神经网络试卷

神经网络试卷
神经网络试卷

上海理工大学

研究生试题

2013 / 2014 学年第 2 学期

课程名称:人工神经网络

教师于莲芝签章: 2014年 6月 12日教研室主任审查意见:

签章:年月日

1.试题原稿请于考试前2周送研究生部。

2.编号栏由研究生部填写。

上海理工大学研究生课程试题*

2013 /2014 学年第 2 学期 考试课程 人工神经网络 学 号 132342091 姓 名 刘攀 得 分

一、 简述神经网络的基本特征和基本功能(15分)

答:基本特征:(1)非线性。人工神经网络元处于激活或者抑制两种不同的状态,这种行为在数学上表现为一种非线性关系,具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性。一个神经网络由多个神经元广泛连接而成,一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。(3)非常定性。人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性。一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

基本功能:(1)联想记忆,分为自联想记忆与异联想记忆。(2)非线性映射(3)分类和识别(4)优化计算(5)知识处理(6)信号处理(7)模式识别(8)数据压缩等等。

二、神经网络的模型分为哪几类,试述神经网络的典型结构,常用的作用函数及各类神经网络的基本作用(20分)

答:根据连接的拓扑结构,神经网络模型可以分为:

(1)前向网络。网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络。网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield 网络、波耳兹曼机均属于这种类型。

典型结构:

常用作用函数以及基本作用:BP 神经网络通常采用基于BP 神经元的多层前向神经网

*注:考题全部写在框内,不要超出边界。内容一律用黑色墨水书写或计算机打印,以便复印。

络的结构形式。。BP算法实际上是Widrow-Hoff算法在多层前向神经网络中的推广。和Widrow-Hoff算法类似, 在BP算法中, 网络的权值和阈值通常是沿着网络误差变化的负梯度方向进行调节的, 最终使网络误差达到极小值或最小值, 即在这一点误差梯度为零。常用函数有traingdx、traingdm、trainlm、traincgf等。

径向基网络是以函数逼近理论为基础而构造的一类前向网络, 这类网络的学习等价于在多维空间中寻找训练数据的最佳拟合平面。径向基函数网络的每个隐层神经元激活函数都构成了拟合平面的一个基函数,网络也由此得名。径向基函数网络是一种局部

逼近网络, 即对于输入空间的某一个局部区域只存在少数的神经元用于决定网络的输出。RBF网络具有很好的通用性。只要有足够多的隐层神经元, RBF网络能以任意精

度近似任何连续函数。更重要的是, RBF网络克服了传统前馈神经网络的很多缺点, 其训练速度相当快, 并且在训练时不会发生震荡和陷入局部极小。

Hopfield网络是一种反馈式神经网络。在反馈式网络中, 所有节点(单元)都是一样的, 它们之间可以相互连接, 所以反馈式神经元网络可以用一个无向的完备图来表示。从系统观点来看, 反馈网络是一个非线性动力学系统。它必然具有一般非线性动力学系统的许多性质, 如稳定问题、各种类型的吸引子以至混沌现象等。在某些情况下, 还有随机性和不可预测性等。Hopfield网络是一个由非线性元件构成的单层反馈系统, 这种系统稳定状态的分析比较复杂, 给实际应用带来一些困难。Hopfield 网络的学

习主要采用Hebb规则, 一般情况下计算的收敛速度很快。它与电子电路存在明显的

对应关系, 使得该网络易于理解和易于用硬件实现。

自组织特征映射模型也称为Kohonen网络该网络是一个由全互连的神经元阵列形成的无教师自组织自学习网络。Kohonen认为, 处于空间中不同区域的神经元有不同的分工, 当一个神经网络接受外界输入模式时, 将会分为不同的反应区域, 各区域对输入模式具有不同的响应特征。在输出空间中, 这些神经元将形成一张映射图, 映射图中功能相同的神经元靠得较近, 功能不同的神经元分得较开, 自组织特征映射网络也由此而得名。它在模式识别、联想存储、样本分类、优化计算、机器人控制等领域中得到广泛应用。

三、用Matlab进行感知器程序设计,对线性可分样本实现分类,给出程序和结果(15分)

答:

function Per1()

clear all;

close all;

DA TA=xlsread('zb0708.xls');

for i=1:45

x1(i,1)=DATA(i,1)

x1(i,2)=DATA(i,2)

end

for i=1:55

x2(i,1)=DATA(i,3)

x2(i,2)=DATA(i,4)

end

for i=1:45 r1(i)=x1(i,1);end;

for i=1:45 r2(i)=x1(i,2);end;

for i=1:55 r3(i)=x2(i,1);end;

for i=1:55 r4(i)=x2(i,2);end;

figure(1);

plot(r1,r2,'*',r3,r4,'o');

hold on;%保持当前的轴和图像不被刷新,在该图上接着绘制下一图

x1(:,3) = 1;% 考虑到不经过原点的超平面,对x进行扩维

x2(:,3) = 1;% 使x'=[x 1],x为2维的,故加1扩为3维

%进行初始化

w = rand(3,1);% 随机给选择向量,生成一个3维列向量419.4813 -719.9205 -247.3682 p = 1; %p0非负正实数

ox1 = -1;% 代价函数中的变量

ox2 = 1;% 当x属于w1时为-1,当x属于w2时为1

s = 1;% 标识符,当s=0时,表示迭代终止

n = 0;% 表示迭代的次数

w1 = [0;0;0];

while s %开始迭代

J = 0; %假设初始的分类全部正确

j = [0;0;0]; %j=ox*x

for i = 1:45

if (x1(i,:)*w)>0 %查看x1分类是否错误,在x属于w1却被错误分类的情况下,w'x<0 w1 = w; %分类正确,权向量估计不变

else %分类错误

j = j + ox1*x1(i,:)';% j=ox*x。进行累积运算

J = J + ox1*x1(i,:)*w;% 感知器代价进行累积运算

end

end

for i = 1:55

if (x2(i,:)*w)<0%查看x2分类是否错误,在x属于w2却被错误分类的情况下,w'x>0 w1 = w; %分类正确,权向量估计不变

else %分类错误

j = j + ox2*x2(i,:)';% j=ox*x。进行累积运算

J = J + ox2*x2(i,:)*w;% 感知器代价进行累积运算

end

end

if J==0 %代价为0,即分类均正确

s = 0; %终止迭代

else

w1 = w - p*j;% w(t+1)=w(t)-p(ox*x)进行迭代

p=p+0.1;% 调整p

n = n+1; %迭代次数加1

end

w = w1;% 更新权向量估计

end

x = linspace(0,10,5000);% 取5000个x的点作图

y = (-w(1)/w(2))*x-w(3)/w(2);% x*w1+y*w2+w0=0,w=[w1;w2;w0]

plot(x,y,'r');% 用红线画出分界面

disp(n);% 显示迭代的次数

axis([1,12,0,8])% 设定当前图中,x轴范围为1-12,为y轴范围为0-8

end

结果图:

四、论述BP算法的基本思想,讨论BP算法的优缺点,以及改进算法的思路和方法应用Matlab,编制一个基于BP神经网络算法应用程序,给出运算的仿真结果。(20分)

答:基本思想:学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。

优点:1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。

2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。即BP神经网络具有高度自学习和自适应的能力。

3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的

分类。也即BP神经网络具有将学习成果应用于新知识的能力。

4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。即BP神经网络具有一定的容错能力。

缺点:1) 局部极小化问题:从数学角度看,传统的BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。2) BP 神经网络算法的收敛速度慢;3) BP 神经网络结构选择不一; 4) 应用实例与网络规模的矛盾问题:BP神经网络难以解决应用问题的实例规模和网络规模间的矛盾问题,其涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题。

5) BP神经网络预测能力和训练能力的矛盾问题:预测能力也称泛化能力或者推广能力,而训练能力也称逼近能力或者学习能力。一般情况下,训练能力差时,预测能力也差,并且定程度上,随着训练能力地提高,预测能力会得到提高。但这种趋势不是固定的,其有一个极限,当达到此极限时,随着训练能力的提高,预测能力反而会下降,也即出现所谓“过拟合”现象。出现该现象的原因是网络学习了过多的样本细节导致,学习出的模型已不能反映样本内含的规律,所以如何把握好学习的度,解决网络预测能力和训练能力间矛盾问题也是BP神经网络的重要研究内容。 6)BP神经网络样本依赖性问题:网络模型的逼近和推广能力与学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

改进方法的思路和方法:(1)增加动量项;(2)自适应调节学习率;(3)引入抖动因子;

基于BP和RBF的算法程序:

%利用神经网络工具箱对一个正弦函数进行拟合,源码如下:

clc;

clear;

close all;

%----------------------------------------------- %产生训练样本与测试样本

P1=-1:0.05:1; %训练样本

T1=sin(P1*pi); %训练目标

P2=-1:0.02:1; %测试样本

T2=sin(P2*pi); %测试目标

%%%BP网络模型构建

%------------------------------------------- %设置网络参数

NodeNum = 10; %隐藏节点数

TypeNum = 1; %输出维数

TF1='tansig'; TF2='purelin'; %判别函数(缺省值)

net1=newff(minmax(P1),[NodeNum TypeNum],{TF1 TF2});

% net1 = init(net1); %神经网络初始化

%------------------------------------------------------ %指定训练参数

net1.trainFcn='trainlm';

net1.trainParam.show=20; %训练显示间隔

net1.trainParam.lr=0.3; %学习步长-traubgd,traubgdm

net1.trainParam.epochs=50; %最大训练次数

net1.trainParam.goal=0.001; %最小均方误差

net1.trainParam.time=inf; %最大训练时间%------------------------------------------------------- %训练

net1=train(net1,P1,T1); %训练%-------------------------------------------------- %测试Y1=sim(net1,P1); %训练样本实际输出

Y2=sim(net1,P2); %测试样本实际输出

MSE1=mean((T1-Y1).^2);

MSE2=mean((T2-Y2).^2);

%%RBF网络模型构建

%------------------------------------------- %设置网络参数

eg=0.001;%设置均方差训练精度

sc=1;%设置散布函数

net2=newrb(P1,T1,eg,sc);%网络训练

Y3=sim(net2,P1);%训练样本实际输出

Y4=sim(net2,P2); %测试样本实际输出

MSE3=mean((T1-Y3).^2);

MSE4=mean((T2-Y4).^2);

%----------------------------------------- %结果作图

figure (1)

plot(P2,T2,'r',P2,Y2,'b',P2,Y4,'G');

title('r为真实值,b为BP预测值,G为rbf预测值');

%%%%结果显示

设置精度为0.1

设置精度为0.01

设置精度为0.001

五、论述RBF算法的基本思想,应用Matlab,编制一个基于RBF神经网络算法应用程序,给出运算的仿真结果。(10分)

答:基本思想:(1)用RBF作为隐单元的“基”构成隐含层空间,将输入矢量直接(而不需要权连接)映射到隐空间;(2)当RBF的中心点确定后,映射关系也就确定;(3)隐含层空间到输出空间的映射是线性的;

Matlab代码和仿真结果见题四

六、试述支持向量机的基本思想,结合文献给阐述一具体应用实例(10分)

答:基本思想:SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题。简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”。这一切要归功于核函数的展开和计算理论。

文献名:基于 SVM 算法和纹理特征提取的遥感图像分类

文献简介:针对遥感图像,采用平均值、方差、均一性、反差、相异性等指标来表示纹理信息,选用图像的边缘密度特征来表示结构信息,然后利用支持向量机进行分类,取得了较好的分类效果。

七、结合文献讲述神经网络控制在工程实际中的设计及应用,附参考文献(10分)答:应用:(1)神经网络适合解决光谱与基色网点百分比之间复杂的非线性映射关系[1]:我们可以认为印刷色彩的光谱反射率与基色油墨的网点百分比之间具有某种函数关系,以CMY 三色印刷为例,这种函数关系本质上是36维光谱空间到3维基色空间的复杂非线性映射过程。基于神经网络的光谱分色本质上是一种基于经验模型的分色算法,其优势在于不需要关注色彩呈色的复杂内部机制,只需要通过优化选择样本、网络构造、训练方法等,便能够得到分色精度满足应用要求的网络,优化得到的神经网络便可以代表色彩呈色的复杂机制。

(2)神经网络可以应用到数据挖掘中[2]:

数据挖掘是一种决策支持过程,人工神经网络是其重要的技术基础。人工神经网络通过模拟人类的思维行为,从而高效率地解决预测、模式识别、分类和聚类分析等数据挖掘问题。由于神经网络方法用于问题求解无须事先建模,因而对于缺乏理论模型和先验知识的数据挖掘问题具有较好的适应性。主要研究人工神经网络在数据挖掘中的运用策略与方法,内容包括:神经网络数据挖掘方法中的数据准备、基于神经网络的决策树构造、分类与预测、关联规则挖掘和聚类分析。(3)神经网络可以应用到车牌识别中[3]:

应用神经网络的容错与自适应特征,将模板匹配与神经网络相结合,采用多级多分类器的方案,设计了数字、字母、数字字母混合及汉字分类器,该方法集成模板匹配与神经网络识别的各自优势,能更好满足实际系统的要求。

参考文献:[1]李金城.色彩高保真复制的理论与实践[D]南京林业大学,2013.2.

[2]李欣.基于神经网络的数据接摄方法研究[D]大庆石油学院,2003.2.

[3]汤红忠.基于神经网络的车牌识别系统研究[D]湘潭大学,2004.5.

人工智能期末试题及答案完整版

xx学校 2012—2013学年度第二学期期末试卷 考试课程:《人工智能》考核类型:考试A卷 考试形式:开卷出卷教师: 考试专业:考试班级: 一单项选择题(每小题2分,共10分) 1.首次提出“人工智能”是在(D )年 A.1946 B.1960 C.1916 D.1956 2. 人工智能应用研究的两个最重要最广泛领域为:B A.专家系统、自动规划 B. 专家系统、机器学习 C. 机器学习、智能控制 D. 机器学习、自然语言理解 3. 下列不是知识表示法的是 A 。 A:计算机表示法B:“与/或”图表示法 C:状态空间表示法D:产生式规则表示法 4. 下列关于不确定性知识描述错误的是 C 。 A:不确定性知识是不可以精确表示的 B:专家知识通常属于不确定性知识 C:不确定性知识是经过处理过的知识 D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。 5. 下图是一个迷宫,S0是入口,S g是出口,把入口作为初始节点,出口作为目标节点,通道作为分支,画出从入口S0出发,寻找出口Sg的状态树。根据深度优先搜索方法搜索的路径是 C 。 A:s0-s4-s5-s6-s9-sg B:s0-s4-s1-s2-s3-s6-s9-sg C:s0-s4-s1-s2-s3-s5-s6-s8-s9-sg D:s0-s4-s7-s5-s6-s9-sg 二填空题(每空2分,共20分) 1.目前人工智能的主要学派有三家:符号主义、进化主义和连接主义。 2. 问题的状态空间包含三种说明的集合,初始状态集合S 、操作符集合F以及目标

状态集合G 。 3、启发式搜索中,利用一些线索来帮助足迹选择搜索方向,这些线索称为启发式(Heuristic)信息。 4、计算智能是人工智能研究的新内容,涉及神经计算、模糊计算和进化计算等。 5、不确定性推理主要有两种不确定性,即关于结论的不确定性和关于证据的不确 定性。 三名称解释(每词4分,共20分) 人工智能专家系统遗传算法机器学习数据挖掘 答:(1)人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等 (2)专家系统 专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统 (3)遗传算法 遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的操作,模拟事物内部多样性和对环境变化的高度适应性,其特点是操作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向 (4)机器学习 机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎 (5)数据挖掘 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

08第八章___神经网络的参数优化设计方法

1 第8章 神经网络的参数优化设计 在神经网络的泛化方法中,研究最多的是前馈神经网络的结构优化设计方法(剪枝算法、构造算法及进化算法等,我们将在以后各章讨论)。除了结构设计,其余前馈神经网络的泛化方法还有主动学习、最优停止法、在数据中插入噪声、神经网络集成及提示学习方法等,由于这些方法中神经网络的结构是固定的,因此神经网络性能是通过参数优化改善的,我们称这些方法为神经网络的参数优化设计方法。本章介绍最主要的参数优化设计方法,并给出了每种方法的算法实现和仿真例子。 8.1 主动学习 8.1.1 原理 按照学习机器对训练样本的处理方式,可将学习方式分为两类:被动学习方式和主动学习方式。被动学习是常用的学习方式,常被称为“从样本中学习” (Learning from samples ),该方式被动地接受训练样本,并通过学习从这些样本中提取尽可能多的信息。与被动学习相反,主动学习属于更高层次的、具有潜意识的学习。主动学习对训练样本的选择是主动的,通常通过对输入区域加以限制,有目的地在冗余信息较少的输入区域进行采样,并选择最有利于提高学习机器性能的样本来训练分类器,从而提高了整个训练样本集的质量。由上一章的讨论,训练样本质量对神经网络的泛化能力有极大影响,甚至超过网络结构对泛化能力的影响。因此采用主动学习方法,是改进神经网络泛化能力的一个重要方法。 主动学习机制大部分用于分类或概念学习[Baum1991,HwCh1990,SeOp1992]。在单概念学习中,Mitchell[Mitch1982]关于版本空间(Version Space)的论述有着较大的影响。下面,我们先简要介绍一下这一理论。 如果X 为一线性空间,概念c 定义为X 中点的集合。对目标概念t ,训练样本可写为()()x x t ,,其中X ∈x 为样本输入,()x t 为对x 的分类。如果t ∈x ,则()1=x t ,称()()x x t ,为t 的正样本;如果t ?x ,则()0=x t ,此时称()()x x t ,为t 的负样本。显然,对线性空间内的任何两个可分概念1c 和2c ,如果()()x x 1,c 是1c 的正样本(负样本),则()()x x 11,c ?必然是2c 的负样本(正样本),即任意两个可分概念的正负样本之间可以互相转换。如果某概念c 对x 的分类与目标概念对其的分类()x t 相等,即()()x x t c =,

人工智能习题&答案-第4章-计算智能1-神经计算-模糊计算

第四章计算智能(1):神经计算模糊计算4-1 计算智能的含义是什么?它涉及哪些研究分支? 贝兹德克认为计算智能取决于制造者提供的数值数据,而不依赖于知识。计算智能是智力的低层认知。 主要的研究领域为神经计算,模糊计算,进化计算,人工生命。 4-2 试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。 计算智能是智力的低层认知,主要取决于数值数据而不依赖于知识。人工智能是在计算智能的基础上引入知识而产生的智力中层认知。生物智能,尤其是人类智能,则是最高层的智能。即CI包含AI包含BI 4-3 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域? 人工神经网络具有如下至关重要的特性: (1) 并行分布处理 适于实时和动态处理 (2)非线性映射 给处理非线性问题带来新的希望 (3) 通过训练进行学习 一个经过适当训练的神经网络具有归纳全部数据的能力,能够解决那些由数学模型或描述规则难以处理的问题 (4) 适应与集成 神经网络的强适应和信息融合能力使得它可以同时输入大量不同的控制信号,实现信息集成和融合,适于复杂,大规模和多变量系统 (5) 硬件实现 一些超大规模集成是电路实现硬件已经问世,使得神经网络成为具有快速和大规模处理能力的网络。 4-4 简述生物神经元及人工神经网络的结构和主要学习算法。

生物神经元 大多数神经元由一个细胞体(cell body或soma)和突(process)两部分组成。突分两类,即轴突(axon)和树突(dendrite),轴突是个突出部分,长度可达1m,把本神经元的输出发送至其它相连接的神经元。树突也是突出部分,但一般较短,且分枝很多,与其它神经元的轴突相连,以接收来自其它神经元的生物信号。 轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其它神经元发送信息。对某些突触的刺激促使神经元触发(fire)。只有神经元所有输入的总效应达到阈值电平,它才能开始工作。此时,神经元就产生一个全强度的输出窄脉冲,从细胞体经轴突进入轴突分枝。这时的神经元就称为被触发。突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋或抑制。学习就发生在突触附近。 每个人脑大约含有10^11-10^12个神经元,每一神经元又约有10^3-10^4个突触。神经元通过突触形成的网络,传递神经元间的兴奋与抑制。大脑的全部神经元构成极其复杂的拓扑网络群体,用于实现记忆与思维。 人工神经网络的结构 人工神经网络由神经元模型构成。每个神经元具有单一输出,并且能够与其它神经元连接,存在许多输出连接方法,每种连接方法对应于一个连接权系数。 人工神经网络的结构分为2类, (1)递归(反馈)网络 有些神经元的输出被反馈至同层或前层神经元。信号能够从正向和反向流通。Hopfield网络,Elmman网络和Jordan网络是代表。 (2) 前馈网络 具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通,神经元从一层连接至下一层,不存在同层神经元之间的连接。多层感知器(MLP),学习矢量量化网络(LVQ),小脑模型连接控制网络(CMAC)和数据处理方法网络(GMDH)是代表。 人工神经网络的主要学习算法 (1) 指导式(有师)学习 根据期望和实际的网络输出之间的差来调整神经元连接的强度或权。包括Delta规则,广义Delta规则,反向传播算法及LVQ算法。 (2) 非指导(无导师)学习 训练过程中,神经网络能自动地适应连接权,以便按相似特征把输入模式分组聚集。包括

《神经网络》试题

《神经网络》试题 (2004年5月9日) 张翼王利伟 一、填空 1.人工神经元网络(ANN)是由大量神经元通过极其丰富和完善 的连接而构成的自适应非线形动力学系统。 2.神经元(即神经细胞)是由细胞体、树突、轴突和突触四 部分构成。 3.大量神经元相互连接组成的ANN将显示出人脑的分布存储和容 错性、大规模并行处理、自学习、自组织和自适应性、复杂的非线形动态系统、处理复杂、不确定问题。 4.ANN发展大体可为早期阶段、过度期、新高潮、热潮。 5.神经元的动作特征主要包括空间性相加,时间性相加,阈值 作用,不应期,疲劳和可塑性。 6.神经元与输入信号结合的两种有代表的结合方式是粗结合和 密结合。 7.1943年由美国心理学家McCulloch和数学家Pitts提出的形式神经 元数学模型简称为MP 模型,它规定了神经元之间的联系方式只 有兴奋、抑制联系两种。 8.目前,神经网络模型按照网络的结构可分为前馈型和反馈型, 按照学习方式可分为有导师和无导师学习。 9.神经网络工作过程主要由学习期和工作期两个阶段组成。 10.反馈网络历经状态转移,直到它可能找到一个平衡状态,这个平

衡状态称为 吸引子 。 二、问答题 1.简述Hebb 学习规则。 Hebb 学习规则假定:当两个细胞同时兴奋时,它们之间的连接强度应该增强,这条规则与“条件反射”学说一致。 在ANN 中Hebb 算法最简单可描述为:如果一个处理单元从另一处理单元接受输入激励信号,而且如果两者都处于高激励电平,那么处理单元间加权就应当增强。用数学来表示,就是两节点的连接权将根据两节点的激励电平的乘积来改变,即 ()()i i n ij n ij ij x y ηωωω=-=?+1 其中()n ij ω表示第(n+1)是第(n+1)次调节后,从节点j 到节点i 的连接权值;η为学习速率参数;x j 为节点j 的输出,并输入到节点i ;i y 为节点i 的输出。 2、简述自组织特征映射网络的算法。 自组织特征映射网络的算法分以下几步: (1) 权连接初始化 就是说开始时,对所有从输入节点到输出节点的连接权值都赋以随机的小数。时间设置t=0。 (2) 网络输入模式为 ),,,(21n b x x x =X (3) 对X k 计算X k 与全部输出节点所连接权向量T j W 的距离

神经网络详解

一前言 让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。 图1神经网络结构图 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。 除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来

表示一个神经网络。这时候,输入层在图的最下方。输出层则在图的最上方,如下图: 图2从下到上的神经网络结构图 二神经元 2.结构 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

图3神经元模型 连接是神经元中最重要的东西。每一个连接上都有一个权重。 一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。 我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解: 在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。 在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。 图4连接(connection) 如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

基于神经网络的优化计算实验报告

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

基于神经网络的专家系统

基于神经网络的专家系统 摘要:人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的“瓶颈问题”和神经网络知识表达的“黑箱结构”。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 关键词:专家系统;神经网络;系统集成; 0 引言 专家系统(Expert System)是一种设计用来对人类专家的问题求解能力建模的计算机程序。专家系统是一个智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。一个专家系统应具有以下三个基本特征:启发性——不仅能使用逻辑性知识还能使用启发性知识;透明性——能向用户解释它们的推理过程,还能回答用户的一些问题;灵活性——系统中的知识应便于修改和扩充;推理性——系统中的知识必然是一个漫长的测试,修改和完善过程。专家系统是基于知识的系统。它由如图1所示的5个基本的部分组成[1,2,3]。 知识库存储从专家那里得到的特定领域的知识,这些知识包括逻辑性的知识和启发性知识两类。数据库用于存放专家系统运行过程中所需要和产生的信息。推理机的作用是按照一定的控制策略,根据用户提出的问题和输入的有关数据或信息,按专家的意图选择利用知识库的知识,并进行推理,以得到问题的解答,它是专家系统的核心部分。人机接口部分的功能是解释系统的结论,回答用户的问题,它是连接用户与专家系统之间的桥梁。知识的获取是为修改知识库原有的知识和扩充知识提供的手段。 1 传统专家系统存在的问题 传统专家系统是基于知识的处理的系统,将领域知识整理后形式化为一系列系统所能接受并能存储的形式,利用其进行推理实现问题的求解。尽管与人类专家相比,专家系统具有很大的优越性。但是,随着专家系统应用的日益广泛及所处理问题的难度和复杂度的不断扩大和提高,专家系统在某些方面已不能满足是实际工作中的需求,具体体现在以下一个方面[1,2]:(1)知识获取的“瓶颈”问题。(2)知识获取的“窄台阶”。(3)缺乏联想功能、推理能力弱。(4)智能水平低、更谈不上创造性的知识。(5)系统层次少。(6)实用性差。 2 神经网络与传统专家系统的集成 神经网络是基于输入\输出的一种直觉性反射,适用于进行浅层次的经验推理,其特点是通过数值计算实现推理;专家系统是基于知识匹配的逻辑推理,是深层次的符号推理。将两者科学的结合形成神经网络专家系统,可以取长补短。根据侧重点的不同,神经网络与专家系统的集成有三种模式[2]:(1)神经网络支持专家系统。以传统的专家系统为主,以神经网络的有关技术为辅。 (2)专家系统支持神经网络。以神经网络的有关技术为核心,建立相应领域的专家系统,采用专家系统的相关技术完成解释等方面的工作。 (3)协同式的神经网络专家系统。针对大的复杂问题,将其分解为若干子问题,针对每个子问题的特点,选择用神经网络或专家系统加以实现,在神经网络和专家系统之间建立一种耦合关系。

《人工神经网络原理与应用》试题

1 / 1 《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k),样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k), 样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。

概率神经网络

概率神经网络概述 令狐采学 概率神经网络(Probabilistic Neural Network ,PNN )是由D. F. Specht 在1990年提出的。主要思想是贝叶斯决策规则,即错误分类的期望风险最小,在多维输入空间内分离决策空间。它是一种基于统计原理的人工神经网络,它是以Parazen 窗口函数为激活函数的一种前馈网络模型。PNN 吸收了径向基神经网络与经典的概率密度估计原理的优点,与传统的前馈神经网络相比,在模式分类方面尤其具有较为显著的优势。 1.1 概率神经网络分类器的理论推导 由贝叶斯决策理论: w w w i j i x then i j x p x p if ∈≠?>→ →→ , )|()|( (1-1) 其中)|()()|(w w w i i i x p p x p → → = 。 一般情况下,类的概率密度函数)|(→x p w i 是未知的,用高斯核的Parzen 估计如下:

) 2exp(1 1 )|(2 2 1 2 2σ σ π→ → -∑ - = =→ x x N w ik N i k l l i i x p (1-2) 其中,→ x ik 是属于第w i 类的第k 个训练样本,l 是样本向量的维数,σ是平滑参数,N i 是第w i 类的训练样本总数。 去掉共有的元素,判别函数可简化为: ∑-=→ → → - = N ik i k i i i x x N w g p x 1 2 2 ) 2exp()()(σ (1-3) 1.2 概率神经元网络的结构模型 PNN 的结构以及各层的输入输出关系量如图1所示,共由四层组成,当进行并行处理时,能有效地进行上式的计算。 图1 概率神经网络结构 如图1所示,PNN 网络由四部分组成:输入层、样本层、求和层和竞争层。PNN 的工作过程:首先将输入向量→ x 输入到输入层,在输入层中,网络计算输入向量与训练样本向量之间

基于神经网络专家系统的研究与应用

摘要 现代化的建设需要信息技术的支持,专家系统是一种智能化的信息技术,它的应用改变了过去社会各领域生产基层领导者决策的盲目性和主观性,缓解了我国各领域技术推广人员不足的矛盾,促进了社会的持续发展。但传统专家系统只能处理显性的表面的知识,存在推理能力弱,智能水平低等缺点,所以本文引入了神经网络技术来克服传统专家系统的不足,来试图解决专家系统中存在的关系复杂、边界模糊等难于用规则或数学模型严格描述的问题。本文采用神经网络进行大部分的知识获取及推理功能,将网络输出结果转换成专家系统推理机能接受的形式,由专家系统的推理机得到问题的最后结果。最后,根据论文中的理论建造了棉铃虫害预测的专家系统,能够准确预测棉铃虫的发病程度,并能给用户提出防治建议及措施。有力地说明了本论文中所建造的专家系统在一定程度上解决了传统专家系统在知识获取上的“瓶颈”问题,实现了神经网络的并行推理,神经网络在专家系统中的应用具有较好的发展前景。 关键词神经网络专家系统推理机面向对象知识获取

Abstract Modern construction needs the support of IT, expert system is the IT of a kind of intelligence, its application has changed past social each field production subjectivity and the blindness of grass-roots leader decision-making, have alleviated the contradiction that each field technical popularization of our country has insufficient people, the continued development that has promoted society. But traditional expert system can only handle the surface of dominance knowledge, existence has weak inference ability, intelligent level is low, so this paper has led into artificial neural network technology to surmount the deficiency of traditional expert system, attempt the relation that solution has in expert system complex, boundary is fuzzy etc. are hard to describe strictly with regular or mathematics model. This paper carries out the most of knowledge with neural network to get and infer function , changes network output as a result into expert system, inference function the form of accepting , the inference machine from expert system gets the final result of problem. Finally, have built the expert system of the cotton bell forecast of insect pest according to the theory in this thesis, can accurate forecast cotton bell insect become sick degree, and can make prevention suggestion and measure to user. Have proved on certain degree the expert system built using this tool have solved traditional expert system in knowledge the problem of " bottleneck " that gotten , the parallel inference that has realized neural network, Neural network in expert system application has the better prospect for development. Key words Neural network Expert system Reasoning engine Object-orientation Knowledge acquisition

图同构问题的决策神经网络模型

图同构问题的决策神经网络模型 南晋华,齐欢 (华中科技大学控制科学与工程系武汉430074) 摘要图的同构问题是研究两个图之间相互关系范畴。这对图表面上似乎不同,但本质上完全相同。由于图的同构问题在以系统建模、电路布线等众多问题中有直接的应用,因而,吸引了不少的学者从事这方面的研究。本文意在建立一种局域连接的、模拟人脑决策思维模式的、可用于优化信息处理的神经网络模型。文中在过去建立求解图的同构问题人工神经网络模型的基础上,拟应用人脑决策局域化的思想,提出了一种新的用于图的同构问题的人工神经网络模型。该模型中增加了一个自然的约束条件,加快了运算速度。 关键词图;同构;决策;神经网络 中图分类号TP301 The decision-making neural networks model for solving the graph isomorphism problem NAN Jin-Hua1)QI Huan1) 1) (Department of Control Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074) Abstract The graph isomorphism problem is to study the relationship between two graphs which seem to be different, but essentially identical. This problem can be widely used in the system modeling, circuit wiring and many other issues. Therefore, this paper is aimed to establish a kind of neural networks model that are of local-connection, simulation human’s decision-making thinking, and also can be applied to solve the optimization for information. On this basis, we use a natural constraint in this model in order to speed up the operations, and then a new artificial neural network model is proposed to solve the graph isomorphism problem. Keywords Graph; Isomorphism; Decision-making; Neural networks model 1引言 图的同构问题不仅是数学,特别是图论自身学科研究中的一个核心内容,而且具有良好的应用背景,在工程技术领域,特别是大系统建模、电路设计、机械设计、模式识别以及系统建模中有着广泛的应用。对于系统建模,如果能够证明需建模型与已知模型同构,则可以节省大量人力物力财力。多数学者认为图的同构判定问题属于NP-完全问题。但至今没有定论,即它究竟是P问题还是NP问题?目前关于图的同构问题的判定性算法不少,有诸如经典判定算法[1-8]、对在实际工程中有着广泛应用的图的拟同构问题算法[9-12]、进化计算方法[13]、人工神经网络求解算法[14-18] 以及最新的DNA计算模型[19-20]等。在经典的图同构算法中,在此主要介绍两种算法,一种是所谓的矢量列表法,另一种是回溯算法。 研究图的同构问题,一个重要的环节是如何表示图的信息。在这个问题上,Comeil 与Hffman等人曾引入“模块”这一概念来表示各个顶点及其邻接顶点信息。在此基础上Riaz提出一种有效的判定图同构问题的算法-矢量列表法,即把各顶点所代表的信息用模块表示,所有模块组合在一起构成矢量列表。设计算法依次比较各模块,最终得到

财务管理神经网络智能决策支持系统的

价值工程 2.4筹划风险大在国际国内税收法律法规的不断完善,反避税措施不断增强,市场经济环境的变幻莫测,以及其他人为因素存在的背景下,商业银行因其收入来源复杂、纳税筹划难度大、经营结构不单一等客观因素的存在,导致商业银行的纳税筹划要比一般行业的纳税筹划具备更大的风险性,最终的纳税筹划收益可能会高于或低于先前的预期结果,企业在运用各种政策开展纳税筹划时的不确定性因素也导致风险明显增加。因此,纳税人必须要树立纳税筹划风险意识,立足于事先防范,在进行纳税筹划方案制定之前,应对影响筹划结果的所有潜在风险因素进行确认并评估,在考虑风险是否可以化解或转嫁等因素的基础上确定是否开展筹划,同时还必须考虑因纳税筹划引致的各种涉税成本,包括显性和隐性成本,只有综合筹划成本在可接受范围内时开展税务筹划才有效率。3结论 熟知商业银行纳税筹划的特性对我国银行业顺利开展纳税筹划及实施风险管理有着极其重要的作用。论文通过简述纳税筹划的含义及工作步骤,结合实际,分析了我国商业银行纳税筹划的特性,为银行业的纳税筹划实践提供了理论参考。参考文献:[1]谭成.我国商业银行全面风险评估研究[D].湖南师范大学,2009.[2]李瑞波.商业银行抵债资产税收处理及纳税筹划[J].经营管理,2009,(1).[3]刘兵.我国商业银行信用风险度量与管理研究[D].吉林大学,2008.[4]王睿,高军,吕南.中小企业所得税纳税筹划风险管理探讨[J].中国经贸导刊,2010,(7). 0引言 DSS 是80年代迅速发展起来的新型计算机科学。它是一个有 着广泛应用背景的十分热门的交叉科学。 神经网络是一个具有高度非线性的超大规模连续时间的动力系统。结合神经网络的智能决策支持系统是目前研究的前沿之一,它极具理论和使用价值。 财务管理的信息化、数字化是财务规范和科学管理的趋势。与DSS 的结合将更加有利于数据标准的统一,有利于数据采集的模块化,有利于决策支持的科学化,有利于财务公开的透明化。 1财务管理决策支持系统的研究现状决策支持系统经过二十多年的发展,形成了如图1所示公认的体系结构。它把模型并入信息系统软件中,依靠管理信息系统和运筹 学这两个基础逐步发展起来。 它为解决非结构化决策问题提供了相应的有用信息,给各级管理决策人员的工作带来了便利。 从图1可以看出决策支持系统体系结构可划分为三级,即语言系统(LS )级、问题处理系统(PPS )级和知识系统(KS )级。其中问题处理系统级包括推理机系统(RS )、模型库管理系统(MBMS )、知识库管理系统(KBMS )及数据库管理系统(DBMS )。知识系统级包括模型库(MB )、知识库(KB )及数据库(DB )。 九十年代中期,兴起了三个辅助决策技术:数据仓库(DW )、联 机分析处理(OLAP )和数据挖掘(DM )。联机分析处理是以客户/服务器的方式完成多维数据分析。数据仓库是根据决策主题的需要汇集大量的数据库,通过综合和分析得到辅助决策的信息。数据挖掘顾 名思义,是为了获得有用的数据,在大量的数据库中进行筛选。人工 智能技术建立一个智能的DSS 人机界面,可进行图、文、声、像、形等多模式交互,人机交互此时变得更为自然和谐,人们能沉浸其中,进行合作式、目标向导式的交互方法。 从目前情况来看,财务决策支持系统的研究还处于初级发展阶 段,财务数据的保密性、 特殊性决定了财务决策不能全部公开化、透明化,但随着中央及国务院相关部门财务预决算数据的公开,财务决策系统及其支持系统和过程也将随之公开,这就要求决策者充分利用财务知识和决策支持系统的知识“聪明”决策、合理决策、科学 决策、 规范决策。2财务管理神经网络智能决策支持系统总体研究框架 2.1神经网络运行机制神经网络的着眼点是采纳生物体中神经细胞网络中某些可利用的部分,来弥补计算机的不足之处,而不是单单用物理的器件去完整地复制。 第一,神经网络中的链接的结构和链接权都可以通过学习而得到,具有十分强大的学习功能;第二,神经网络所记忆的信息是一种分布式的储存方式,大多储存在神经元之间的权中;第三,神经网络部分的或局部的神经元被破坏后,仍可以继续进行其他活动,不影响全局的活动,因此说,神经网络的这种特性被称作容错性;第四,神经网络是由大量简单的神经元组成的,每个神经元虽然结构简单,但是它们组合到一起并行活动时,却能爆发出较快较强的速度来。 我们可以利用神经网络的上述特点,将之应用于模式识别、自动控制、优化计算和联想记忆、军事应用以及决策支持系统中。 2.2财务管理神经网络集成智能财务DSS 的必然性在企业经营管理、政府机构财务活动中,人们时常面临着财务决策。人们往往需要根据有关的理论及经验制定出一系列的衡量标准。这种评价是一个非常复杂的非结构化决策过程,一般都是由内行专家根据一定的专业理论凭经验和直觉在收集大量不完全、不确定信息基础上建立起多级指标体系。但在这种指标体系中,各种指标之间的关系很难明确,而且还受评价者的效用标准和主观偏好所左右。因此,很难 —————————————————————— —作者简介:严璋鹏(1968-),男,浙江宁波人,会计师,研究方向为财务管理 与核算。 财务管理神经网络智能决策支持系统的研究 Financial Management Neural Network Intelligent Decision Support System 严璋鹏Yan Zhangpeng (西安邮电学院,西安710121) (Xi'an University of Posts &Telecommunications ,Xi'an 710121,China ) 摘要:财务管理决策支持系统(简称DSS )是辅助各级决策者实现财务管理的科学决策系统。它主要通过人机交互的方式,利用大量财务数 据和众多模型来实现科学性的管理。神经网络是一种非线性复杂网络系统,它主要由许多类似于神经元的处理单元组合而成。将财务管理和神 经网络和决策支持系统结合可以实现财务系统的自适应并行联想推理及数据开采的自动化,使财务管理、 决策、执行更加科学化、规范化、智能化。Abstract:Financial management decision support system (hereinafter referred to as the DSS)is to assist decision-makers at various levels realize financial management.It achieves scientific management through mainly the man -machine interactive way and the use of a lot of financial data and numerous model.Neural network is a complicated nonlinear network system,and it mainly consists of many processing units which are similar to neuron.The combination of financial management and neural network and decision support system can realize the automation of adaptive,associating and reasoning,and data mining,and make the financial management,decision-making,and execution more scientific,standardized,and intelligent. 关键词:财务管理;神经网络;决策支持系统;专家系统Key words:financial management ;nerve network ;decision support system (DSS );expert system 中图分类号:F275 文献标识码:A 文章编号:1006-4311(2012) 03-0126-02 ·126·

相关文档
最新文档