1利用对角线法则计算下列三阶行列式

1利用对角线法则计算下列三阶行列式
1利用对角线法则计算下列三阶行列式

第一章 行列式

1.利用对角线法则计算下列三阶行列式:

(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y

x y x x y x y

y

x y x +++. 解 (1)=---3

811411

02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-

=416824-++-=4-

(2)=b

a c a c

b c

b a cc

c aaa bbb cba bac acb ---++3

333c b a abc ---=

(3)=2

221

11c b a c b a 2

22222cb ba ac ab ca bc ---++))()((a c c b b a ---=

(4)y

x y x x y x y y

x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+=

)(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为

2

)

1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …

)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n

3 2 1个 5 2,5

4 2个 ……………… …

)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个

4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个

3.写出四阶行列式中含有因子2311a a 的项.

解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.

由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为

10100=+++或22000=+++

∴44322311a a a a -和42342311a a a a 为所求.

4.计算下列各行列式:

(1)????

?????

???7110

025*********

4; (2)????????????-26

0523********

1

2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)?????

????

???---d c b a

1

00

110011001

(1)

71

1

00251020214214

34327c c c c --0

100

14

23102

02110

214---=34)1(1431022

11014+-?---=14

31022110

14-- 3

21132c c c c ++14171720010

99-=0

(2)

2

60

5232112131

412-24c c -2

6

5032122130

412-24r r -0

4

1

2032122130

412- 14r r -0

00

0032122130412-=0

(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1

111111

11---adfbce =abcdef 4

(4)

d c b a 100110011001---21ar r +d

c b a

ab 1001

100110

10---+=1

2)

1)(1(+--d

c a ab 10110

1--+ 2

3dc c +0

10111-+-+cd c ad

a a

b =23)1)(1(+--cd

ad

ab +-+111=1++++ad cd ab abcd

5.证明: (1)1

11222

2b b a a b ab a +=3

)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2

2222222

2

2222222=++++++++++++d d d d c c c c b b b b a a a a ;

(4)44442222

1111d c b a d c b a d

c b a ))()()()((

d b c b d a c a b a -----=))((d c b a d c +++-?; (5)1

22

110000

0100001a x a a a a x x x n n n +-----

n n n n a x a x a x ++++=--111 . 证明

(1)00122222221

312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)

1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a

(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开

按第一列

左边

bz

ay by ax x by ax bx az z bx

az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分

bz ay y x by ax x z bx az z y b +++z

y x y x z x

z y b y x z x z y z y x a 33+分别再分

右边=-+=233)1(y

x z x z y z

y x b y x z x z y z y x a

(3) 22

2

22222

2222

2

222

)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9

644129644129

644129644122

2221

41312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c

9644964496449644222

2

2

++++++++d d d d c c c c

b b b b a a a a 分成二项按第二列9

6441964419

64419644122

2

2+++++++++d d d c c c b b b a a a

94

94949494642

2

22

24232423d d c c b b a a c c c c c c c c ----第二项

第一项

06416416416412

22

2=+d

d

d c c c b

b b a a a

(4) 4

44444422222220

001a

d a c a b a a

d a c a b a a

d a c a b a ---------=左边=

)()()(222222222222222a d d a c c a b b a d a c a b a

d a c a b --------- =)

()()(1

11))()((222a d d a c c a b b a d a c a

b a d a

c a b ++++++--- =?---))()((a

d a c a b )

()()()()(0

0122222a b b a d d a b b a c c a b b b

d b c a b +-++-++--+ =?

-----))()()()((b d b c a d a c a b )

()()()(1

12222b d a b bd d b c a b bc c ++++++++

=))()()()((d b c b d a c a b a -----))((d c b a d c +++-

(5) 用数学归纳法证明

.,1

,22121

22命题成立时当a x a x a x a x D n ++=+-=

=

假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D

:1列展开按第则n D

1

110

010001)1(1

1----+=+-x x a xD D n n n n

右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.

6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转

90、或依副对角线翻转,依次得

n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11

113a a a a D n n

nn =,

证明D D D D D n n =-==-32

)

1(21,)

1(.

证明 )det(ij a D =

n

nn

n n

n n nn n a a a a a a a a a a D 22111111111

1

1)

1(

--==∴

=--=--n

nn n n

n

n n a a a a a a a a 331122111121)1()1( nn

n n n n a a a a 111121)1()1()1(---=--D D n n n n 2)

1()

1()2(21)1()1(--+-+++-=-=

同理可证nn

n n n n a a a a D 11112

)1(2)

1(--=D D n n T

n n 2)

1(2)1()1()1(---=-=

D D D D D n n n n n n n n =-=--=-=----)1(2

)1(2

)1(22

)1(3)1()

1()

1()1(

7.计算下列各行列式(阶行列式为k D k ):

(1)a

a

D n 11

=

,其中对角线上元素都是a ,未写出的元素都是0;

(2)x

a a a

x a

a a x

D n =

; (3) 1

1

11)()1()()1(11

11

n a a a n a a a n a a a D n n n n n

n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n

n

n

n

n d c d c b a b a D

000

011112=; (5)j i a a D ij ij n -==其中),det(;

(6)n

n a a a D +++=

11

11

111

112

1 ,021≠n a a a 其中.

(1) a

a a a a D n 000100000000

00001000 =

按最后一行展开

)

1()1(100

0000

0001

0000)1(-?-+-n n n a

a a

)1)(1(2)1(--?-+n n n a a a

(再按第一行展开)

n n n n

n a a a

+-?-=--+)

2)(2(1)1()1(

2--=n n a a )1(22-=-a a n

(2)将第一行乘)1(-分别加到其余各行,得

a

x x a a

x x a a x x a a

a a x D n ------=00

00000 再将各列都加到第一列上,得

a

x a

x a x a

a

a a n x D n ----+=00000000

0)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,

经2

)

1(1)1(+=

++-+n n n n 次行交换,得 n

n n n n n n n n n a a a n a a a n a a a

D )()1()()1(111

1)1(1112)1(1

-------=---++

此行列式为范德蒙德行列式

∏≥>≥++++--+--=1

12

)1(1)]1()1[()

1(j i n n n n j a i a D

∏∏≥>≥+++-++≥>≥++-?

-?-=---=1

12

1

)1(2

)1(1

12

)1()][()

1()

1()]([)

1(j i n n n n n j i n n n j i j i

∏≥>≥+-=

1

1)(j i n j i

(4) n

n n

n

n d c d c b a b a D 0

1

1112

=

n

n n n n n

d d c d c b a b a a 0000

0000

11111111

----

展开

按第一行0

00

0)

1(111

11111

1

2c d c d c b a b a b n

n n n n n

n ----+-+

2222 ---n n n n n n D c b D d a 都按最后一行展开

由此得递推公式:

222)(--=n n n n n n D c b d a D 即 ∏=-=n

i i i i

i

n D c b d

a D 2

22)(

而 11111

11

12c b d a d c b a D -==

得 ∏=-=n

i i i i i n c b d a D 1

2)(

(5)j i a ij -=

0432********

0122

210113210)det( --------=

=n n n n n n n n a D ij n ,3221r r r r --0

432111111111111111111111 --------------n n n n

,,141312c c c c c c +++152423*********

22100

02100001---------------n n n n n =2

12)1()1(----n n n

(6)n

n a a D a +++=

11

11

111

1

12

1 ,,433221c c c c c c ---n

n n n a a a a a a a a a a +-------100

00100010000100010001

000011433221

展开(由下往上)

按最后一列

))(1(121-+n n a a a a n

n n a a a a a a a a a --------000

00000000000000000000

0000224

3

3221 n

n n a a a a a a a a ----+

--00

000000000000

00

01133221 +

+ n

n n a a a a a a a a -------00

000000

0000000

00

1143322

n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )1

1)((1

21∑

=+=n

i i

n a a a a

8.用克莱姆法则解下列方程组:

???????=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ?????????=+=++=++=++=+.15,065,065,065,165)2(545434323212

1x x x x x x x x x x x x x 解 (1)1121

35132412

1111

1----=

D 8120735032101111------=145008130032

101111---=

1421420005410032101111-=---= 1121

05132412211151------=

D 112

1

05132905

011

15----=

1121

023313090509151------=

23

313

0905011

21

09

151------=

1202300461000112109151-----=1420003810011

2109151----=

142-= 112035122412111512-----=D 811507312032701151-------=31

39

0112300231011

51-=

284284

00

0191002

3101151-=----=

426110135232422115113-=----=D ; 1420

21321322

1215

1114=-----=

D

1,3,2,144332211-========

D

D

x D D x D D x D D x (2) 5

1000651000

6510

0651

00065=D 展开按最后一行

6

10005100

65100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=?-?=

(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)

5

1001651000

6510

065000061

1=D 展开按第一列

6

51006510

0650006+'D 46+'=D 460319+''''-'''=D 1507= 5

1

010

6

51000

6500

06010

00152=D 展开

按第二列51

06510065

0006

1-6

5

1

00

6500

0610

005-

365510651065?-= 1145108065-=--=

5

11006500006010

00051001653=D 展开

按第三列51006500061000516

5000

6100

0510

065+

6100510656510650061+= 703114619=?+=

510006010000510

00651010654=D 展开

按第四列6

1000

5100

6510

0655000610005100651--5

106510

6565--=395-= 1

1

0510006510

00651100655=D 展开

按最后一列

D '+1

51006

51006512122111=+=

665

212

;665

395

;665

703

;665

1145

;665

1507

44321=

-=

=

-

==

x x x x x . 9.齐次线性方程组取何值时问,,μλ???

??=++=++=++0

200321

321321x x x x x x x x x μμλ有非零解?

解 μλμμμλ

-==1

21111

13D , 齐次线性方程组有非零解,则03=D

即 0=-μλμ 得 10==λμ或

不难验证,当,10时或==λμ该齐次线性方程组确有非零解.

10.齐次线性方程组取何值时问,λ???

??=-++=+-+=+--0

)1(0)3(20

42)1(321

321321x x x x x x x x x λλλ 有非零解?

λλλ----=111132421D λ

λλλ--+--=1011124

31

)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ

齐次线性方程组有非零解,则0=D 得 32,0===λλλ或

不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.

关于行列式的计算方法8页word文档

行列式的计算方法综述 目录 1.定义法(线性代数释疑解难参考) 2.化三角形法(线性代数释疑解难参考) 3.逐行(列)相减法(线性代数释疑解难参考) 4.升降法(加边法)(线性代数释疑解难参考) 5.利用范德蒙德行列式(线性代数释疑解难参考) 6.递推法(线性代数释疑解难参考) 7.数学归纳法(线性代数释疑解难参考) 8.拆项法(课外辅导书上参考) 9.换元方法(课外辅导书上参考) 10.拆因法(课外辅导书上参考) 线性代数主要内容就是求解多元线性方程组,行列式的计算其中起重要作用。下面由我介绍几种常见的计算行列式的方法: 1.定义法 由定义看出,n级行列式有!n个项。n较大时,!n是一个很大的数字。直接用定义来计算行列式是几乎不可能的事。但在n级行列式中的等于零的项的个数较多时,它展开式中的不等于零的项就会少一些,这时利用行列式的定义来计算行列式较方便。 例1.算上三角行列式 解:展开式的一般项为 同样,可以计算下三角行列式的值。 2.化三角形法 画三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上

第 1 页 (下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。 例2.计算 解:各行加到第一行中 把第二列到第n 列都分别加上第一列的()1-倍,有 3.逐行(列)相减法 有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。因此可以逐行(列)相减的方法化出许多零元素来。 例3.计算n 级行列式 解:从第二行起,每一行的()1-倍都加上上一行,有 上式还不是特殊三角形,但每相邻两行之间有许多相同元素()10或,且最后一行有()1n -元素都是x 。因此可再用两列逐列相减的方法:第()1n -列起,每一列的()1-倍加到后一列上 4.升降法(加边法) 升降法是在原行列式中再添加一列一行,是原来的n 阶成为()1n +阶,且往往让()1n +阶行列式的值与原n 阶行列式的值相等。一般说,阶数高的比阶数低的计算更复杂些。但是如果合理的选择所添加的行,列元素,是新的行列式更便于“消零”的话,则升降后有利于计算行列式的值。 例4.计算n 级行列式

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1)3 81141 1 02---; (2)b a c a c b c b a (3)222111c b a c b a ; (4)y x y x x y x y y x y x + ++. 解 注意看过程解答(1) =---3 811411 2 811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2)=b a c a c b c b a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 …)12(-n 2 4 …)2(n ; (6)1 3 …)12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

四阶行列式的一种展开法1解读

四阶行列式的一种展开法正文 四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: a11 D4 a21a31a41 a12a22a32a42 a13a23a33a43 a14a24a34a44 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): a11a12a21a31a41a42a13a43 a14 44 a11a12224142a13a23a33(图表一) 作乘积关系,可得如下八项: a11a22a33a44,a12a23a34a41,a13a24a31a42,a14a21a32a43,a41a32a23a14,a42a33a24a 11,a43a34a21a12,a44a31a22a13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 a11a12a21a31a41a42aa43 (图表二) a44a11a12224142a13a23a3343 同前理可得如下八项: a11a23a34a42,a13a24a32a41,a14a22a31a43,a12a21a33a44,a41a33a24a12,a43a34a22a 11,a14a32a21a13,a42a31a23a14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: a21a313241a42a43a1444a11a12224142a13a23a33 1 四阶行列式的一种展开法正文

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 00400300200 1000. 解析:这是一个四级行列式,在展开式中应该有244=! 项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321 =τ,所以此项取正号.故 0 04003002001000 =()()241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 221132 1 33323122211100 00 00=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 1 21n 11210000D 0 n n n a a a b b b b b += = . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

利用对角线法则计算下列三阶行列式

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4) y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ? ? ? ? ? ?

【对应线代】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 2 12n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 2 1 2 n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221 222 22212221 1 2 1 2 n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 11121111211112111 22 1 2121 2 1 2 1 2 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

四阶行列式的一种展开法1

四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: 44 43 42 413433323124 23222114131211 4a a a a a a a a a a a a a a a a D 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): (图表一) 作乘积关系,可得如下八项: a 11a 22a 33a 44,a 12a 23a 34a 41,a 13a 24a 31a 42,a 14a 21a 32a 43,a 41a 32a 23a 14,a 42a 33a 24a 11,a 43a 34a 21a 12,a 44a 31a 22a 13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 (图表二) 同前理可得如下八项: a 11a 23a 34a 42,a 13a 24a 32a 41,a 14a 22a 31a 43,a 12a 21a 33a 44,a 41a 33a 24a 12,a 43a 34a 22a 11,a 14a 32a 21a 13,a 42a 31a 23a 14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: 43 42 4144 43 42 413332 31 343332 312322212423222113121114131211 a a a a a a a a a a a a a a a a a a a a a a a a a a a a 43 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a

行列式的计算技巧与方法总结

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式 构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0132(1)81(4)(1) 2481644

(2)b a c a c b c b a 解 b a c a c b c b a acbbaccbabbbaaaccc 3abca 3b 3?c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a bc 2ca 2ab 2?ac 2ba 2cb 2 (ab )(bc )(ca ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (xy )yyx (xy )(xy )yxy 3(xy )3x 3 3xy (xy )y 33x 2 yx 3y 3x 3 2(x 3y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆序数 (1)1 2 3 4

解逆序数为0 (2)4 1 3 2 解逆序数为4 41 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个)

【原创】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 编者:Castelu 【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

线性代数课后习题答案分析

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

相关文档
最新文档