绝缘栅型场效应管测量方法

绝缘栅型场效应管测量方法
绝缘栅型场效应管测量方法

绝缘栅型场效应管(MOSFET)除了放大能力稍弱,在导通电阻、开关速度、噪声及抗干扰能力等方面较双极型三极管均有着明显的优势。

由于输入阻抗极高,MOSFET管栅极微量感应电荷产生的电势足以击穿绝缘层而损坏器件。过去许多介绍绝缘栅型场效应管的资料中,一般都需要用捆扎(短接)器件的三只管脚,待MOS管焊接到电路板之后再剪去捆扎线如图1所示,使用非常烦琐。

目前市场上销售的MOS管的种类、封装很多,如图2所示。

其中的大多数MOS管,尤其是功率型MOS管,内部集成有完善的保护环节,使用起来与双极型三极管一样方便。不过,保护单元的存在却又使得MOS管内部结构变得更加复杂,测试方法也与传统双极型三极管大相径庭。

一、基本类型MOS管测试

MOS管内部的保护环节有多种类型,这就决定了测量过程存在着多样性,常见的NMOS管内部结构如图3、图4所示。

图3、图4所示NMOS管的D-S间均并联有一只寄生二极管(InternalDiode)。与图3稍有不同,图4所示NMOS管的G-S之间还设计了一只类似于双向稳压管的元件"保护二极管",由于保护二极管的开启电压较高,用万用表一般无法测量出该二极管的单向导电性。因此,这两种管子的测量方法基本类似,具体测试步骤如下:

1.MOS管栅极与漏、源两极之间绝缘阻值很高,因此在测试过程中G-D、G-S之间均表现出很高的电阻值。而寄生二极管的存在将使D、S两只管脚间表现出正反向阻值差异很大的现象。选择指针万用表的R×1kΩ挡,轮流测试任意两只管脚之间的电阻值。当指针出现较大幅度偏转时,与黑笔相接的管脚即为NMOS管的S极,与红笔相接的管脚为漏极D,剩余第3脚则为栅极G,如图5所示。

2.短接G、D、S三只电极,泄放掉G-S极间等效结电容在前面测试过程中临时存储电荷所建立起的电压UGS。图4所示MOS管的G-s极间接有双向保护二极管,可跳过这一步。

3.万用表电阻挡切换到的R×10kΩ挡(内置9V电池)后调零。将黑笔接漏极D、红笔接源极S,经过上一步的短接放电后,UGS降为0V,MOS管尚未导通,其D-S间电阻RDS为∞,故指针不会发生偏转,如图6所示。

4.有以下两种方法能够对MOS管的质量与性能作出准确的判断:第一种方法:

①用手指碰触G-D极,此时指针向右发生偏转,如图7所示。手指松开后,指针略微有一些摆动。

②用手指捏住G-S极,形成放电通道,此时指针缓慢回转至电阻∞的位置,如图8所示。

图4所示MOS管的G-S间接有保护二极管,手指撤离G-D极后即使不去接触G-S极,指针也将自动回到电阻∞的位置。值得注意的是,测试过程中手指不要接触与测试步骤不相关的管脚,包括与漏极D相连的散热片,避免后续测量过程中因万用表指针偏转异常而造成误判。第二种方法:

①用红笔接源极S,黑笔接栅极G,对G-S之间的等效结电容进行充电,此时可以忽略万用表指针的轻微偏转,如图9所示。

②切换到R×1Ω挡,换挡后须及时对挡位进行调零。将红笔接到源极S,黑笔移到漏极D,此时MOS 管的D-S极导通。根据MOS管类型的不同,万用表指针停留在十几欧姆至零点几欧姆不等的位置,如图10所示。

③交换黑笔与红笔的位置,万用表所指示的电阻值基本不变,说明此时MOS管的D-S极已经导通。当前万用表所指示的电阻值近似为D-S极导通电阻RDS(on)。因测试条件所限,这里得到的RDS(on)值往往比手册中给出的典型值偏大。

对于图4所示的。MOS管,因G-S间保护二极管的存在,万用表指针在接近零刻度位置后,将自动回

复到电阻∞位置。

5.放大能力(跨导)的估测

判断NMOS管跨导性能时,选择万用表的R×10kΩ电阻挡,此时表内电压较高。对于垂直沟道的VMOS 管(如2SJ353),用R×1kΩ挡即可完成所有的测试功能。

将万用表红表笔接源极S、黑表笔接漏极D,相当于在D-S之间加上一个9V的电压。此时栅极开路,当用手指或镊子接触栅极G并停顿几秒时,指针会缓慢地偏转到满刻度的1/3~1/2处。指针偏转角度越大,MOS管的跨导值越高。如果被测管的跨导很小,用此法测试时指针偏转幅度很小。

二、特殊小功率MOS管的测试

图3所示MOS管在目前使用较广,典型器件如NMOS型的IRF740、IRF830、PMOS型的IRF9630等。图4所示的MOS管以NMOS型居多,2SKl548、FS3KMl6A为这类MOS器件的典型代表。此外,还有一类比较特殊的MOS管,这类MOS管的栅极G在并联保护二极管的同时还集成有一只电阻,结构如图11所示。

图11所示的MOS管在小功率器件中采用较多,如常见的2SK1825。这类NMOS管与前述两种MOS 管的测试方法区别较大,正确的测试步骤如下。1.切换到万用表的R×1kΩ挡,将黑笔与某只引脚相接,红笔分别与其余两只引脚相接进行阻值测量,若两次测试过程中指针均出现较大幅度的偏转,则与黑笔相连的管脚即为源极S。这主要是由于MOS管内部集成有两只保护二极管的缘故。

2.为了区分漏极D与栅极G,接下来可参考NPN三极管集电极C与发射极E的识别程序进行测试:

①假设剩余管脚中的某一只为漏极D并将其与黑笔相接,红笔则接假设的栅极G;

②用手指捏住假设的栅极G与漏极D,观察指针的偏转情况。若指针偏转幅度较大,则与黑笔相接的管脚即为漏极D,与红笔相接的则为栅极,测试原理如图12所示。

三、型号不明的MOS管的测量

PMOS管的测量原则和方法与NMOS管类似,在测量过程中应注意将表笔的顺序颠倒。

但是,对于型号不明的MOS管,通过检测单向导电性往往只能判断出其中哪一只管脚为栅极,而不能直接识别管子的极性和D、S极。对此,合理的测试方法如下:

1.万用表取R×1kΩ挡,在观察到单向导电性之后,交换两只表笔的位置;

2.将万用表切换至R×10kΩ挡,保持黑笔不动,将红笔移到栅极G停留几秒后再回到原位,若指针出现满偏,则该元件为PMOS管,且黑笔所接管脚为源极S、红笔所接为漏极D;

3.若第2步指针没有发生大幅度偏转,则保持红笔位置不变,将黑笔移到栅极G停留几秒后回到原位,若指针满偏则管子类型为NMOS,黑笔所接管脚为漏极D、红笔所接为源极S。

MOS管的种类较多,测试方法也不尽相同,实际工作中需要在充分掌握上述测试原则的基础上灵活地选择合适的测试方法。

场效应管的识别方法及测量

一、符号:“Q、VT” ,场效应管简称FET,是另一种半导体器件,是通过电压来控制输出电流的,是电压控制器件 场效应管分三个极: D极为漏极(供电极) S极为源极(输出极) G极为栅极(控制极) D极和S极可互换使用 场效应管图例: 二、场效应管的分类: 场效应管按沟道分可分为N沟道和P沟道管(在符号图中可看到中间的箭头方向不一样)。 按材料分可分为结型管和绝缘栅型管,绝缘栅型又分为耗尽型和增强型,一般主板上大多是绝缘栅型管简称MOS管,并且大多采用增强型的N沟道,其次是增强型的P沟道,结型管和耗尽型管几乎不用。 三、场效应管的特性: 1、工作条件:D极要有供电,G极要有控制电压 2、主板上的场管N沟道多,G极电压越高,S极输出电压越高 3、主板上的场管G极电压达到12V时,DS完全导通,个别主板上5V导通

4、场管的DS功能可互换 N沟道场管的导通截止电压: 导通条件:VG>VS,VGS=V时,处于导通状态,且VGS越大,ID越大 截止条件:VG<VS,ID没有电流或有很小的电流 四、场效应管的作用: 放大、调制、谐振、开关 五、场效应管的测量及好坏判断 1、测量 极性及管型判断 红笔接S、黑笔接D值为(300-800)为N沟道 红笔接D、黑笔接S值为(300-800)为p沟道 如果先没G、D再没S、D会长响,表笔放在G和最短脚相连放电,如果再长响为

击穿 贴片场管与三极管难以区分,先按三极管没,如果不是按场管测 场管测量时,最好取下来测,在主板上测量会不准 2、好坏判断 测D、S两脚值为(300-800)为正常,如果显示“0”且长响,场管击穿;如果显示“1”,场管为开路 软击穿(测量是好的,换到主板上是坏的),场管输出不受G极控制。 六、场管的代换原则(只适合主板) 场管代换只需大小相同,分清N沟道P沟道即可 功率大的可以代换功率小的 技嘉主板的场管最好原值代换 七、主板上常见的场管型号 N沟道: 702、712、G16、SG、SS、7EW、12KSH、72KGG、KF

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

最新DRL300P配网电容电流测试仪说明书汇总

D R L300P配网电容电 流测试仪说明书

配网电容电流测试仪 使用说明书 上海菲柯特电气科技有限公司

目录 一、仪器的用途及特点 (2) 二、主要技术指标及使用条件 (2) 三、面板及各键功能介绍 (3) 四、测量原理 (3) 五、配电网中PT接线方式及PT的变比 (4) 六、从变压器中性点测量配网电容电流的方法 (10) 七、仪器使用方法 (11) 八、测量其他电压等级电网的电容电流的方法 (13) 九、仪器检验和日常校准 (14) 十、常见的故障及处理 (14)

十一、仪器成套性 (14) 十二、维修保养和售后服务: (14) 一、仪器的用途及特点 目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行熄弧引起的。因此,我国的电力规程规定当10kV和35kV 系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量

配电网的对地电容值。传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。 为解决这些问题,我菲柯特公司与大专院校及试验研究院共同潜心研制,开发出配网电容电流测试仪。该新型智能化测试仪直接从PT的二次侧测量配电网的电容电流,与传统的测试方法相比,该仪器无需和一次侧直接相连,因而试验不存在危险性,无需做繁杂的安全工作和等待冗长的调度命令,只需将测量线接于PT的开口三角端就可以测量出电容电流的数据。由于从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号,同时测试仪的输出端可以耐受100V的交流电压,若测量时系统有单相接地故障发生,亦不会损坏PT和测试仪,因而无需做特别的安全措施,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠。 该测试仪采用大屏幕液晶显示,中文菜单,操作非常简便,且体积小、重量轻,便于携带进行户外作业,接线简单,测试速度快,数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。 二、主要技术指标及使用条件 1)电容电流测量范围:1A~250A 0.3μF~125μF 2)测量误差:≤5% 3)工作温度:-10℃~50℃ 4)工作湿度:0~80% 5)工作电源:AC 220V±10% 50Hz±1Hz 6)外行尺寸:350mm×200mm×150mm 7)仪器重量:2.5kg 8)电压等级:1KV、3KV、6KV、6.3KV、10KV、20KV、35KV、66KV。 三、面板及各键功能介绍(图一) 1)电流输出端子:输出测量信号,接到PT开口三角端 2)保险管:配置220V/2A保险管,用于保护仪器过载或故障 3):仪器的接地端子 4)液晶屏:显示测试状态和测试数据 5)对比度:调节液晶屏的显示对比度 6)AC220V:电源插座及开关 7)复位键:用于仪器复位初始化或中断测试 8)电压选择键:按该键,可以在1kV、3kV、6kV、6.3KV、10kV、20KV、35kV、66KV系 统线电压间循环选择 9)方式/测量键:多功能键,短按(即按下后立刻松开)时,用于循环选择系统PT的 接线方式;长按(即按下2秒后才松开)时,用于启动测量。

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

如何用万用表测量场效应管三极管的好坏

如何用万用表测量场效应管三极管的好坏 一、定性判断MOS型场效应管的好坏 先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。 二、定性判断结型场效应管的电极 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。 注意事项: (1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。 (2)也可以用舌尖舔住栅极,现象同上。 三、晶体三极管管脚判别 三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。 1.找出基极,并判定管型(NPN或PNP) 对于PNP型三极管,C、E极分别为其内部两个PN结的正极,B极为它们共同的负极,而对于NPN型三极管而言,则正好相反:C、E极分别为两个PN结的负极,而B极则为它们共用的正极,根据PN结正向电阻小反向电阻大的特性就可以很方便的判断基极和管子的类型。具体方法如下: 将万用表拨在R×100或R×1K档上。红笔接触某一管脚,用黑表笔分别接另外两个管脚,这样就可得到三组(每组两次)的读数,当其中一组二次测量都是几百欧的低阻值时,若公共管脚是红表笔,所接触的是基极,且三极管的管型为PNP型;若公共管脚是黑表笔,所接触的是也是基极,且三极管的管型为NPN型。 2.判别发射极和集电极 由于三极管在制作时,两个P区或两个N区的掺杂浓度不同,如果发射极、集电极使用正确,三极管具有很强的放大能力,反之,如果发射极、集电极互换使用,则放大能力非常弱,由此即可把管子的发射极、集电极区别开来。

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项? ? ??测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就

等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一

配电网电容电流计算

配电网电容电流计算 一、概述 目前,电容电流得测定方法很多,通常采用附加电容法与金属接地法进行测量与计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同得调谐原理,有多种间接测量电网电容电流得方法。其根本思想都就是利用电网正常运行时得中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网得对地总容抗,然后由单相故障时得零序回路,计算当前运行方式下得电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路得配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置得过电压保护与绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔得架空线路构成得系统与所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成得系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈得电感电流大于电容电流),也就就是说装设得消弧线圈得电感必须根据对地电容电流得大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式得变化,在电网正常运行时,测量计算当前运行方式下得电容电流,以合理调节消弧线圈得出力。显然,电网电容电流得计算精度,将直接影响消弧线圈得调谐与补偿效果。 随着电力系统对安全可靠性要求得日益提高,用户对消弧线圈调谐精度与补偿效果得要求也越来越高。而现有得各种消弧线圈自动跟踪补偿装置中所采用得计算理论与方法,无法很好满足用户得要求。要提高消弧线圈得调谐精度与补偿效果,首先就要进一步提高电容电流得计算精度。本章对电容电流得计算理论与计算方法作了进一步深入得研究,减小与消除了对地容抗计算得误差,并计及电网不平衡对电容电流计算得影响,提高了电容电流得计算精度。

场效应管的极性和好坏判断

Q1:高压稳场管;Q2:低压稳场管 Q2的S极接地;测量方法:红表笔接地,黑表笔接场管S极,如数值小于10,则说明当前所测场管Q2,Q2的D极连接Q1的S极。 判断Q1是否击穿:红表笔接D极,黑表笔接S极,数值小于10,证明击穿。 场管的代换原则(只适合主板) 场管代换只需大小相同,分清N沟道P沟道即可 功率大的可以代换功率小的 技嘉主板的场管最好原值代换 一般主板上采用的场效管大多为绝缘栅型增强型N沟通最多,其次是增强型P沟道,结型管和耗尽型管一般没有, 场效应管N沟道和P沟道判断方法 (1)场效应管的极性判断,管型判断(如图)

G极与D极和S极正反向均为∞ (2)场效应管的好坏判断 把数字万用表打到二极管档,用两表笔任意触碰场效应管的三只引脚,好的场效应管最终测量结果只有一次有读数,并且在500左右。如果在最终测量结果中测得只有一次有读数,并且为“0”时,须用表笔短接场效应管识引脚,然后再测量一次,若又测得一组为500左右读数时,此管也为好管。不符合以上规律的场效应管均为坏管。 场效应管的代换原则(注:只适合主板上场效应管的代换) 一般主板上采用的场效管大多为绝缘栅型增强型N沟通最多,其次是增强型P沟道,结型管和耗尽型管一般没有,所以在代换时,只须在大小相同的情况下,N沟道代N沟道,P沟道代P沟道即可。 用万用表测量场效应管极性及好坏判断 来源:互联网作者:电子电路图网【大中小】 1、测量

极性及管型判断 红笔接S、黑笔接D值为(300-800)为N沟道 红笔接D、黑笔接S值为(300-800)为p沟道 如果先没G、D再没S、D会长响,表笔放在G和最短脚相连放电,如果再长响为击穿贴片场管与三极管难以区分,先按三极管没,如果不是按场管测 场管测量时,最好取下来测,在主板上测量会不准 2、好坏判断

发电机电容电流的测量及数据分析

发电机电容电流的测量及数据分析 摘要:凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 关键词:发电机电容电流测量数据分析 0 前言 凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 根据《凌津滩电厂水轮发电机组及其附属设备》合同: 1)第6.6.3.8中第2条《中性点装置》第3项中规定:两台机联合运行,单相接地电容电流大于3A时,若不能保证机组安全运行2小时,则各机组中性点均应采取补偿措施,补偿装置由卖方配套供货。 2)附件6.3条设备性能保证及参数中规定:定子绕组每相对地电容0.3μF。 3)第6.8条规定现场试验:6.8.3.8条定子对地电容电流测量。这一条明确规定与电机交流耐压并列,即每台机都应作电容电流测量。 1发电机电容的计算 凌津滩电厂发电机定子绕组为波绕双层、每槽两根线棒,定子线棒采用真空压力浸渍环氧树脂浸透线圈、线圈表面涂阻燃林料,分上下层嵌放到定子槽内。定子Z=342槽、计684根线棒,单支路每相线棒N=228根。 定子绕组对地电容,由线圈的机械尺寸、绝缘材料的电介系数所确定。按机械尺寸、交流耐压及单相接地三种方法可计算得出,以#1机为例,分述如下。 1.1 机械尺寸进行电容的计算 一般的平板极电容计算,电容与电介系数εO及εr、极板面积 S成正比,与极间距离d成反比。 常用式子 C0=εOεr S/d 发电机的绕组电容计算,可将线棒导体展开成为一极。包有半导体材料的线棒与铁芯是紧靠的,当另外一极同时展开。中间的绝缘材料也展开,这是极板间的介质。 线棒导体的面积 S1=(2b1+2h1)L 包半导体的面积 S2=(2b2+2h2)L

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的 输入电阻可高达1015W而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS t,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽 型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区, 并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖 一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G 另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS f。它的栅极与其他电 极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 源极s tiffiG m 引纯 ? N旳道增强型场效应管紡拘示胃图低州沟道壇强型场效应管符号 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图6-39(a) 可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0寸,即使加上漏-源电压UDS而且不论UDS的极性如何,总有一个PN结处于 反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID - 0。 若在栅-源极间加上正向电压,即UGS> 0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同 时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子 就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层, 且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称 为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

如何测试场效应管

如何测试场效应管 1、结型场效应管的管脚识别: 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1K档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极 用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。源极与漏极间的电阻约为几千欧。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力 将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。这时表针指示出的是D-S极间电阻值。 然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS 和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的0Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。 少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。本方法也适用于测MOS管。 为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。 MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。

电流检测方法

电流检测方法 1 传统的电流检测方法 1. 1 利用功率管的RDS进行检测( RDS SENSIN G) 当功率管(MOSFET) 打开时,它工作在可变电阻区,可等效为一个小电阻。MOSFET 工作在可变电阻区时等效电阻为: 式中:μ为沟道载流子迁移率; COX 为单位面积的栅电容;V TH 为MOSFET 的开启电压。 如图1 所示,已知MOSFET 的等效电阻,可以通过检测MOSFET 漏源之间的电压来检测开关电流。 这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点: (1) MOSFET 的RDS本身就是非线性的。 (2) 无论是芯片内部还是外部的MOSFET ,其RDS受μ, COX ,V TH影响很大。 (3) MOSFET 的RDS随温度呈指数规律变化(27~100 ℃变化量为35 %) 。 可看出,这种检测技术受工艺、温度的影响很大,其误差在- 50 %~ + 100 %。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC2DC 稳压器的过流保护。 图1 利用功率管的RDS进行电流检测

1. 2 使用检测场效应晶体管(SENSEFET) 这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是: 如图2 在功率MOSFET两端并联一个电流检测FET ,检测FET 的有效宽度W 明显比功率MOSFET 要小很多。功率MOSFET 的有效宽度W 应是检测FET 的100 倍以上(假设两者的有效长度相等,下同) ,以此来保证检测FET 所带来的额外功率损耗尽可能的小。节点S 和M 的电流应该相等,以此来避免由于FET 沟道长度效应所引起的电流镜像不准确。 图2 使用场效应晶体管进行电流检测 在节点S 和M 电位相等的情况下,流过检测FET的电流IS 为功率MOSFET 电流IM 的1/ N ( N 为功率FET 和检测FET 的宽度之比) , IS 的值即可反映IM 的大小。 1. 3 检测场效应晶体管和检测电阻相结合 如图3 所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET 而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET 的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET 和检测FET 漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/ N 2还要小( N 为功率FET 和检测FET 的宽度之比) 。此技术的缺点在于,由于M1 ,M3 的V DS不相等(考虑VDS对IDS的影响), IM 与IS 之比并不严格等于N ,但这个偏差相对来说是很小的,在工程中N 应尽可能的大, RSENSE应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

绝缘栅型场效应管之图解

绝缘栅型场效应管之图解 绝缘栅型场效应管之图解 绝缘栅型场效应管是一种利用半导体表面的电场效应,由感应电荷的多少改变导电沟道来控制漏极电流的器件,它的栅极与半导体之间是绝缘的,其电阻大于1000000000Ω。 增强型:VGS=0时,漏源之间没有导电沟道,在VDS作用下无iD。耗尽型:VGS=0时,漏源之间有导电沟道,在VDS作用下iD。 1. 结构和符号(以N沟道增强型为例) 在一块浓度较低的P型硅上扩散两个浓度较高的N型区作为漏极和源极,半导体表面覆盖二氧化硅绝缘层并引出一个电极作为栅极。 N沟道绝缘栅型场效应管结构动画 其他MOS管符号

2. 工作原理(以N沟道增强型为例) (1) VGS=0时,不管VDS极性如何,其中总有一 个PN结反偏,所以不存在导电沟道。 VGS =0, ID =0 VGS必须大于0 管子才能工作。 (2) VGS>0时,在Sio2介质中产生一个垂直于半导体表面的电场,排斥P区多子空穴而吸引少子电子。当VGS达到一定值时P区表面将形成反型层把两侧的N 区沟通,形成导电沟道。 VGS >0→g吸引电子→反型层→导电沟道 VGS↑→反型层变厚→ VDS ↑→ID↑

(3) VGS≥VT时而VDS较小时: VDS↑→ID ↑ VT:开启电压,在VDS作用下开始导电时的VGS° VT = VGS —VDS

3. 特性曲线(以N沟道增强型为例) 场效应管的转移特性曲线动画 4.其它类型MOS管 (1)N沟道耗尽型:制造时在栅极绝缘层中掺有大量的正离子,所以即使在VGS=0时,由于正离子的作用,两个N区之间存在导电沟道(类似结型场效应管)。

配电网电容电流测量方法

配电网电容电流测量方法 系统电容电流是指系统在没有补偿的情况下,发生单相接地时通过故障点的无功电流。测量方法很多,这里介绍几种常用的方法。 一、单相金属接地法 单相金属接地又分为投入消弧线圈补偿接地和不投入消弧线圈两种。 1、不投入消弧线圈 不投入消弧线圈(即中性点不接地)的单相金属接地测量,其接线如图13-10所示,图中,QF为接地断路器;TV为测量用电压互感器;TA1、TA2为保护和测量用电流互感器;W为低功率因数功率表,用以测量接地回路的有功损耗;TA1的1、2端子接QF的过流保护。电流、电压向量图如图13-11所示。 图13-10 不投入消弧线圈的单相金属接地测量原理图 图13-11 不投入消弧线圈的单相接地的电流、电压向量图 试验是在系统单相接地下进行的,当系统一相接地时,其余两相对地电压升为线电压。因此,在测量前应消除绝缘缺陷,以免在电压升高时非接地相对地击穿,形成两相接地短路事故。为使接地断路器能可靠切除接地电容电流,须将三相触头串联使用,且应有保护。若测量过程中发生两相接地短路,要求QF能迅速切断故障,其保护瞬时动作电流应整定为IC的4~5倍。

合上接地断路器QF,迅速读取图中所示各表计的指示数值后,接地开关应立即跳闸。所用表计均不得低于0.5级。测量功率,应用低功率因数功率表。由于三相对地电容不等,一相单相接地难以测得正确的阻尼率,需三相轮流接地测量,取三次测量结果的算术平均值。 测量结果的计算: 上三式中I cp——接地电流的有功分量(安); I cp——接地电流的无功分量(安); I c——系统总接地电流(安); P——接地回路的有功损耗(瓦); U□——中性点不对称电压(伏); d%——系统的阻尼率。 若测量时的电压和频率不是额定值,则需将测得的电流折算到额定电压和额定频率下的数值,即 式中I ce——电压和频率为额定值时的系统接地电容电流(安); f e——额定频率(赫兹); U e——额定电压(伏); U av——三相电压(线电压)的平均值(伏)。 由于这种方法,在测量过程中,非接地两相的电压要升高,一旦发生绝缘击穿,接地断路器虽能切断短路,但由于没有补偿,另一接地点的电弧如不能熄灭,可能扩大事故。同时由于单相接地产生负序分量,接地电流中将有较大的谐波分量,影响测量结果的准确度,所以一般不采用这种方法。 2、投入消弧线圈 中性点投入消弧线圈时,利用单相金属接地,测量系统的电容电流的原理接线如图13-12所示。图中1、2端子接过流保护,其值整定为接地电流的4~5倍,瞬时跳闸。接地时的电流电压向量图如图13-13所示。

绝缘栅型场效应管之图解

绝缘栅型场效应管之图解 绝缘栅型场效应管之图解 N 沟道绝缘栅型场效应管结构动画 其他MOS 管符号 绝缘栅型场效应管是一种利用半导体表面的电场效应,由感应电荷的多少改变导 电沟道来控制漏极电流的器件,它的栅极与半导体之间是绝缘的,其电阻大于 增强型:VGS=0时,漏源之间没有导电沟道, 漏源之间有导电沟道,在 VDS 作用下iD 。 1.结构和符号(以 在一块浓度较低的 覆盖二氧化硅绝缘层并引出一个电极作为栅极。 N 沟道增强型为例) P 型硅上扩散两个浓度较高的 P 衬底 00 Qo 在VDS 作用下无iD o 耗尽型:VGS=0时, N 型区作为漏极和源极,半导体表面 D W S N 沟ifi 箭头 问里 衬 底斷开 S 心 1 I

衬底 S N沟道 衬底 2.工作原理(以N沟道增强型为例) (1) VGS=0时,不管VDS极性如何,其中总有一个PN结反偏,所以不存在导电沟道。 VGS =0 ID =0 VGS必须大于0 管子才能工作。 (2) VGS>0时,在Sio2介质中产生一个垂直于半导 体表面的电场,排斥P区多子空穴而吸引少子电子。

T|l 戶 -iH Vos g TTI d n - VGS 达到一定值时P 区表面将形成反型层把两侧的 沟通,形成导电沟道。 VGS >A g 吸引电子7反型层7导电沟道 VGSf f 反型层变厚7 VDS ID ?

⑶VGS> VT时而VDS较小时: VDS— ID t VT:开启电压,在VDS作 用下开始导电时的VGS VT = VGS —VDS V DS V GS V GS

3. 特性曲线(以N 沟道增强型为例) 场效应管的转移特性曲线动画 g =丿着-1)2 Aa (j 是%卅=2齐?|【寸的//丫 4. 其它类型MOS 管 制造时在栅极绝缘层中掺有大量的正离子, 所以即使在VGS=0时, N 区之间存在导电沟道(类似结型场效应管)。 4/D 4- 2- K 夹端轨迹 \bs-6V 壯严厲V s ■ ■ _ _2y ; n I I I I I ■ 2 4 6 8 iO 12 (1) N 沟道耗尽 型: 由于正离子的作用, PN 结 衬底 -4 J Vbs=5 I ! ^GS g

场效应管检测方法

场效应管检测方法 一、用指针式万用表对场效应管进行 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。 (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值

是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动。如果手捏栅极表针摆动较小,说明管的放大能力较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的。 根据上述方法,我们用万用表的R×100档,测结型场效应管3DJ2F。先将管的G极开路,测得漏源电阻RDS为600Ω,用手捏住G极后,表

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

电容电流试报告

试验报告 峰峰集团公司小屯矿35KV系统 电容电流测试 峰峰集团监测检验中心 2004.11

报告名称: 试验时间: 项目负责人:项目参加人员:参加项目单位:编写时间: 编制: 校阅: 审核: 批准:

1、测试目的 为检验小屯矿35KV站供电系统中性点电压平衡状态,以及电容电流的情况。本测试方法为单相金属接地法,对小屯矿35KV站供电系统电容电流进行了测试。 2、依据 DL/T620-1997《交流电气装置的过电压保护和绝缘配合》。 3、测试方法及内容 (1)、35KV系统中性点不平衡电压测量; 将38#、39#(消弧线圈)停电,用绝缘杆在35KV1#主变接入静电电压表,取数值即为不平衡电压。 (2)、不投入消弧线圈的单相金属接地法测试35KV系统接地电容电流;35KV站负荷全部供电,将将38#、39#(消弧线圈)停电,在任一开关刀闸间分别将A、B、C三相人为接地,测得电流即为三相容性电流。用相似的方法也可测得阻性电流。 当全输出运行时分别测得电容电流,并记录。 4、运行方式 35KV系统实现正常运行方式,站内出线全部运行,电缆线路1200m。5、测试结果 (1)、三相不平衡电压为(三次): 826V,813V,821V;取平均值820V。

计算不平衡电压率: U 不平衡电压/U 额定=2.34%,即电压不平衡度为2.34%。 (2)、测试结果数据 35KV 站系统电容电流测试数据 A 相19.0A , B 相19.3A , C 相19.0A 相;平均值为19.1A , 观察电压指示为36.5KV ,测得频率为50.3Hz 。 将测量值折算到额定电压和额定频率下的数值,即 Ice =Ic* Uav U e * f fe 式中:Ic ―系统电容电流(A ); fe ―额定频率(Hz ) f ―测试频率(Hz ) Ue ―额定电压(KV ) Uav -三相线电压的平均值(KV )

绝缘栅型场效应管

绝缘栅型场效应管 绝缘栅型场效应管(Insulated Gate Field Effect Transistor,IGFET)的栅极与源极、栅极与漏极之间均采用SiO2绝缘层隔离,因此而得名。又因为栅极为金属铝,故又称为MOS(Metal-Oxide-Semicondutor)管。 a. N沟道增强型MOS管结构示意图 b. 符号 (符号中的箭头表示从P区(衬底)指向N区(N沟道),虚线表示增强型。) 与结型场效应管相同,MOS管也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种。因此MOS管分为四种类型:N沟道增强型、N沟道耗尽型管、P沟道增强型管和P沟道耗尽型管。(凡栅-源电压U GS为零时漏极电流也为零的管子,均属于增强型管;凡栅-源电压U GS为零漏极电流部位零的管子均属于耗尽型管。) 一、N沟道增强型MOS管 N沟道增强型MOS管结构和符号如上图所示,它一块低掺杂的P型硅片为衬底,利用扩散工艺制作两上高掺杂的N+ 区,并引出两个电极,分别为源极s和漏极d,半导体之上制作一层SiO2绝缘层,再在SiO2之上制作一层金属铝,引出电极,作为栅极g。通常衬底与源极接在一起使用。这样,栅极和衬底各相当于一个极板,中间是绝缘层,形成电容。 当栅-源电压变化时,将改变衬底靠近绝缘层处感应电荷的多少,从而控制漏极电流的大小。

1、工作原理 ①栅-源电压U GS的控制作用 ①当U GS=0V时,漏源之间相当两个背靠背的二极 管,在d、s之间加上电压也不会形成电流,即管子截止。 ②当U DS=0且U GS>0V时(由于SiO2的存在,栅极电流为零,但是栅极金属层将聚集正电荷)→纵向电场→将靠近栅极下方的空穴向下排斥(使之剩下不能移动的负离子区)→耗尽层。 ③再增加U GS →纵向电场↑→耗尽层增宽→将P区少子电子聚集到P区表面(耗尽层与绝缘层之间) →形成一个N型薄层,称为反型层,整个反型层就构成漏-源之间的导电沟道,如果此时加有漏源电压,就可以形成漏极电流i d。 使沟道刚刚形成的栅-源电压称为开启电压U GS(th)。U GS越大,反型层越厚,导电沟道电阻越小。 N沟道增强型MOS管的基本特性: U GS<U GS(th),管子截止, U GS >U GS(th),管子导通。 U GS越大,沟道越宽,在相同的漏源电压U GS 作用下,漏极电流I D越大。

相关文档
最新文档