双闭环系统课程设计

双闭环系统课程设计
双闭环系统课程设计

1 双闭环系统的设计

1.1 设计内容

第一,双闭环直流电动机控制系统设计。

分析系统工作原理,进行系统总体设计。

分析设计出控制系统框图,控制系统动态结构图,控制系统稳态结构图,双闭环直流电动机控制系统原理图设计。

根据系统框图和任务分解结果,进行典型环节和模块电路的设计。

设计转速电流环电路,触发电路驱动控制电路的选型设计(模拟触发电路、集成触发电路、数字触发器电路均可),控制主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等),检测及给定电路。

第二,控制系统各单元参数测试和计算。

测出各环节的放大倍数及时间常数,在确定调速范围D=10时比较开环、单环和双环时的动态响应。

第三,PID控制算法的确定。

以仿真结果或实验结果为根本依据,结合理论,确定合理的PID控制策略和控制参数。

第五,MATLAB仿真验证。

利用MATLAB下的SIMULINK软件进行系统仿真,同时将结果在示波器上显示出来,以验证设计的正确性。

第六,设计要求:

为某生产机械设计一个调速范围宽、起制动性能好(可选做)的直流双闭环系统。已知系统中直流电动机主要数据如下:

(1)一台直流电机,直流电机额定数据:PN=60KW,UN=220V,IN=308A,nN=1000r/min,电枢回路总电阻R=0.18Ω。电磁时间常数Tl=0.012s,机电时间常数Tm=0.12s,电动机系数Ce=0.196V·min/r。

(2)主要技术指标:调速范围0~1000r/min,电流过载倍数λ=1.1,系统静特性良好,无静差。

(3)动态性能指标:空载起动到额定转速超调量δn<10%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)ts≤1s。

1.2 系统主电路设计

直流调速系统常用的直流电源有

三种:旋转变流机组;静止式可控整流

器;直流斩波器或脉宽调制变换器。

机组供电的直流调速系统在20世

纪60年代以前曾广泛地使用着,但该

系统需要旋转变流机组,至少包含两台

与调速电动机容量相当的旋转电机还

图1-1V—M系统原理图

要仪态励磁发电机,因此设备多,体

积大,费用高,效率低。

1957年晶闸管问世,已生产成套的晶闸管整流装置,即右图1-1晶闸管-电动机调速系统(简称V-M 系统)的原理图。通过调节处罚装置GT 的控制电压c U 来移动触发脉冲的相位,即可改变平均整流电压d U ,从而实现平滑调速。和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不进在经济性和可靠性上都很大提高,而且在技术性能上也现实出较大的优越性。

直流斩波器-电动机系统的原理图示于图1-2,其中VT 用开关符号表示任何一种电力电子开关器件,VD 表示续流二极管。当VT 导通时,直流电源电压U S 加到电动机上;当VT 关断时,直流电源与电机脱开,电动机电枢经VD 续流,两端电压接近于零。如此反复,得到电枢端电压波形()u f t =,如图3.3所示,好像是电源电压U S 在on t 时间内被接上,又在(T--on t )时间内被斩断,故称“斩波”。这样,电动机得到的平均电压为

on d S S t

U U U T

ρ== (1-1)

式中 T------功率开关器件的开关周期; on t ------开通时间;

ρ------占空比,on on t T t f ρ==,其中f 为开关频率。

图1-2 直流斩波器-电动机系统原理图 图1-3 波形图

因此,根据本设计的要求应选择第一个可控直流电源。 对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好,自动控制的直流调速系统往往以调压调速为主,根据晶闸管的特性,可以通过调节控制角α大小来调节电压。当整流负载容量较大或直流电压脉动较小时应采用三相整流电路,其交流侧由三相电源供电。三相整流电路中又分三相半波和全控桥整流电路,因为三相半波整流电路在其变压器的二次侧含有直流分量,故不采用,本设计采用了三相全控桥整流电路来供电,该电路是目前应用最广泛的整流电路,输出电压波动小,适合直流电动机的负载,并且该电路组成的调速装置调节范围广,能实现电动机连续、平滑地转速调节、电动机不可逆运行等技术要求。主电路原理图如图1-4所示

三相全控制整流电路由晶闸管VT1、VT3、VT5接成共阴极组,晶闸管VT4、VT6、VT2接成共阳极组,在电路控制下,只有接在电路共阴极组中电位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阳极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的整流电路。晶闸管的控制角都是 ,在一个周期内6个晶闸管都要被触发一次,触发顺序依次为:VT1—VT2—VT3—VT4—VT5—VT6,晶闸管必须严格按编号轮流导通,6个触发脉冲相位依次相差60O,只有这样才能使电路正常工作。

为了使元件免受在突发情况下超过其所承受的电压电流的侵害,电路中加入了过电压、过电流等保护装置。

1.2.1 主电路的设计

1.2.1.1变流变压器的设计

一般情况下,晶闸管变流装置所要求的交流供电电压与电网电压是不一致的,所以需要变流变压器,通过变压器进行电压变换,并使装置于电网隔离,减少电网于晶闸管变流装置的互相干扰。

这里选项用的变压器的一次侧绕组采用△联接,二次侧绕组采用Y联接。S 为整流变压器的总容量,S为变压器一次侧的容量,

1

U为一次侧电压,

1

I为一次

侧电流,

2

S为变压器二次侧的容量,

2

U为二次侧电压,

2

I为二次侧的电流,

1

m、2

m为相数。

为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定

之后,晶闸管交流侧的电压

2

U只能在一个较小的范围内变化,为此必须精确计

算整流变压器次级电压

2

U。

1.2.1.2整流元件晶闸管的选型

图1-4 主电路原理图

选择晶闸管元件主要是选择它的额定电压TM U 和额定电流)(AV T I

1.2.1.3 电抗器的设计

(1)交流侧电抗器的选择 为限制短路电流,所以在线路中应接入一个空心的电抗器,称为进线电抗器。 (2)直流侧电抗器的选择

直流侧电抗器的主要作用为限制直流电流脉动;轻载或空载时维持电流连续;在有环流可逆系统中限制环流;限制直流侧短路电流上升率。

1.2.1.4 保护电路的设计

(1)过电压保护

通常分为交流侧和直流侧电压保护。前者常采用的保护措施有阻容吸收装置、硒堆吸收装置、金属氧化物压敏电阻。这里采用金属氧化物压敏电阻的过电压保护。

压敏电阻是有氧化锌,氧化铋等烧结制成的非线性电阻元件,它具有正反相同很陡的伏安特性,正常工作是漏电流小,损耗小,而泄放冲击电流能力强,抑制过电压能力强,此外,它对冲击电压反映快,体积又比较小,故应用广泛。 5晶闸管的触发电路

晶闸管触发电路的作用是产生符合要求的门极触发脉冲,保证晶闸管在必要的时刻由阻断转为导通。晶闸管触发电路往往包括触发时刻进行控制相位控制电路、触发脉冲的放大和输出环节。触发脉冲的放大和输出环节中,晶闸管触发电路应满足下列要求:

①触发脉冲的宽度应保证晶闸管可靠导通,三相全控桥式电路应采用宽于60°或采用相隔60°的双窄脉冲。

②触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流3~5倍,脉冲前沿的陡度也需增加,一般需达1~2A∕us 。 ③所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极的伏安特性的可靠触发区域之内。

④应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。

理想的触发脉冲电流波形如图1-5。

图1-5 理想的晶闸管触发脉冲电流波形 12~t t -----脉冲前沿上升时间(1s μ≤)

13~t t ----强脉冲宽度 M I ---强脉冲幅值(3~5GT GT I I ) 14~t t ---脉冲宽度 I --脉冲平顶幅值(1.5~2GT GT I I )

1.2.2转速、电流双闭环直流调速系统的组成

双闭环调速系统是建立在单闭环自动调速系统上的,实际的调速系统除要求对转速进行调整外, 很多生产机械还提出了加快启动和制动过程的要求,这就需要一个电流截止负反馈系统。

由图1-6启动电流的变化特性可知,在电机启动时, 启动电流很快加大到允许过载能力值dm I , 并且保持不变, 在这个条件下, 转速n 得到线性增长, 当开到需要的大小时, 电机的电流急剧下降到克服负 载所需的电流fz I 值,对应这种要求可控硅整流 器的电压在启动一开始时应为dm I R ∑, 随着转速n 的上升,dm e U I R C n ∑=+ 也上升, 达到稳转速时, fz e U I R C n ∑=+。这就要求在启动过程中把电动机

的电流当作被调节量, 使之维持在电机允许的最大

值dm I , 并保持不变。这就要求一个电流调节

器来完成这个任务。带有速度调节器和电流调节器的双闭环调速系统便是在这种要求下产生的。

图1-7 转速、电流双闭环直流调速系统原理框图

(注: ASR —转速调节器 ACR —电流调节器 TG —直流测速发电机 TA —电流互感器 UPE —电力电子装置 Un*—转速给定电压 Un —转速反馈电压 Ui*—电流给定电压 Ui —电流反馈电压)

为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接,如图5-2所示。这就是说把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流

图1-6 启动电流的变化特性

器的触发装置。从闭环结构上看,电流调节环在里面,叫内环;转速调节环在外边,叫做外环,这样就形成了转速、电流双闭环调速系统。

1.2.3双闭环直流调速系统的静特性分析

分析静特性的关键是掌握这样的PI 调节器的稳态特征,一般存在两种状况:①饱和——输出达到限幅值。即饱和调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。②不饱和——输出未达到限幅值。即PI 的作用使输入偏差电压U ?在稳态时总为零。

实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有调速调节器饱和与不饱和两种状况:

第一,转速调节器不饱和:稳态时,他们的输入偏差电压都是零,因此*0n U n n α

==,而得到下图3.5静特性的CA 段。

第二,转速调节器饱和: 输出达到限幅值*

im U ,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的点电流闭环调节

系统。稳态时 *im

d dm U I I β==,从而得到下图3.8静特性的AB 段。 这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大,特别是为了避免零点漂移而采用“准PI

d dm I I < ASR 主导,表现为转速无静差

d dm I I = ACR 主导,表现为电流无静差(过电流保护)

1.2.4双闭环直流调速系统的稳态结构图

如下图1-9表示双闭环直流调速系统的动态框图,图中()ASR W s 和()ACR W s 分别表示转速调节器和电流调节器的传递函数。在分析双闭环直流调速系统的动态性能时,着重分析电机的起动过程及抗扰动性能。在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三种情况,抗扰动性能包括抗负载扰动和抗电网电压扰动的性能。

在起动过程有三个特点:①随着ASR 的饱和与不饱和,整个系统处于完全不同的两种状态。当ASR 饱和时,转速环开环,系统表现为恒值电流调节的单闭环系统;当ASR 不饱和时,转速环闭环,整个系统是一个无静差调速系统,而电流内环则表现为电流随动系统。这就是饱和非线性控制的特征。②准时间最优控制即恒流升速阶段,电流保持恒定,一般选择为允许的最大值,以便充分发挥电机的过载能力,是起动过程尽可能的最快。③转速超调: 由于采用了饱和非线性控制,起动过程结束进入转速调节阶段后,必须使转速调节器退出饱和状态。按照PI 调节器的特性,只有使转速超调,ASR 的输入偏差电压为负值,才能使ASR 退出饱和。即采用PI 调节器的双闭环调速系统的转速动态响应必然有超调。

图1-9 双闭环调速系统的动态结构框图

oi T —电流反馈滤波时间常数 on T —转速反馈滤波时间常数

在实际动态系统中,常增加滤波环节,包括电流滤波、转速滤波和两个给定信号的滤波环节。由于电流检测信号中常含有交流分量,为了不使它影响到调节器的输入,需加低通滤波。这样的滤波环节传递函数可用一阶惯性环节来表示,其滤波时间常数oi T 按需要选定,以滤平电流检测信号为准然而,在抑制交流分量的同时,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个同等时间常数的惯性环节,称作给定滤波环节。其意义是,让给定信号和反馈信号经过相同的延时,使二者在时间上得到恰当的配合,从而带来设计上的方便。

由测速发电机得到的转速反馈电压含有换向纹波,因此也需要滤波,滤波时间常数用on T 表示。根据和电流环一样的道理,在转速给定通道上加入时间常数为on T 的给定滤波环节。

2 主电路及驱动电路器件的选择2.1变压器设计

2.1 变压器参数设计、计算

影响2U 值的因素有:

第一,2U 值的大小首先要保证满足负载所需求的最大电流值的max d I 。 第二,晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用T V 表示。

第三,变压器漏抗的存在会产生换相压降。 第四,平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。

第五,电枢电阻的压降。

综合以上因素得到的2U 精确表达式为:

max

2max

[1(

1)]%[]

100d N a T

d

d K d

I U r nU I U I CU A B I ε+-+=

-?

式中N U 为电动机额定电压;20U U A d =

;0

d d U U

B α= 及

C (见表3-1);N

N a U R I r ∑

=

,N I 为电动及额定电流,∑R 为电动机电枢电路总电阻;T nU 表示主电路中电流经过几个串联晶闸管的管压降;ε为电网电压波动系数,通常取0.9 1.05~,供电质量较差,电压波动较大的情况ε应取较小值;

%K U 为变压器的短路电压百分比,100千伏安以下的变压器取5%=K U ,100~1000千伏安的变压器取%510K U =~;max d I -- 负载电流最大值;max d dN I I λ=所

以max d dN I

I λ=,λ表示允许过载倍数。

2U 也可以用下述简化公式计算

2U =(1.0-1.2)B A Ua

ε

或 2U =(1.2-1.5)A

Ua

其中,系数(1.0-1.2)和(1.2-1.5)为考虑各种因素的安全系数,a

U 为整流输出电压。

对于本设计,为了保证电动机负载能在额定转速下运转,计算所得2U 应有一定的裕量,根据经验所知,公式中的控制角α应取300为宜。

9.0=ε,34.2=A ,2

3

30cos cos =

==O B α,5.0=C ,5%=K U ,(其中

A 、

B 、

C 可以查表3-1中三相全控桥),N N a U R I r ∑=

3080.18

0.252220

?==

表2-1 变流变压器的计算系数

数据来源:第四版《电力拖动自动控制系统——运动控制系统》,机械工业出版社

把已知条件代入式(2-1)可得结果:

max

2max [1(

1)]%[]100d N a T

d d K d

I U r nU I U I CU A B I ε+-+=

-?22010.2521.1121+-+???

??

=124.8V

根据主电路的不同接线方式,有表3-1查的22/I d K I I =,即可得二次侧电流的有效值22I d K I I ?=,从而求出变压器二次侧容量2222S m U I =。而一次相电流有效值21I I =/()21/U U ,所以一次侧容量 =1S 2222I U m S =。一次相电压有效值1U 取决于电网电压,所以变流变压器的平均容量为

121

()2

S S S =

+222I U m =

对于本设计2I K 816.0= , 2m =3 ,

22I d K I I ?==2I N K I ??λ 1.12200.816197.472=??= A

121

()2

S S S =

+222I U m =3124.8197.47273.93KVA =??=

设计时留取一定的裕量,可以取容量为80KV A ?的整流变压器。

2.2晶闸管参数的设计与选型、计算

对于本设计采用的是三相桥式整流电路,晶闸管按1至6的顺序导通,在阻感负载中晶闸管承受的最大电压222.45RM U U =, 而考虑到电网电压的波

动和操作过电压等因素,还要放宽2~3倍的安全系数,则晶闸管额定电压TM U 计算结果:

(2~3)(2~3) 2.45124.8611.52~917.28TM RM U U V ==??= 取 900V 。

晶闸管额定电流)(AV T I 的有效值大于流过元件实际电流的最大有效值。一般取按此原则所得计算结果的1.5~2倍。 已知 max 1.1308=338.8d N I I A λ==?

==max 31d VT I I 196.6A

可得晶闸管的额定电流)(AV T I 计算结果 :

()(1.5~2)

187.83~250.451.57

VT

T AV I I A == 取250A 上网查询器件可选择 晶闸管型号KP-800,参数如下:

额定电流:80A~250A 额定电压:568.7V 频率:50Hz

2.3电抗器的设计、计算

实际要接入的平波电抗器电感K L 2

min

0.693

=0.35k d U L I =mH (min d I 取额定电流的8%) 2.4保护电路的设计

压敏电阻是有氧化锌,氧化铋等烧结制成的非线性电阻元件,它具有正反相同很陡的伏安特性,正常工作是漏电流小,损耗小,而泄放冲击电流能力强,抑制过电压能力强,此外,它对冲击电压反映快,体积又比较小,故应用广泛。 在三相的电路中,压敏电阻的接法是接成星形或三角形如图2-1所示。

图2-1 二次侧过电压压敏电阻保护

压敏电阻额定电压的选择可按下式计算: ?≥

9

.0~8.01ε

mA U 压敏电阻承受的额定电压峰值

式中 1mA U ------压敏电阻的额定电压, VYJ 型压敏电阻的额定电压有:100V 、

200V 、440、760V 、1000V 等;ε为电网电压升高系数,可取10.1~05.1。压敏电阻承受的额定电压峰值就是晶闸管控制角α=300时输出电压d U α。由此可转化成

αcos 69

.0~8.005

.121U U mA ?≥

可得压敏电阻额定电压

1 1.05124.8308.86~347.470.8~0.9mA U V ≥=

所以压敏电阻额定电压取500v 型压敏电阻。

在本设计中,选用快速熔断器与电流互感器配合进行三相交流电路的一次

侧过电流保护,保护原理图2-2如下:

图2-2 一次侧过电流保护电路

1)熔断器额定电压选择:其额定电压应大于或等于线路的工作电压。 本课题设计中变压器的一次侧的线电压为380V ,熔断器额定电压可选择

400V 。

2)熔断器额定电流选择:其额定电流应大于或等于电路的工作电流。 本课题设计中变压器的一次侧的电流1I

1221/U U I I ==197.472124.8/38064.85A ?=

熔断器额定电流 =≤16.1I I FU 103.77A 因此,如图3-4在三相交流电路变压器的一次侧的每一相上串上一个熔断器,按本课题的设计要求熔断器的额定电压可选400V ,额定电流选174A 。

2.5触发电路的设计

本设计是三相全三相全控桥整流电路中有六个晶闸管,触发顺序依次为:VT1—VT2—VT3—VT4—VT5—VT6,晶闸管必须严格按编号轮流导通,6个触发脉冲相位依次相差60O ,可以选用3个KJ004集成块和一个KJ041集成块,即可形成六路双脉冲,再由六个晶体管进行脉冲放大,就可以构成三相全控桥整流电路的集成触发电路如图2-3。

(1~3脚为6路单脉冲输入)

(15~10脚为6路双脉冲输出)

至VT1

至VT2

至VT3

至VT4

至VT5

至VT6

图2-3 三相全控桥整流电路的集成触发电路

3 ASR 、ACR 的设计

3.1电流调节器的设计

3.1.1电流调节器的设计时间常数的确定

整流装置滞后时间常数,即三相桥式电路的平均失控时间 Ts=0.0017s 。 电流滤波时间常数oi T 。三相桥式电路的每个波头的时间是3.3ms ,为了基本滤平波头,应有(1~2)oi T =3.3ms ,因此取oi T =2ms=0.002s 。

电流环小时间常数之和i T ∑。按小时间常数近似处理,取=Ts+Toi=0.0037s i T ∑。

3.1.2. 选择电流调节器的结构

根据设计要求5%i σ≤,并保证稳态电流无静差,可按典型I 型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型调节器,其传递函数为

()(1)

i i ACR s i K s W s ττ+= (3-1)

式中 i K ------电流调节器的比例系数;

i τ-------电流调节器的超前时间常数。 检查对电源电压的抗扰性能:

i l T T ∑02.80037

.00297.0==,参照表5-1的典型I 型系统动态抗扰性能,各项指标都是可以接受的,因此基本确定电流调节器按典型I 型系统设计。

数据来源:第四版《电力拖动自动控制系统——运动控制系统》,机械工业出版社

3.1.3 计算电流调节器的参数

电流调节器超前时间常数: l i T =τ=0.012s ,取=0.0025s oi T 电流开环增益:要求5%i σ≤时,取0.5I i K T ∑=,0.0042i T ∑=

所以 10.5

119.9I i

K s T -∑=

= 于是,ACR 的比例系数为 β

τs i I i K R

K K =

0.3125= 式中,β为电流反馈系数其值为*

/()0.0236n

N U I βλ≈=V/A ; α为电流反馈系数其值为*

max /(n )0.01nm U α≈=V·min/r ;

晶闸管装置放大系数Ks=35。

3.1.4 校验近似条件

电流环截止频率:1119.9ci I K s ω-==

1)晶闸管整流装置传递函数的近似条件

111199.6330.00167ci s s T s

ω-==>? 满足近似条件

2)忽略反电动势变化对电流环动态影响的条件

l m T T 1

3

=11379.05690.120.012ci s ω-=

3)电流环小时间常数近似处理条件 11111

163.14330.001670.0025ci s oi s T T s s

ω-==>?

满足近似条件

3.1.5 计算调节器电阻和电容

由图3-3,按所用运算放大器取R 0=40k Ω,各电阻和电容值为

012.54i i R K R k =?=Ω 取12.5k Ω

60.957310i

i i

C F R τ-=

=? 取0.96F μ

40.25oi oi T

C F R μ== 取0.25F μ

照上述参数,电流环可以达到的动态跟随 性能指标为 4.3%5%i =<,满足设计要求

图3-3 ACR 调节器

3.2转速调节器的设计

3.2.1 确定时间常数

(1)电流环等效时间常数1/K I 。由前述已知,0.5I i K T ∑=,则

1

20.0083i I

T s K ∑== (2)转速滤波时间常数on T ,根据所用测速发电机纹波情况,取=0.015s on T . (3)转速环小时间常数n T ∑。按小时间常数近似处理,取

1

0.0233n on I T T s K ∑=+= 3.2.2 选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数式为

(1)

()n n ASR n K s W s s

ττ+=

3.2.3 计算转速调节器参数

按跟随和抗扰性能都较好的原则,先取h=5,则ASR 的超前时间常数为

=h =0.1184s n n T τ∑ 则转速环开环增益

K 2

22

1220.282N n

h s h T -∑+=

=

可得ASR 的比例系数为

()182e m

n n

h C T K h R T βα∑∑+=

=

3.2.4检验近似条件

转速截止频率为 11

25.71N

cn K s ωω-=

=

(1)电流环传递函数简化条件为

156.5233cn s ω-=> 满足简化条件 (2)转速环小时间常数近似处理条件为

129.8cn s ω-=> 满足近似条件

3.2.5计算调节器电阻和电容

根据图5-4 所示,取040R k =Ω,则 0317.26n n R K R k ==Ω 取320k Ω

6 0.3678310n n n C F R τ

-==?取0.37uF

4 1.5on on T

C F R μ== 取1.5F μ

3.2.6校核转速超调量

当h=5时,查表5-2典型∏型系统阶跃输入跟随性能指标得,37.6%n σ=,不能满足设计要求。实际上,由于表5-2是按线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量。

表5-2 典型II 型系统阶跃输入跟随性能指标(按M 准则确定参数关系) h 3 4 5 6 7 8 9 10 σ 52.60% 43.60% 37.60% 33.20% 29.80% 27.20% 25.00% 23.30% /r t T 2.4 2.65 2.85 3 3.1 3.2 3.3 3.35 /s t T 12.15 11.65 9.55 10.45 11.3 12.25 13.25 14.2 k 3 2 2 1 1 1 1 1

数据来源:第四版《电力拖动自动控制系统——运动控制系统)》,机械工业出版社

h 3 4 5 6 7 8 9 10 max /b C C ? 72.20% 77.50% 81.20% 84.00% 86.30% 88.10% 89.60% 90.80% /m t T 2.45 2.70 2.85 3.00 3.15 3.25 3.30 3.40 /v t T 13.60 10.45 8.80 12.95 16.85 19.80 22.80 25.85

数据来源:第四版《电力拖动自动控制系统——运动控制系统)》,机械工业出版社

设理想空载起动时,负载系数0=Z ,已知,94A I N =,min /1000r n N =,

5.1=λ,Ω=∑81.0R ,r V C e m in/.2059.0=,s T m 427.0=,0.0174n T s ∑=。当5

=h 时,由表5-3查得,%2.81/max =?b C C 而调速系统开环机械特性的额定稳态速降

m n

N b b b n T T n n Z C C n n C C ∑?-???

? ???=????? ???=*)(2*max max λσ 图3-4 ASR 调节器

式中 电机中总电阻 Ω=+=∑81.0R R R a 调速系统开环机械特性的额定稳态速降

min /79.3692059

.081.094r C R I n e N N =?==?

*n 为基准值,对应为额定转速min /1000r n N =

计算得

3080.18

0.0233

0.196281.2% 1.19.8%10000.12

n σ?=????=%10< 能满足设计要求

3.2.7 校核动态最大速降

设计指标要求动态最大速降8%~10%n ?≤。在实际系统中,n ?可定义为相

对于额定转速时的动态速降max N

n

n ?。

由max

max b b

C n n C ??=?,

()0.0233

22 1.1282.8571120.8/min 0.12n b N m T n z n r T λ∑?=-?=???=;

查表可知,max b

C

C ?=81.2%,所以

max 81.2%120.898.1/min n r ?=?=

max 98.1100%9.81%10%1000

N n n n ??==?=< 能满足设计要求

4 MATLAB仿真结果及电路接线图

4.1 基于MATLAB/SIMULINK的调速系统的仿真

通过对整个控制电路的设计,用MATLAB/SIMULINK对整个调速系统进行仿真。

首先建立双闭环直流调速系统的动态数学模型,可以参考该系统的动态结构形式,双闭环直流调速系统的动态结构框图如图4-1所示:

图4-1 双闭环直流电机调速系统的动态数学结构框图

把这些参数的值代入框图中的公式就可得到以下框图6-2。

图4-2 双闭环直流调速系统动态结构框图

图4-3 双闭环直流调速系统电路框图

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

计算机控制技术课程设计报告

《计算机控制技术》课程设计单闭环直流电机调速系统

1 设计目的 计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,通过这次课程设计进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养独立自主、综合分析与创新性应用的能力。 2 设计任务 2.1 设计题目 单闭环直流电机调速系统 实现一个单闭环直流电机调压调速控制,用键盘实现对直流电机的起/停、正/反转控制,速度调节要求既可用键盘数字量设定也可用电位器连续调节,需要有速度显示电路。扩展要求能够利用串口通信方式在PC上设置和显示速度曲线并且进行数据保存和查看。 2.2 设计要求 2.2.1 基本设计要求 (1)根据系统控制要求设计控制整体方案;包括微处理芯片选用,系统构成框图,确定参数测围等; (2)选用参数检测元件及变送器;系统硬件电路设计,包括输入接口电路、逻辑电路、操作键盘、输出电路、显示电路; (3)建立数学模型,确定控制算法; (4)设计功率驱动电路; (5)制作电路板,搭建系统,调试。 2.2.2 扩展设计要求 (1)在已能正常运行的微计算机控制系统的基础上,通过串口与PC连接; (2)编写人机界面控制和显示程序;编写微机通信程序;实现人机实时交互。

3方案比较 方案一:采用继电器对电动机的开或关进行控制。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。 方案二:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。 方案三:采用由电力电子器件组成的H 型PWM 电路。用单片机控制电力电子器件使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在电力电子器件的饱和截止模式下,效率非常高;H 型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM 调速技术。 兼于方案三调速特性优良、调整平滑、调整围广、过载能力大,因此本设计采用方案三。 4单闭环直流电机调速系统设计 4.1单闭环调速原理 4.1.1 闭环系统框图 4.1.2 调速原理 直流电机转速有: 常数Ke Ka 不变,Ra 比较小。 所以调节Ua 就能调节n 。 n n I K R K U K R I U n d d a e e d ?-=Φ -Φ=-=0φa a a U I U ≈-

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

运动控制系统课程设计直流双闭环调速系统设计

课程设计任务书 学生: 专业班级: 指导教师: 周 颖 工作单位: 自动化学院 题 目: 直流双闭环调速系统设计 初始条件: 采用晶闸管三相桥式整流,电机参数: mH L R A I V U r n a nom nom nom 15,2.0,136,220m in,/1460=Ω====, 40,5.0,m in/132.0=Ω==s e K r r V C ,无静差。电流过载倍数为5.1=λ, s T s T n i 01.0,002.000==、0.18m T s =。电流超调量σi ≤5%,空载起动到额定转速时的转速超调量σn ≤10%。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 系统原理图设计; 2. 转速和电流用两个调节器进行调节; 3. 过程分析,软件设计; 4. 电流环和转速环结构图绘制; 5. 仿真曲线绘制 时间安排: 12 月 21 日-22日 查阅资料 12月 23 日- 25日 方案设计 12月 28 日- 29 日 馔写程设计报告 12月30日 提交报告,答辩 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

目录 摘要Ⅱ1设计任务 1 1.1初始条件 1 1.2设计任务 1 2直流双闭环调速系统原理图设计 2 2.1系统的组成 2 2.2系统的电路原理图 3 3直流双闭环调速系统调节器设计 4 3.1获得系统设计对象 4 3.2电流调节器的设计 5 3.2.1电流环结构框图的化简 5 3.2.2电流调节器结构的选择7 3.2.3电流调节器的常数计算7 3.2.4电流调节器的实现10 3.3转速调节器的设计10 3.3.1电流环的等效闭环传递函数10 3.3.2转速调节器的结构选择11 3.3.3转速调节器的参数计算13 3.3.4转速调节器的实现15 4系统起动过程分析16 5系统仿真18 6心得体会19 参考文献20

基于Simulink仿真双闭环系统综合课程设计

- -- 课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号2 08自动化1班成员一:陈木生学号3 08自动化1班 指导老师: 日期:2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

课程设计单闭环直流电机控制系统

运动控制课程设计题目:单闭环直流电机控制系统 院系:工学院 专业:电气工程及其自动化 班级:电气工程1402 姓名:汤安琪 学号:201402012011 指导教师:王玮 二〇一七年二月

运动控制系统课程设计任务书 一、基本情况 学时:1周学分:1学分适应班级:电气工程1402 二、进度安排 本设计共安排1周,合计30学时,具体分配如下: 实习动员及准备工作: 2学时 总体方案设计: 4学时 硬件设计: 12学时 撰写设计报告: 8 学时 答辩: 4学时 教师辅导:随时 三、基本要求 1、课程设计的基本要求 运动控制系统课程设计的主要内容包括:理论设计与撰写设计报告等。其中理论设计又包括总体方案选择,硬件系统设计、硬件设计包括单元电路,选择元器件及计算参数等;课程设计的最后要求是写出设计总结报告,把设计内容进行全面的总结,若有实践条件,把实践内容上升到理论高度。 2、课程设计的教学要求 运动控制系统课程设计课程设计的教学采用相对集中的方式进行,以班为单位全班学生集中到设计室进行。做到实训教学课堂化,严格考勤制度,在实训期间累计旷课达到2节以上,或者迟到、早

退累计达到4次以上的学生,该课程考核按不及格处理。在实训期 间需要外出查找资料,必须在指定的时间内方可外出。 课程设计的任务相对分散,每5-6名学生组成一个小组,完成一个 课题的设计。小组成员既有分工、又要协作,同一小组的成员之间 可以相互探讨、协商,可以互相借鉴或参考别人的设计方法和经验。 但每个学生必须单独完成设计任务,要有完整的设计资料,独立撰 写设计报告,设计报告雷同率超过60%的课程设计考核按不及格处 理。 四、设计题目及控制要求 题目:单闭环直流电机控制系统 设计参数: (1)直流电机:12V 20W、U P N N ==、 1.5A I N =、 300r/min n N =、电枢电阻 4.5ΩR a =、电枢电感22a 15.68N.cm 6.76mH、GD L ==、30ms T m = (2)双闭环直流调速系统:N dm im *n 1.5I 5V、I 5V、U U ===、 5%σi ≤ 设计要求: (1)、根据题目的技术要求,分析并确定主电路的结构形式和闭 环调速系统的组成,画出系统组成的原理框图。 (2)、调速系统主电路元部件的确定及其参数的计算(包括电力 电子器件、平波电抗器与保护电路等) (3)、动态设计计算:根据技术要求,对系统进行动态校正,确 定调节器的结构形式及进行参数计算,使调节系统工作稳定,并满

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

基于Simulink仿真双闭环系统综合课程设计报告书

课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号200830460102 08自动化1班成员一:陈木生学号 200830460103 08自动化1班 指导老师: 日期: 2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速 Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

课程设计——单闭环不可逆直流调速系统设计

单闭环不可逆直流调速系统设计 目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ··········································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

双闭环交流调速系统课程设计

皖西学院 课程设计任务书 系别:机电学院 专业:10电气 课程设计题目:双闭环串级交流调速控制系统设计学生姓名:诚学号:2010010694 起迄日期: 6 月17日~ 6 月28日课程设计地点:电机与拖动控制实验室 指导教师:世林 下达任务书日期: 6 月17日

摘要 本设计介绍了交流调速系统的基本概况及其研究意义,同时提出了本设计所要研究解决的问题,接着对系统各部分所需元器件进行比较选择并进行总体设计,最后采用工程设计方法对双闭环交流调速系统进行辅助设计,进行参数计算和近似校验。 在调节器选择方面,本设计选择的PI调节器,使得线路大为简化,且性能优良、调试方便、运行可靠、成本降低。触发电路则采用一种新型高性能集成移相触发器(MC787)设计的触发电路,它克服了分立元件缺点,抗干扰性优良,具有输入阻抗高、移相围宽、装调简便、使用可靠、只需一片MC787就可以完成三相相移功能,使用效果较好。 目录

1 绪论 (3) 1.1研究交流调速系统的意义 (3) 1.2本设计所做的主要工作 (3) 2 交流调速系统 (3) 2.1交流电机常用的调速方案及其性能比较 (3) 2.2三相交流调压调速的工作原理 (4) 2.3双闭环控制的交流调速系统 (5) 2.3.1转速电流双闭环调速系统的组成 (6) 2.3.2 稳态结构图和静特性 (6) 3 电路参数计算 (9) 3.1系统主电路的参数计算....................................................... .9 3.2根据系统方块图进行动态计算 (9) 3.3调节器的设计参数计算 .................................................. . (11) 3.3.1 电流调节器的参数计算 ................................................ .12 3.3.2 转速调节器的参数计算................................................ .14 4 控制系统硬件电路设计..................................................... .16 4.1调节器的选择和调整 . (16) 4.2触发电路的设计 (16) 4.3串级调速系统设计 (18) 4. 4双闭环系统设计........................ (19) 5 仿真........................................ .. (21) 6设计体会 (22)

双闭环比值控制系统-----课程设计

《过程控制》 课程设计报告 题目:双闭环比值控制系统的分析与设计姓名:王飞 学号:20106206 专业:自动化 年级:2010级 指导教师:李天华

目录 1 任务书-------------------------------------------------------- 1 1.1设计题目 --------------------------------------------------- 1 1.2设计任务 --------------------------------------------------- 1 1.3原始数据 --------------------------------------------------- 2 1.4设计内容 --------------------------------------------------- 2 2 研究背景 ------------------------------------------------------- 3 3 研究意义 ------------------------------------------------------- 4 4 研究内容 ------------------------------------------------------- 4 5 论文组织 -------------------------------------------------------- 5 5.1衰减曲线法整定主动量回路控制器参数 -------------------------- 5 5.2反应曲线法整定从动量回路控制器参数 -------------------------- 8 5.3双闭环比值控制系统仿真及性能测试 --------------------------- 11 5.4双闭环比值控制系统的抗干扰能力检验 ------------------------- 13 6 双闭环比值控制与串级控制的区别,以及各自的优缺点 --------------- 16 6.1双闭环比值控制与串级控制的区别 ----------------------------- 16 6.2双闭环比值控制的优、缺点 ----------------------------------- 17 6.3串级控制的优、缺点 ----------------------------------------- 17 7 总结 ---------------------------------------------------------- 17 8 参考文献 ------------------------------------------------------ 17 附录:双闭环比值控制最终整定结果(Simulink图) -------------------- 18

单双闭环课程设计

1.设计目的及意义 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进行深入的探讨和研究 本设计从直流电动机的工作原理入手,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算。 转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。转速、电流双闭环直流调速系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用;应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。 运动控制课是后续于自动控制原理课的课程,是更加接近本专业实现应用的一门课程。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义。 本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。 一、单闭环总体方案设计 1、控制原理 根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。原理图如下: 图1、单闭环直流

课程设计-直流双闭环调速系统-----带原理图的要点

摘要 本文主要研究了直流电机转速控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了光电编码器对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PI运算程序,单片机产生PWM波形的程序,初始化程序等的编写思路和具体的程序实现,M法数字测速及动态LED显示程序设计,A/D转换程序及动态扫描LED显示程序和故障检测程序及流程图。 关键词: PWM信号直流调速双闭环 PI调节

前言 本文主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM 控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已经出现了多种PWM控制技术。 PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 本文就是利用这种控制方式来改变电压的占空比实现直流电机速度的控制。文章中采用了专门的芯片组成了PWM信号的发生系统,然后通过放大来驱动电机。利用编码器测得电机速度,经过滤波电路得到直流电压信号,把电压信号输入给A/D转换芯片最后反馈给单片机,在内部进行PI运算,输出控制量完成闭环控制,实现电机的调速控制。 第一章系统硬件电路设计 第一节系统总体设计 1.1.1系统方案选择与总体结构设计 调速方案的优劣直接关系到系统调速的质量。根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。本系统采用直流双闭环调速系统,使系统达到稳态无静差,调速范围0-1500r/min,电流过载倍数为1.5倍,速度控制精度为0.1%(额定转速时)。 1、系统控制对象的确定 本次设计选用直流电动机的额定参数直流电动机的额定参数P N=15kW、U N=440V、I N=39.3A、n N=1510 r/min,电流过载倍数λ=1.5。电枢回路总电阻为R=R a+R rec=0.806Ω,系统机电时间常数T m=0.76s,电磁时间常数T l=0.0167s,电动势系数Ce=0.270V*min/r。

直流电机双闭环调速系统设计要点

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环控制系统

课程设计报告 课程课程设计 课题双闭环控制系统设计 班级 姓名 学号

目录 第1章双闭环系统分析 (1) 1.1系统介绍 (1) 1.2系统原理 (1) 1.3双闭环的优点 (1) 第2章系统参数设计 (2) 2.1电流调节器的设计 (2) 2.1.1时间参数选择 (2) 2.1.2计算电流调节参数 (2) 2.1.3校验近似条件 (3) 2.2转速调节器的设计 (3) 2.2.1电流环等效时间常数: (3) 2.2.2转速环截止频率为 (5) 2.2.3计算控制器的电阻电容值 (5) 第3章仿真模块 (6) 3.1电流环模块 (6) 3.2转速环模块 (6) 第4章仿真结果 (7) 4.1电流环仿真结果 (7) 4.2转速环仿真结果 (7) 4.4稳定性指标的分析 (8) 4.4.1电流环的稳定性 (8) 4.4.2转速环的稳定性 (8) 结论 (9) 参考文献 (10)

第1章双闭环系统分析 1.1系统介绍 整流电路可从很多角度进行分类,主要分类方法是:按组成的器件可分为不可控,半控和全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相?数分可分为单相、双相、三相和多相电路;按控制方法又可分为相控整流和斩波?控制整流电路。? 本系统采用的是三相全控桥式晶闸管相控整流电路。这是因为电机容量相对?较大,并且要求直流脉动小、容易滤波。其交流侧由三相电网直接供电,直流侧?输出脉动很小的直流电。在分析时把直流电机当成阻感性加反电势负载。因为电?机电流连续所以分析方法与阻感性负载相同,各参量计算公式亦相同。 1.2系统原理 ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,其输出是电流指令的给定信号Ui*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。? ACR(电流调节器)根据Ui*和电流反馈Ui的偏差进行调节,其输出是UPE(功率变换器件的)的控制信号Uc。进而调节UPE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。 1.3双闭环的优点 双闭环调速系统属于多环控制系统,每一环都有调节器,构成一个完整的闭环系统。工程设计方法遵循先内环后外环的原则。步骤为:先设计电流环(内环),对其进行必要的变换和近似处理,然后依照电流环的控制要求确定把它校正成哪一种典型系统,再根据控制对象确定其调节器的类型,最后根据动态性能指标的要求来确定其调节器的有关参数。电流环设计完成以后,把电流环看成转速环(外环)中的一个环节,再用同样的方法设计转速环。? 在电流检测信号中常有交流分量,为了不让它影响调节器的输入,加入了低通滤波器,然而滤波环节可以使反馈信号延迟,为了消除此延迟在给定位置加一个相同时间常数的惯性环节。同理,由测速发电机得到的转速反馈电压常含有换向纹波,因此也在给定和反馈环节加入滤波环节。

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

相关文档
最新文档