加上微分作用,使稳定性提高,再加上积分作用,可以消除余差。因此,PID 控制适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。

结合本例题设计任务与要求,由于水温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。但从以上对控制方法的分析来看,PID控制方法最适合本例采用。另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

2.2.2 系统组成论证

就控制器本身而言,控制电路可以采用急经典控制理论和常规模拟控制系统实现水温的自动团结。但随着计算机与超大规模集成电路的迅速发展,以现代控制理论和计算机为基础,采用数字控制、显示、A/D与D/A转换,配额后执行器与控制阀构成的计算机控制系统,在过程控制过程中得到越来越广泛的应用。

由于本例是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。所以,本例采用以单片机为核心的直接数字控制系统(DDC)。

2.2.3 单片机系统选择

AT89C2051、AT89C51单片机是最常用的单片机,是一种低损耗、高性能、CMOS八位微处理器。AT89C2051与MCS-51系列的单片机在指令系统和引脚上完全兼容,而且能使系统具有许多MCS-51系列产品没有的功能,功能强、灵活性高而且价格低廉。AT89S51可构成真正的单片机最小应用系统,缩小系统体积,增加系统的可靠性,降低了系统成本。只要程序长度小于4K,四个I/O 口全部提供给拥护。系统运行中需要存放的中间变量较少,可不必再扩充外部RAM。

2.2.4 温度控制方案论证

方案一:用热敏电阻:通过电阻的变化来获得电压的变化,起价格虽然便宜但是精度不是很高。对于一个精度要求高的系统不宜采用

江西理工大学2011届本科生毕业设计(论文)

方案二:用A/D590:键盘输入一个需要控制的温度,通过单片机2051的串口把数据传送到AT89C51,AT89C51通过数据比较,PID分析,T0,T1产生PWM波来控制电炉是否继续加热还是停止加热。通过AD590温度传感器采集温度,由于AD590是电流传感器,经过电阻转换为电压。虽然价格较高但是精度高。

经比较,我们选择方案二

(1)、传感器的选取目前市场上温度传感器繁多就此我们提出了以下两重选取方案:

方案一:选用铂电阻温度传感器,此类温度传感器在各方面特性都比较优秀,但其成本较高。

方案二:采用热敏电阻,选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。

方案三:选用美国Analog Devices 公司生产的二端集成电流传感器AD590,此器件具有体积小、质量轻、线形度好、性能稳定等优点。其测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃,其各方面特性都满足此系统的设计要求。

比较以上三种方案,方案三具有明显的优点,因此此次设计选用方案三。

(2)CPU模块的选择

方案一:采用8031芯片,其内部没有程序存储器,需要进行外部扩展,这给电路增加了复杂度。

方案二:本方案的CPU模块采用2051芯片,其内部有2KB单元的程序存储器,不需外部扩展程序存储器。但由于系统用到较多的I/O口,因此此芯片资源不够用。

方案三:采用89C52单片机,其内部有8KB单元的程序存储器。而且具有三个定时器,正好满足系统多机通信时所用。

比较以上三种方案,综合考虑单片机的各部分资源,因此此次设计选用

方案三。

2.2.5 键盘显示电路论证

控制与显示电路是反映电路性能、外观的最直观部分,所以此部分电路设计的好坏直接影响到电路的好坏。

方案一:采用可编程控制器8279与数码管及地址译码器74LS138组成,可编程/显示器件8279实现对按键的扫描、消除抖动、提供LED的显示信号,并对LED显示控制。用8279和键盘组成的人机控制平台,能够方便的进行控制单片机的输出。

方案二:采用单片机AT2051与地址译码器74LS138组成控制和扫描系统,江西理工大学2011届本科生毕业设计(论文)

并用2051的串口对主电路的单片机进行通信,这种方案既能很好的控制键盘及显示又为主单片机大大的减少了程序的复杂性,而且具有体积小,价格便宜的特点。

方案一虽然也能很好的实现电路的要求,但考虑到电路设计的成本和电路整体的性能,我们采用方案二。

第三章总体设计

本设计以89c52单片机为核心,采用了温度传感器AD590,A/D采样芯片ADC0804,可控硅MOC3041及PID算法对温度进行控制。该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。本设计实现了水温的智能化控制以及提供完善的人机交互界面及多机通讯接口,系统由前向通道模块(即温度采样模块)、后向控制模块、系统主模块及键盘显示摸块等四大模块组成。本系统的特点在于采用PC机及普通键盘实现了多机通信。系统框图如图3-1

图3-1 系统框图

第四章 硬件电路设计与计算

本电路总体设计包括五部分:主机控制部分(89C52)、前向通道(温度采样电路)、后向通道(温度控制电路)、键盘和数字显示部分、微机控制及图形显示。

4.1 主机控制部分

此部分是电路的核心部分,系统的控制采用了单片机89C52。单片机89C52

内部有8KB 单元的程序存储器及256字节的数据存储器。因此系统不必扩展外部程序存储器和数据存储器这样大大的减少了系统硬件部分。

4.2 温度采样电路

系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D 转换电路(ADC0804)三部分组成。电路图如图4-2-1

R2

5K

DB0

18

DB117DB216DB315DB414DB513DB612DB711/CS 1

/RD 2/W R 3/INTR 5V+20CLK R 19CLK IN 4VIN+

6

VIN-7AGND

8

Vref/29DGND 10J6

ADC0804

-2+

3

6

74

18

5

J3

OP07

1

2

J4

4148

1

2J5

4148

R8

10k

C2

150p

VCC

R7

20k

+15-15

R4

30k

R3

81k

2

1

3

Vin GND

OUT J1

7812+151

2

J2

A D 590

-15

AGND

R1

30K

R6

5k

R 5

5k

89C52

VCC

+

c1

10u

图4-2-1温度采样电路原理图

(1) AD590性能描述 测量范围在-50℃--+150℃,满刻度范围误差为±

0.3℃,当电源电压在5—10V 之间,稳定度为1﹪时,误差只有±0.01℃ 。AD590为电流型传感器温度每变化1℃其电流变化1uA 在35℃和95℃时输出电流分别为308.2uA 和368.2uA 。

ADC0804性能描述 ADC0804为8bit 的一路A/D 转换器,其输入电压

江西理工大学2011届本科生毕业设计(论文)

(2) 范围在0—5v ,转换速度小于100us ,转换精度0.39﹪。满足系统的要

求。

(3) 电路原理及参数计算 温度采样电路的基本原理是采用电流型温度

传感器AD590将温度的变化量转换成电流量,再将电流量转换成电压量通过A/D 转换器ADC0804将其转换成数值量交由单片机处理。

图4-2-2

如上图4-2-2图中三端稳压7812作为基准电压,由运放虚短虚断可知运放的反向输入端ui 的电压为零伏,当输出电压为零伏时,列出A 点的节点方程如下:

(12)Ub R R Ic += (1)

由于系统控制的水温范围为35℃--95℃,所以当输出电压为零伏时AD590的输出电流为308.2uA,因此为了使Ui 的电位为零就必须使电流

Ib 等于电流

Ic 等于308.2uA, 三端稳压7812的输出电压为12v 所以由方程(1)得

121238.94308.2Ub

v

R R k Ic uA

+===Ω …………………………………

(2)

由方程(2)的取电阻R2=30k , R1=10k 的电位器。又由于ADC0804的输入电压范围为0—5v ,为了提高精度所以令水温为95℃时ADC0804的输入电压为5v (即Uo=5v )。此时列出A 点的结点方程如下:

(54)(12)Uo R R Ub R R Ic +++= (3)

5(54)308.2368.2v R R uA uA ++= 5483.33R R k +=

当水温为95℃时AD590的输出电流为368.2uA 。由方程式(3)得

R4+R5=83.33k 因此取R5=81k , R5=5k 的电位器。

4.3 温度控制电路

此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。MOC3041光电耦合器的耐压值为400v ,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。100Ω电阻与0.01uF 电容组成双向可控硅保护电路。控制部分电路图如图(4-3-1)。

220v

100Ω

0.01u F

B T A 12

MOC3041

74LS07

250Ω

电炉

vcc

in

27Ω

图4-3-1

4.4 键盘与数字显示部分

在设计键盘/显示电路时,我们使用单片机2051做为电路控制的核心,单片机2051具有一个全双工的串行口采用串口,利用此串行口能够方便的实现系统的控制和显示功能。键盘/显示接口电路如图4-4-1。

图4-4-1 键盘/显示部分电路

图4-4-1中单片机2051的P1口接数码管的8只引脚,这样易于对数码管的译码,使数码管能显示设计者所需的各数值、小数点、符号等等。

单片机2051的P3.3、P3.4、P3.5接3-8译码器74L138,译码器的输出端直接接八个数码管的控制端和键盘,键盘扫描和显示器扫描同用端口这样能大大的减少单片机的I/O,减少硬件的花费。

键盘的接法的差别直接影响到硬件和软件的设计,考虑到单片机2051的端口资源有限,所以我们在设计中将传统的4*4的键盘接成8*2的形式(如图4-4-2),键盘的扫描除了和显示共用的8个端外,另外的两个端直接和2051的P3.2和P3.7相连。

Y0Y1Y2Y3Y4Y5Y6Y7

P3.2

p3.7

图4-4-2键盘接线

如图4-4-2的接法已经完全用完了单片机的15个I/O口,有效的利用了单片机的资源。

4.5微机控制及图形显示部分

为了使系统具有更好的人机交换界面,在系统设计中我们通过Visual Basic 语言设计了微机控制界面。通过系统与微机的通信大大的提高了系统的各方面性能。

由于单片机89C52串行口为TTL电平,而PC机为RS232电平,因此系统采用了MAX232电平转换芯片。

由于系统设计了多机通信的功能,即主系统(89C52)和键盘及数字显示部分的通信、主系统(89C52)和PC机的通信,所以在设计电路时要特别注意多机通信的时序及竞争问题,针对此类问题在设计中我们特地的在两根串行通信线上增加了如图4-5-2的电路:

如图4-5-2由于主机部分发送两个从机都可以接受,因此主机的发送部分(及主机 TXD)不存在竞争问题。而两个从机可能同时向主机发送各类控制信息,因此会存在竞争问题。其实图4-5-2为一个与门电路,图中R1为提升电阻,D1、D2为开关二极管,当pc TXD(或2051 TXD)中有一个为低电平时主机RXD为低电平,同时另一个分机无效,当pc TXD(或2051 TXD)中有一个为高电平时主机RXD为高低电平。

第五章软件设计5.1 键盘显示程序流程:

图5-1-1为键盘显示流程

5.2 主程序流程图:

主程序流程图如图5-2-1所示,程序主要完成以下的几部分任务:

(1)初始化 设定各参数的初始值,设定各中断及定时器。 (2)接收/发射 此部分程序主要完成数据的控制及显示,其主要通过89C52

单片机的全双工串行口完成和键盘部分的双向通信。

(3)PC 机通信 此部分完成与微机控制接口RS232的联接及通信的控制。 (4)数值转换子程序 由于主程序中用到了很多的数值转换及数值的运算

(如十进制转换成十六进制、双字节与单字节的除法运算等等),为了程序调用的方便,特地将其编写成子程序的形式。

(5)PID 算法 PID 算法为此温控系统的性能好坏的决定性因数。

序流程图如图5-2-1所示。PID 为控制中最为成熟的一中算法,其一般算式及模拟控制规律表达式如下式(4-1):

01()

()[()()]t de t u t Kc e t e t dt Td Ti dt

=+

+?………………………………...(5-1) 式(4-1)中U (t )为控制器的输出;e(t)为偏差,即设定值与反馈值之差;Kc

为控制器的放大系数,即比例增益;Ti 为控制器的积分常数;Td 为控制器的微分时间常数。PID 算法的原理即调节Kc 、Ti 、Td 三个参数使系统达到稳定。

江西理工大学2011届本科生毕业设计(论文)

由于PID 的一般算式不易与单片机的处理,因此我们在设计中采用了增量型PID 算法。将式(5-1)转换成式(5-2)的形式: 2()(1)

()(1)()()u k u k e k e k Kie k Kd e k →-→-++?

()()(1)u k u k u k ?=-- …………………………………………………………(5-2)

2()()()Kc e k Kie k Kd e k =?++? 有式(5-3)可得:

()()(1)u k u k u k =?+- ……….……………….….……….(5-3) 有式(5-3)中的u(k)即输出PWM 波的倒通时间。

图5-2-2 PID 算法

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

基于单片机的水温控制系统设论文(经典)

目录 摘要 (4) 第1节课题任务要求 (5) 第2节总体方案设计 (5) 2.1 总体方案确定 (6) 2.1.1 控制方法选择 (6) 2.1.2 系统组成 (7) 2.1.3 单片机系统选择 (7) 2.1.4 温度控制 (7) 2.1.5 方案选择 (7) 第3节系统硬件设计 (8) 3.1 系统框图 (8) 3.2 程序流程图 (12) 第4节参数计算 (16) 4.1 系统模块设计 (16) 4.1.1 温度采集及转换 (16) 4.1.2 传感器输出信号放大 (17) 4.1.3模数转换 (18) 4.1.4 外围电路设计 (19) 4.1.5 数值处理及显示部分 (19) 4.1.6 PID算法介绍 (19) 4.1.7 A/D转换模块 (20) 4.1.8 控制模块 (21) 4.2 系统硬件调试 (21) 第5节 CPU软件抗干扰 (24) 5.1 看门狗设计 (24) 第6节测试方法和测试结果 (27) 6.1 系统测试仪器及设备 (27) 6.2 测试方法 (27) 6.3 测试结果 (27) 结束语 (29)

参考文献 (30) 基于单片机的水温控制系统设计 摘要: 本系统以AT89C51,AT89C2051单片机为核心,主要包括传感器温度采集,A/D模/数转换,按扭操作,单片机控制,数码管数字显示等部分。本系统采用PID算法实现温度控制功能,通过串行通信完成两片单片机信息的交互而实现温度设定、控制和显示。本设计还可以通过串口与上位机(电脑)连接,实现电脑控制。系统设计有体积小、交互性强等优点。为了实现高精度的水温控制,本单片机系统采用PID算法控制和PWM脉宽调制相结合的技术,通过控制双向可控硅改变电炉和电源的接通、断开,从而改变水温加热时间的方法来实现对水温的控制。本系统由键盘显示和温度控制两个模块组成,通过模块间的通信完成温度设定、实温显示、水温升降等功能。具有电路结构简单、程序简短、系统可靠性高、操作简便等特点。 第1节课题任务与要求: 1.基本要求 一升水由1kw的电炉加热,要求水温可以在一定围由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

计算机温度控制系统课程设计

目录摘要2 1.设计目的3 2.设计要求和设计指标3 3. 总体方案设计 3 4.硬件选择以及相关电路设计3 温度传感器的选择3 模数转换器4 内部结构4 信号引脚5 工作时序与使用说明6 控制器89C51 7 数码管显示电路8 LED数码管的组成8 数码管显示方式9 控制算法10 6. 各子程序流程图11 PID控制程序流程图11 A/D转换程序流程图11 显示程序流程图11 温度控制总程序流程图12 心得体会12

参考文献13 附录1:温度控制系统总电路图14 附录2:温度控制系统程序清单16 摘要 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本设计介绍了以AD590集成温度传感器为采集器、AT89C51为控制器、ADC0809为A/D转换器对温度进行智能控制的温度控制系统。其主要过程如下:利用传感器对将非电量信号转化成电信号,转换后的电信号再入A/D转换成数字量,传递给单片机进行数据处理,并向外围设备发出控制信号。 论文首先介绍了单片机控制系统的整体方案设计及原理,然后具体介绍了控制系统的温度传感器部分、A/D转换部分、控制器89C51部分以及数码管显示和键盘控制部分,接着相信介绍了温度控制系统各个单元电路的设计,最后阐述了温度控制系统软件设计的主程序和各个子程序。 关键字:单片机89C51 温度传感器A/D转换器温度控制

计算机温度测控系统 1.设计目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过实践过程掌握温度的几种控制方法,了解利用计算机进行自动控制的系统结构。 2.设计要求和设计指标 1、每组4~5同学,每个小组根据设计室提供的设备及设计要求,设计出实际电路组成一个完整的计算机温度测控系统。 2、根据设备情况以及被控对象,选择1~2种合适的控制算法, 框图和源程序,并进行实际操作和调试通过。 编制程序温度指标:60~80℃之间任选;偏差:1℃。 总体方案设计 本系统主要由数据采集、信号放大、模数转换等模块构成。设计思想是通过温度传感器将温度信号转变为电流(电压)信号,但我们要知道经温度变化引起电流(电压)信号的改变是非常小的,此时如果被模数转换器采集的话效果是非常不明显的,因此我们将其通过一个信号放大模块进行放大。再通过模数转换器后送入单片机AT89C51,而单片机通过PID算法控制烘箱的电炉加热,并且使数码管显示实时温度,从而实现温度的高精度控制。 4.硬件选择以及相关电路设计 温度传感器的选择 传感器的选取目前市场上温度传感器繁多就此我们提出了以下三种选取方案:方案一:选用铂电阻温度传感器,此类温度传感器在各方面特性都比较优秀,但其成本较高。 方案二:采用热敏电阻,选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:选用美国Analog Devices 公司生产的二端集成电流传感器AD590,此器件具有体积小、质量轻、线形度好、性能稳定等优点。其测量范围在-50℃--+150℃,满刻度范围误差为±℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±℃,其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此此次设计选用方案三。

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

水温自动控制系统毕业设计论文(DOC)

毕业设计论文 水温自动控制系统 钟野 院系:电子信息工程学系 专业:电气自动化技术 班级: 学号: 指导教师: 职称(或学位): 2011年5 月

目录 1 引言 (2) 2 方案设计 (2) 2.1 总体系统的设计思路 (2) 2.2 部分外围系统的设计思路 (3) 3 硬件电路设计 (3) 3.1 单片机最小系统的设计 (3) 3.2 温度检测电路的设计与论证 (4) 3.3 显示功能电路的设计与论证 (5) 3.4 温度报警提示功能电路的设计与论证 (5) 3.5 外围电路控制设计 (6) 3.6 扩展部分方案设计 (7) 4 软件设计 (7) 4.1 控制主程序设计 (7) 4.2 温度设置程序设计 (8) 4.3 上下限报警程序设计 (8) 5 结论 (9) 结束语 (9) 致谢 (10) 参考文献 (10) 附录............................................................................................................... 错误!未定义书签。

水温自动控制系统 钟野 (XXXX电子信息工程学系指导教师:CXJ) 摘要:本文设计主要是采用A T89C51单片机为控制核心、以温度传感器(DS18B20)为温度采集元件, 外加温度设置电路、温度采集电路、显示电路、报警电路和加热电路来实现对水温的显示同时自动检测及线性化处理,其误差小于±0.5℃。本文重点介绍硬件设计方案的论证和选择,以及各部分功能控制的软件的设计。本次设计的目标在于:由单片机来实现水温的自动检测及自动控制,实现设备的智能化。 关键词:单片机;温度传感器;自动控制 Abstract: This paper is designed AT89C51 microcontroller as control core and temperature sensor DS18B20) for (temperature gathering element, plus the temperature setting circuit, temperature gathering electriccircuit, display circuit, alarm circuit and heating circuit to achieve water temperature display while automatically detecting and linearization, its error is less than 0.5 + ℃. This paper mainly introduces the hardware design argumentation and choice, and some functional control software design. This design goal is: by single-chip microcomputer to realize the automatic detection and automatic temperature control, realize the intellectualized equipment. Keywords: Microcontroller; Temperature sensors; Automatic control

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

过程控制系统课程设计报告

~ 过程控制系统课程设计报告 · 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师: ` )

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。( 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

采样时间 t 8 》 9 10 11 12 13 温度值℃ 64 · 72 79 86 93 98 以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: < 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

水温自动控制系统设计

水温自动控制系统设计 摘要 水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System ABSTRACT The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

过程控制系统课程设计报告

过程控制系统课程设计报告 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师:

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。 (1)k 的求法:k 可以用下式求得: ()(0) y y k x ∞-= (x :输入的阶跃信号幅值)

自动温度控制系统的设计开题报告

附表1 铜陵学院学生毕业论文(设计)选题审批表院部:专业:

附表2 铜陵学院毕业论文(设计)任务书 同学:你好! 你所预选的毕业论文(设计)题目自动温度控制系统的设计经审定已通过,你可以进入研究(设计)阶段,请你按照以下进程要求完成毕业论文(设计)的研究设计任务。 一、在指导教师的指导下,进一步明确所选课题的目的和意义。 二、根据选题进行广泛调研,并检索主要参考文献。 三、拟定研究(设计)方案(包括内容、方法、预期目标、进度安排等)。 四、毕业论文(设计)的主要内容(或主要技术要求与数据):主要 是设计一个温度自动控制系统,用单片机控制,数字温度传感器采集数据, 并用LCD液晶显示器模块显示。它属于一个恒温系统。通过单片机处理,并 发出指令,使用继电器控制、隔离。 五、编写毕业论文(设计)提纲。 六、将包含上述内容的开题报告于 2015 年 1 月 6 日前送 交指导老师,并于 2015 年 1 月 15 日前完成开题。 七、请你于 2015 年 4 月 20 日前完成毕业论文(设计)的初 稿。 八、请你在 2015 年 4 月 22 日至 5 月 31 日之间反复修改 初稿(要求不少于三次)。 九、请你于 2015 年 6 月 20 日前把符合铜陵学院毕业论文(设 计)撰写格式要求的纸质定稿和相关的附件等材料,按要求装订一式三份, 连同对应的电子文档送交指导老师。 十、你的毕业论文(设计)如果通过了答辩资格审查,请于 2015 年 6月 20 日前准备参加本学院统一组织的毕业论文(设计)答辩(具体答辩

时间另行通知)。 十一、如果你的联系方式发生变动,应及时通知你的指导老师。 指导教师电话: E-mail: 学生电话: E-mail: 指导教师签名:学生签名: 下达任务日期: 2014 年 12 月 23 日接受任务日期: 2014 年 12 月24 日注:本任务书一式两份,一份交给学生,一份指导教师留存。 附表3 铜陵学院毕业论文(设计)开题报告

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

相关文档
最新文档