排队模型

排队模型
排队模型

第一节基本概念

1.排队与排队系统

一队汽车在加油站加油,则等待服务(加油)的车辆和正在被服务的车辆与加油站构成一个排队系统。其中尚未轮到加油的依次等候的车辆自成一个行列,这个等待服务的车辆行列则简称为排队。故排队车辆或排队(等待)时间都是仅指排队本身而言;而排队系统中的车辆或排队系统(消耗)时间,则把正在接受服务的车辆也包含在内。

2.排队系统的三个组成部分

1)输入过程

是指各种类型的“顾客”(车辆或行人),按怎样的规律到来。如:

●定长输入:顾客有规律地等距到达。

●泊松输人:顾客到来符合泊松分布。这种输人的应用最广泛,并且最容易处理。

●厄尔兰输入:顾客到达间隔符合厄尔兰分布。

2)排队规则

是指到来的顾客按怎样的规定次序接受服务。主要有三种制式:

●损失制:顾客到达时,若所有服务台均被占用,该顾客就随即离去。

●等待制:顾客到达时,若所有服务台均被占用,他们就排成队伍,等待服务。服务次序有先到先服务即按到达次序接受服务(这是最通常的情形),有优先权服务(如救护车、消防车)等规则。

●混合制:如队长有限制的情形。顾客到达时,若队长小于N,就排人队伍;若队长等于N,顾客就离去。

显然,我们经常遇到的是先到先服务的等待制系统。

3)服务机构

第133页

是指同一时刻有多少服务设施可接纳顾客,为每一顾客服务了多少时间。服务设施可以没有B盼员,也可以有一个或多个服务员。

服务台的个数可以是一个或几个,可以是单个服务,也可以是成批服务。例如公共汽车一次就装载大批乘客。服务时间分为:

●定长分布:每一顾客的服务时间都是同一常数。

●负指数分布:即每个顾客的服务时间相互独立,具有相同的负指数分布。

●厄尔兰分布:即每个顾客的服务时间相互独立,具有相同的厄尔兰分布。

为了今后叙述上的方便,引入下列记号:令M代表泊松输入或负指数分布,0代表定长输入或服务,zk代表A阶厄尔兰分布的输入或服务,c代表一般随机分布。于是泊松输入、负指数服务、C个服务台的排队系统可以写为M/M/C;泊松输入、定长服务、单个服务台的系统可以写为M/D/1。同样可以理解M/Ek/C、D/M/C等记号的含义。如果不附加其他说明,则这种记号一般都指先到先服务,单个服务的等待制系统。

当有必要将排队长度的限制和排队规则也表示出来时,可以在上面的记号后加上(N/Disc),其中N代表许可长度的最大值,在Disc处填上采用的纪律符号。通常以FIFO表示先到先服务,LIFO表示后到先服务,S/RO表示随机服务,PR表示优先权服务。例如,Ek/D/2(O /FIFO)表示一个具有厄尔兰到达、定长服务、两个服务台、排队长度不受限制及先到先服务的排队系统。

3』[队系统的主要特征量

1)系统内的顾客数,也称队长,其平均(期望)值用i表示。

2)系统内排队等待的顾客数,也称排队队长,其平均值用iq表示。任何排队系统中,系统内的顾客总数都等于排队等待的顾客数与正在接受服务的顾客数之和。

3)顾客在系统内的时间,指顾客在系统内的停留总时间,简称停留时间,其平均值用D/表示。

4)顾客在系统内的等待时间,指顾客进入系统后的排队等待的时间,简称等待时间,其平均值用wq表示。在任何排队系统中,顾客在系统内的时间都等于顾客排队等待时间与接受服务时间之和。

5)顾客到达时不必等待就接受服务的概率,用几表示,于是,系统内有n位顾客的状态概率用尸。表示。

第二节 M/M/1(田)排队模型

设顾客随机单个到达,平均到达率为^,则两次到达时间的平均间隔为1/A。从单通道接受服务后出来的输出率(即系统的服务率)为/J,则平均服务时间为l~。比率"…A~叫做交通强度或利用系数,可确定各种状态的性质。如"《1(即^…/<)并且时间充分,每个状态将会循环出现。当",1,每个状态是不稳定的,而排队的长度将会变得越来越长,没有限制。因此,要保持稳定状态即确保单通道排队能够消散的条件是"《l,即A《//。

以月。表示在M/M/1(n)系统内有n位顾客时的状态。假设时间间隔At-~O,则在厶f内有两名以及两名以上顾客接受服务或者有两名以及两名以上顾客到达的概率为厶J的高阶无穷小,可以不考虑。这样,在时刻…经厶c时间后的时刻(…+厶c),Jn所处状态可能为: 1.在时刻t内"。—:状态,在厶c时间内有一位顾客到达;

基于排队理论的仿真模型

关键词:动态模拟蒙特卡洛模拟排队论 内容摘要:论文根据超市顾客到达的随机性和服务时间的随机性,用蒙特卡洛方法模拟不同的顾客到达和服务水平,在MA TLAB/Simulink上对超市单队列多收银台的服务系统进行了动态模拟仿真,得到不同顾客到达率和不同服务水平下,顾客的排队等待时间,服务器的空闲率等要素。 在超市收银排队系统中,顾客希望排队等待的时间越短越好,这就需要服务机构设置较多的收银台,这样可以减少排队等待时间,但会增加商场的运营成本。而收银台过少,会使服务质量降低,甚至造成顾客流失。如何科学合理地设置收银台的数量,以降低成本和提高效益,是商场管理人员需要解决的一个重要问题。 蒙特卡洛方法简介 蒙特卡洛方法又称随机模拟方法,它以随机模拟和统计试验为手段,从符合某种概率分布的随机变量中,通过随机选择数字的方法,产生一组符合该随机变量概率分布特性的随机数值序列,作为输入变量序列进行特定的模拟试验、求解(杜比,2007)。在应用该方法时,要求产生的随机数序列应符合该随机变量特定的概率分布。应用该方法的基本步骤如下: 步骤1:建立概率模型,即将所研究的问题变为概率问题,构造一个符合其特点的概率模型;步骤2:产生一组符合该随机变量概率分布特性的随机数值序列;步骤3:以随机数值序列作为系统的抽样输入进行大量的数字模拟试验,以得到模拟试验值;步骤4:对模拟试验结果进行统计处理(如计算频率、均值等),进而对研究问题做出解释。 基于排队理论的仿真模型建立 (一)超市服务排队模型(M/M/C) 超市收款台服务是一个随机服务系统(唐应辉,2006),该系统具有如下特征:服务的对象是已经选购好商品的顾客,顾客源是无限的,顾客之间相互独立,顾客相继到达的时间间隔是随机的。系统有多个服务员且对每个顾客的服务时间是相互独立的。服务规则遵从先到后服务(FCFS)的原则。每个收款台前都有排队队列,顾客选择较短的队列排队等候,这样形成单队列多服务员(M/M/C)的排队系统。超市收银台顾客排队系统结构见图1。 (二)产生随机数值序列 由于顾客到达间隔时间和顾客服务的时间服从负指数颁布的随机数。令这个负指数分布的随机数为x,负指数分布密度函数为:,其分布函数为:,F(x)的反函数为。设u为[0,1]区间上的独立、均匀分布的随机变量,则所求随机数为,进而简化得,这样得到负指数分布的随机数(吴飞,2006)。 针对商场顾客到达和服务水平的统计数据,据此可产生两个随机数列:顾客到达时间间隔a (i)和顾客服务时间st(i),以此数值序列进行动态输入仿真。 (三)模型变量设置 at(i):表示第i 个顾客到达时刻; a(i):表示第i个顾客到达的时间间隔;st(i):第i个顾客的服务时间;sst(i): 第i个顾客的开始服务时间;lea(i):第i个顾客离开时间;ls(j):第j个队列中最后一个顾客的离开时间;ls(m):每个队列中最后一个顾客离开时间的最早值;freet(j):第j个

排队论模型

排队论模型 随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一、医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1 医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

MMC排队系统模型

M/M/C排队模型及其应用 摘要:将随机服务系统中M/M/C排队模型应用到理发服务行业中。通过对某理发店进行调查,以10min为一个调查单位调查顾客到达数,统计了72个调查单位的数据,又随机调查了113名顾客服务时间,得到了单位时间内到达的顾客数n和为每位顾客服务的时间t,然后利用 2拟合检验,得到单位时间的顾客到达舒服从泊松分布,服务时间服从负指数分布,从而建立起M/M/C 等待制排队模型,通过计算和分析M/M/C排队模型的主要指标,得到理发店宜招聘的最佳理发师数目。 排队论主要对由于受随机因素的影响而出现排队系统进行研究,它广泛应用于通信、交通与运输、生产与服务、公共服务事业以及管理运筹等一切服务系统。在具体应用方面,把排队理论直接应用到实际生活方面也有不少的文献。另外,排队论和其他学科知识结合起来也有不少应用。 我们可以从现实生活中去的数据资料,基于排队系统基本知识和M/M/C排队模型基本理论和统计学有关知识,通过分析研究,得出一些结论,为实际问题的解决提供参考资料,从而拓宽了该模型的应用领域,并对其他模型的系统应用也有一定的启示作用。 1 M/M/C排队模型 定义

若顾客的到达间隔服从参数为λ的负指数分布,到达的人数服从泊松分布,每位顾客的服务时间服从参数为μ的负指数分布,且顾客的到达时间与服务时间独立,系统有C 个服务台,称这样的排队模型为M/M/C 排队模型。 M/M/C 排队模型也可以对应分为标准的M/M/C 模型、系统容量有限的M/M/C 模型和顾客源有限的M/M/C 模型3种。 假定顾客到达服从参数为λ的泊松分布,每个顾客所需的服务时间服从参数为μ的指数分布,顾客到达后若有空闲的服务台就按到达的先后顺序接受服务,若所有的服务台均被占用时,顾客则排成一队等候。令N (t )=i 表示时刻t 系统中恰有i 位顾客,系统的状态集合为{0,1,2,…}。可证{N (t ),t>0}为生灭过程,而且有: 由此可见,服务台增加了,服务效率提高了。 定理1 队长N (t )平稳分布。令 ...,21n t }n t N {P t p lim p p n t n n , ),(,)()(=?=?∞ →t 则可求得系统的平稳分布为,当1≤n <C 时, ]1 1 ) 1(!! [!--=-- + == ∑ C C n C c C n n C n n n p p C p ρ ρ ρ ρ , 定理2 系统的主要指标:

排队论及其在通信领域中的应用

排队论及其在通信领域中的应用 信息与通信工程学院 2班 姓名:李红豆 学号:10210367 班内序号:26 指导老师:史悦 一、摘要 排队论是为了系统的性态、系统的优化和统计推断,根据资料的合理建立模型,其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。排队是一种司空见惯的现象,因此排队论可以用来解决许多现实问题。利用排队论的知识可以来解决通信服务中的排队论问题。应用排队论一方面可以有效地解决通信服务系统中信道资源的分配问题;另一方面通过系统优化,找出用户和服务系统两者之间的平衡点,既减少排队等待时间,又不浪费信号资源,从而达到最优设计的完成。 二、关键字 排队论、最简单流、排队系统、通信 三、引言 排队论又称随机服务系统, 主要解决与随机到来、排队服务现象有关的应用问题。是研究系统由于随机因素的干扰而出现排队(或拥塞) 现象的规律的一门学科, 排队论的创始人Erlang 是为了解决电话交换机容量的设计问题而提出排队论。它适用于一切服务系统,包括通信系统、计算机系统等。可以说, 凡是出现拥塞现象的系统, 都属于随机服务系统。随着电子计算机的不断发展和更新, 通信网的建立和完善, 信息科学及控制理论的蓬勃发展均涉及到最优设计与最佳服务问题, 从而使排队论理论与应用得到发展。 四、正文 1、排队论概述: 1.1基本概念及有关概率模型简述: 排队论是一个独立的数学分支有时也把它归到运筹学中。排队论是专门研究由于随机因素的影响而产生的拥挤现象(排队、等待)的科学也称为随机服务系统理论或拥塞理论。它专于研究各种排队系统概率规律性的基础上解决有关排队系统的最优设计和最优控制问题。 排队论起源于20世纪初。当时美国贝尔Bell电话公司发明了自动电话以后如何合理配臵电话线路的数量以尽可能地减少用户重复呼叫次数问题出现了。 1909年丹麦工程师爱尔兰发表了具有重要历史地位的论文“概率论和电话交换”从而求解了上述问题。 1917年又提出了有关通信业务的拥塞理论用统计平衡概念分析了通信业务量问题形成了概率论的一个新分支。后经C.Palm等人的发展由近代概率论观点出发进行研究奠定了话务量理论的数学基础。

M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析 摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。 关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解 1M/M/C/∞排队系统 1.1排队论的概念及排队系统的组成 上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。 任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。③服务机构描述服务台数目及服务规律。服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。 1.2M/M/C/∞排队模型 ①排队系统模型的表示。目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。他用3个字母组成的符号A/B/C表示排队系统。为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。 ②排队系统的衡量指标。—所有服务设施空闲的概率;—系统中的顾客总数;—队列中的顾客总数;—顾客在系统中的停留时间;—顾客在队列中的等待时间。 ③M/M/C/∞排队模型。排队系统模型大体上可以分为简单排队系统,特殊排队系统,休假排队系统及可修排队系统。纵观所有排队系统的模型,无非是系统的三个组成部分分别为不同情况时,进行的排列组合,并由此导致排队系统的数量指标的计算公式不一致。无论是何种排队系统,其研究实质都是如何平衡等待时间

李春晓毕业论文之排队论模型及其应用

排队论模型及其应用 摘要:排队论是研究系统随机服务系统和随机聚散现象工作过程中的的数学理论和方法,又叫随机服务的系统理论,而且为运筹学的一个分支。又主要称为服务系统,是排队系统模型的基本组成部分。而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。比如:学校超市的排队现象或出行车辆等现象,。排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统计平衡模型,并由此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。 关键词:出行车辆;停放;排队论;随机运筹学 引言:排队论既被广泛的应用于服务排队中,又被广泛的应用于交通物流领域。在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。然而有基于扩展原理又对模糊排队进行了一定的分析。然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为W,而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。 一.排队模型 排队论是运筹学的一个分支,又称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。 一般排队系统有三个基本部分组成]1[: (1)输入过程: 输入过程是对顾客到达系统的一种描述。顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。 (2)排队规则: 排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。排队规则可以分为3种制式: a 损失制系统------顾客到达服务系统时,如果系统中的所有服务窗均被占用,则顾客即时离去,不参与排队,因为这种服务机制会失掉许多顾客,故称损失制系统; b 等待制系统------顾客到达服务系统时,虽然发现服务窗均忙着,但系统设有场地供顾客排队等候之用,于是到达系统的顾客按先后顺序进行排队等候服

基于排队论模型的收费站优化设计

龙源期刊网 https://www.360docs.net/doc/f510978201.html, 基于排队论模型的收费站优化设计 作者:刘昕岳丁韩旭杨佳琪 来源:《科学家》2017年第15期 摘要本文从形状、尺寸、组合等因素入手,以减少等待时间与不必要的费用为目的,设计了一个新型高速公路收费站。首先,在系统稳态的基础上,运用排队论模型建立收费站车辆行为模型的基本模型。其次,利用元胞自动机算法模拟了四种不同轮廓下的交通流,并分析了它们对拥塞的抵抗能力。最后,进行了遗传算法优化分析,最大限度地提高了吞吐量,降低了成本,提出一种新型的具有双重停车和互惠共享车道的高速公路收费站方案。 关键词排队论模型;元胞自动机算法;遗传算法;高速公路收费站 中图分类号 TP2 文献标识码 A 文章编号 2095-6363(2017)15-0010-01 随着经济不断发展,人们的日常生活节奏不断加快,需要避免把时间浪费在不必要的事情上,比如等待排队,应该花更多的时间去创造更多的价值。基于这样的社会背景,有必要系统地评估高速公路收费站设计。众所周知,高速公路收费站总是浪费时间。除了司机在等待收费亭的时间浪费,如果车辆迅速增加,更容易造成交通堵塞(瓶颈)。如何合理的设计收费站是一个急需解决的问题。 1 排队论模型建立 排队论模型中,车到达一个单次和连续到达的时间间隔服从负指数分布的参数λ。系统中有s服务站。每个服务站的服务时间是相互独立的,服从参数m的负指数分布。当顾客到达时,如果有免费服务台,第一辆车将立即接受服务,否则汽车将排队等候。且等待的时间是无限的。 下面讨论了这个排队系统的平滑分布。本文认为,在系统达到稳定状态后,队列长度n的概率分布等于(n=1,2,…)。设收费站数目为B。 通过公式推导表明,繁忙收费站平均数目并不取决于收费站数目B。 λn=λ,n=0,1,2,… 相关文献给出了在平衡条件下系统中车辆数为n的概率。当收费广场的车辆数目超过或等于收费站的数目,返回的车辆必须等候。 继续推导得到平均队列长度: LB=平均队列长度+被送达车辆的平均数=Lq+p

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

排队长度检测方法研究

摘要 随着城市的发展,交通拥挤已成全世界的交通难题,车辆排队是交通拥挤的一种典型表现形式,因此车辆排队长度是一个很重要的交通信息参数。 本文基于二流理论,把真实交通流状态转换为二流运行状态,计算转换后得到一种车辆排队长度,即当量排队长度。根据流量守恒方程,建立了单车道路段的当量排队长度模型,并在此基础上推出多车道的平均当量排队长度模型,并用VISSIM软件模拟交通拥堵路段,对该模型进行测试。 仿真结果表明,模型计算出来的当量排队长度均大于实际车辆排队长度,实际排队长度变化时,当量排队长度相对稳定。 关键词交通流;交通拥挤;车辆排队长度;二流理论;当量排队长度

Abstract With the development of cities, traffic jam has become a whole world’s problem. Queue of vehicles is a typical manifestation of congestion. So the queue length is an important traffic information parameter. A kind of queue length transformed by the real queue length, called equivalent queue length, which turns the real traffic flow into a two-fluid operation status, is brought forward in this article, based on the theory of two-fluid. On this basis, the equivalent queue length model is built for the single-lane sections according to flow conservation equation. And the multi-lane sections average equivalent queue length is built based on the single-lane model. To test the model, the simulation schemes are designed for the congested traffic road by using the VISSIM software. The simulation results show that the actual queue lengths are all shorter than the equivalent ones, the equivalent queue lengths are stable when the actual ones fluctuate. Key words traffic flow congested traffic stream two-fluid theory equivalent queue length

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

车辆排队模型的建立与分析

随着汽车保有量的不断增长,交通拥挤已经成为备受关注的世界性问题几乎所有城市都不同程度地受到这一问题的困扰。我国也不例外,自20 世纪80 年代以来,交通拥挤问题越来越严重,逐渐成为制约社会经济发展的主要瓶颈之一。例如北京、上海等大城市,城市交通拥挤现象更为严重。在出行高峰时段,交叉口堵塞、车流不畅、车速低下等问题极为突出,由此衍生的交通事故、噪声、环境污染等更是城市面临的极其严重的“城市病”之一。解决交通拥挤问题是全世界各大城市丞待解决的关键问题之一。 车辆排队现象是一个随着时间变化的动态过程,可以反映交通流从畅通到拥挤最终到堵塞这样一个变化过程。揭示交通拥挤产生的内在机理的过程也就是探讨车辆排队在时空域上演化的过程,建立车辆排队模型以便正确地描述车辆排队现象也就成为一个必要的课题交通拥挤的出现是交通供需不平衡的表征。交通网络是一个由人、车、路、环境构成的复杂的大系统。各个要素之间存在着一定的直接或间接的相互影响关系,系统的整体效益不只与各个要素有关,还与要素之间的相关关系有着密切联系。揭示系统运行的内在机理是解决系统问题的根本方法。本文从交通需求与交通供给的内在关系出发,探讨交通流时空描述函数、车辆排队长度模型、起动–停车波模型和排队位置确定模型。这些研究成果在以下方面具有一学术意义和工程实践价值:(1)车辆排队长度模型为深入认识排队现象和定量描述交通拥挤程度提供理论依据和方法;该模型容易应用于交通控制系统中,为评价信号配时方案的控制效果奠定理论基础。(2)起动–停车波模型为认识信号交叉口的交通波现象提供新的方法,能够解决传统交通波模型不易应用于工程实践的问题,为研究车辆排队在路网上的演化规律提供理论基础。(3)排队位置确定模型为分析车辆排队的网络效应奠定理论基础,可以揭示交通拥挤问题产生的源头、找到交通网络中的薄弱环节,从而为改善交通网络、合理引导交通流分布提供理论依据,为解决城市交通拥挤问题提供可行的有效策略。 1)网络基本表示法 Potts 和Oliver(1972)运用图论中的基本概念(节点、连线、链、圈、路径、网孔等)描述了交叉网络中的基本要素(交叉口、路段、单向交通、双向交通等),根据基尔霍夫定律建立了连线流量和链流量的守恒方程,并将其简洁地表达为节点–连线映射矩阵和连线–链映射矩阵[135]。 2)扩展网络法 Sheffi(1985)提出了扩展网络法,其原理是将原网络的每个交叉口扩展成一个子网络,用增设虚拟节点和虚拟边的方式来体现交通网络的连通性,一个虚拟节点对应交叉口的一个进口或出口,连接虚拟节点的一条虚拟边对应交叉口的一个可能转向[136]。陈森发等人(1993)在研究交通分配的多模式模型时提出了一种新的扩展网络法,该方法将原扩展网络中的每个虚拟节点再分成两个虚拟节点,一个表示交通流的驶出,另一个表示交通流的驶入[137。黄海军(1994)在研究城市交通网络平衡分析时引用了Sheffi 书中提出的扩展网络表示法[138]。 3)对偶网络法 de la Barra(1989)介绍了对偶图理论在交通网络的理论研究与工程实践中的应用[139]。A ez 等人(1996)详细描述了利用对偶图表示交通网络的技术,给出了对偶图网络连通性表达法,采用点和边的转化方式来表达交通网络的连通性问题,避免了对网络增加大量虚拟节点和虚拟边,但该方法对网络结构的变换仍然需要不少的工作量[140]。万绪军和胡安洲(1999)提出了边标号法,该方法不需要修改网络结构即可清楚地表达网络的连通性[141,142]。 4)网络矩阵表示法 陈树柏(1982)、吴文泷(1984)、陈森发(1992)、兰家隆和刘军(1995)都在书中详细给出了网络图的矩阵表示法,包括邻接矩阵、关联矩阵、路径矩阵、回路矩阵、割集矩阵等[143,144,145,146]。任刚(2004)在其博士学位论文中给出了完吉林大学博士学位论文- 16 -整的节点-路段-转向拓扑关系[147]。

排队长度模型

5.3.2排队长度模型(方法二) 多车道车辆排队长度的计算是研究车辆由于交通堵塞等意外情况的发生而在研究车道上产生的交通拥挤情况。我们将在已有排队长度模型上,根据二流理论思想【车辆排队模型姚荣涵】建立路段当量排队长度模型。该模型能够有效地反映出交通通行状况。 交通波的排队定义是基于稳定流假设,这种假设导致车辆在波面上完成速度的改变是瞬时的。VISSIM的排队定义认为车辆在完成速度的改变是渐变的,这种定义更符合实际情况。但是这种情况下波阵面不明显的,各处状态不同。下面我们统一定义建立一种计算排队长度的普适模型。 一.三车道中拥挤交通流的排队分析 如图3-1所示,位置1为事故发生地点,位置2选取事故发生上游的十字路口处。由于事故发生引起交通阻塞,使得车辆依次排队,一段时间后,路段上交通流实际运行状态如3-1(a)所示,从位置1到位置2为选取的事故发生路段,交通状态可分为三部分:A部分车辆速度均为0,交通阻塞; B部分车辆速度依次增大,交通流密度由大变小; C部分车辆正常运行,速度和密度均为某一定值。 我们划分的三种交通状态中A和C部分都是均匀流,而B部分不是均匀流,它是A和C 状态的过渡状态。 根据二流理论思想,将运动车辆形成的交通流称为行驶交通流,停止车辆形成的交通流称为阻塞交通流。由此我们把3-1(a中)的过渡状态B的不均匀交通流划分为A部分阻塞交通流和C部分行驶交通流。这样整条路段就被划分为两种均匀交通流: 阻塞交通流A; 行驶交通流C。 交通波理论计算的排队长度只能反映出完全受到排队影响的车辆,而不能反映过渡段内不完全受到排队影响的车辆。但根据二流理论思想得到的交通流二流运行状态恰好能够把这种部分受到排队影响的车辆反映出来。将二流运行状态中阻塞交通流的长度成为当量排队长度(见图3-1(b)LA’)。

基于二流理论的拥挤交通流当量排队长度模型(1)

第37卷第3期2007年5月  东南大学学报 (自然科学版) JOURNAL O F SOU THEAST UN I V ERS ITY (N atural Science Edition )   V ol 137N o 13M ay 2007 基于二流理论的拥挤交通流当量排队长度模型 姚荣涵 王殿海 曲昭伟 (吉林大学交通学院,长春130022) 摘要:为描述拥挤交通流中的排队现象,根据二流理论,提出了将交通流实际运行状态转化为二 流运行状态的思想.利用流量守恒方程,建立了单车道路段当量排队长度模型,并在此基础上,推导出多车道路段平均当量排队长度模型.为验证模型的有效性,采用V I SS I M 软件设计了拥挤交通流的模拟方案.对比模型计算的当量排队长度与软件统计的实际排队长度发现:当量排队长度均大于实际排队长度;当量排队长度比较稳定,而实际排队长度有所波动.结果表明,当量排队长度模型能够定量地、更好地描述拥挤路段的交通流拥挤程度.该模型计算方法简单,便于工程实践,可以为城市交通控制系统优化等提供理论依据.关键词:拥挤交通流;二流理论;当量排队长度 中图分类号:U 49112+ 64 文献标识码:A 文章编号:1001-0505(2007)0320521206 Equi valent queue length model for congested traffi c stream based on two 2flui d theory Yao R onghan W ang D ianhai Q u Zhaow ei (College of T ransportation,J ilin U niversity,Changchun 130022,China ) Abstract:To describe the queue p henom ena in congested traffic flow ,based on t w o 2flu id theo ry a thinking w hich converts actual traffic 2flow operation state into t w o 2fluid operation state is put fo r 2w ard.The equivalent queue leng th m odel is built for a single 2lane segm ent according to conservation equation .O n th is basis,the average equivalent queue length m odel is educed for a m ulti 2lane seg 2m ent .To validate the effectiveness of the m odels,the si m ulation schem es are designed for the con 2gested traffic flow by app lying the V I SS I M soft w are .B y com paring the equivalen t queue lengths com puted by the m odels w ith the actual queue lengths obtained by the soft w are,it is found that the equivalent queue lengths are all longer than the actual ones;the equivalent queue lengths are stable,but the actual values fluctuate .The results show that the equivalent queue length m odels can quanti 2tatively and better describe the congested degree of traffic 2flow on congested segm ent .The m odels are si m p le and easy to be app lied in eng ineering p ractice .Their results can p rovide a theoretical basis for urban traffic contro l system op ti m ization etc . Key words:congested traffic stream;t w o 2fluid theory;equivalent queue leng th 收稿日期:2006209214. 基金项目:国家自然科学基金重点资助项目(50338030)、国家重 点基础研究发展计划(973计划)资助项目 (2006CB 705505). 作者简介:姚荣涵(1979—),女,博士生;王殿海(联系人),男,教 授,博士生导师,w angdianhai @sohu .com. 1 问题提出 111 研究现状 排队现象在交通运输系统中随处可见.交通工程的学者们一直致力于排队现象的分析和排队长 度的计算.从分析手段来看,主要包括概率论、排队 论、随机过程、累计曲线、冲击波、神经网络与微观模拟等方法.这些方法的应用均在一定范围内描述了交通排队现象并建立了各种排队长度模型. 概率论方法认为车辆到达和离去服从某种概率分布,车辆到达累计数与离去累计数之差为排队 车辆数[1] ;排队论将某种交通设施(如交叉口、瓶颈等)模拟为服务台,把交通流在路段上的运行过程看作车辆在排队系统中接受或等待服务,认为车辆在系统中等待服务即为排队,根据排队论得到各

排队论模型

排队论模型 随机服务系统理论是研究山顾客、服务机构及其排队现象所构成的一种排队系统的理论,乂称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设讣与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。山于病人到达时间的随机性或诊治病人所需时间的随机性,排队儿乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一.医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复朵的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1.输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2.排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗, 在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3.服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的; 服务时间的分布与时间有关或无关。 三、排队模型的分类方法

MMN排队系统建模与仿真

. 《系统仿真与matlab》综合试题....................... 错误!未定义书签。 M/M/N 排队系统的模拟仿真 (1) 摘要 (1) 1. 问题分析 (3) 2. 模型假设 (4) 3. 符号说明 (5) 4. 模型准备 (5) 4.1 排队系统的组成和特征 (5) 4.1.1输入过程 (6) 4.1.2排队规则 (6) 4.1.3服务过程 (7) 4.1.4排队系统的主要指标 (7) 4.2输入过程与服务时间的分布 (8) 4.2.1负指数分布 (8) 4.2.2泊松分布 (8) 4.3生灭过程 (9) 5. 标准M/M/N模型 (11) 5.1多服务台模型准备 (11) 5.2多服务台模型建立 (12) 5.2.1服务利用率 (12) 5.2.2平均排队长 (13) 5.2.3平均队长 (13)

5.2.4平均等待时间 (14) 6. 程序设计 (14) 6.1动画流程图 (14) 6.2 M/M/N流程图 (15) 7. 程序运行实例介绍 (16) 7.1动画实例讲解 (16) 7.2M/M/N排队系统实例讲解 (18) 8. 程序实现难点和模型评价 (21) 8.1程序实现难点 (21) 8.2模型评价 (21) 9. 参考文献 (21) 10. 附录 (22) 10.1动画实现的核心程序 (22) 10.2 M/M/N模型计算主要程序 (32) M/M/N 排队系统的模拟仿真 摘要

排队是在日常生活中经常遇到的事,由于顾客到达和服务时间的随机性,使得排队不可避免。因此,本文建立标准的M/M/N模型,并运用Matlab软件,对M/M/N排队系统就行了仿真,从而更好地深入研究排队问题。 问题一,基于顾客到达时间服从泊松分布和服务时间服从负指数分布,建立了标准的M/M/N模型。运用Matlab软件编程,通过输入服务台数量、泊松分布参数以及负指数分布参数,求解出平均队长、服务利用率、平均等待时间以及平均排队长等重要指标。然后,分析了输入参数与输出结果之间的关系。得出当服务台数增加时,几个参数都会变小的结论。 问题二,为了更加清晰地反映出实际排队过程。本文通过运用Matlab软件编程,制作了M/M/1排队过程的动画仿真,通过输入泊松分布参数以及负指数分布参数来模拟不同情况下的排队过程。通过仿真动画,可以看到明显的等待和排队过程。 问题三,为了清晰地展示程序执行的效果以及程序功能的使用方法。本文特意制作了程序运行指南,并做了程序运行实例分析。通过详细地介绍,使读者能更好地理解M/M/N模型以及如何使用该仿真程序。 最后,对建立的M/M/N模型做了评价,并提出了一些改进的思路。同时,指

MMN排队系统建模与仿真

《系统仿真与matlab》综合试题...................... 错误!未定义书签。 M/M/N 排队系统的模拟仿真 (1) 摘要 (1) 1. 问题分析 (2) 2. 模型假设 (2) 3. 符号说明 (3) 4. 模型准备 (3) 4.1 排队系统的组成和特征 (3) 4.1.1输入过程 (4) 4.1.2排队规则 (4) 4.1.3服务过程 (4) 4.1.4排队系统的主要指标 (5) 4.2输入过程与服务时间的分布 (5) 4.2.1负指数分布 (5) 4.2.2泊松分布 (5) 4.3生灭过程 (6) 5. 标准M/M/N模型 (8) 5.1多服务台模型准备 (8) 5.2多服务台模型建立 (9) 5.2.1服务利用率 (9) 5.2.2平均排队长 (9) 5.2.3平均队长 (10) 5.2.4平均等待时间 (10) 6. 程序设计 (11) 6.1动画流程图 (11) 6.2 M/M/N流程图 (12) 7. 程序运行实例介绍 (13) 7.1动画实例讲解 (13) 7.2M/M/N排队系统实例讲解 (14) 8. 程序实现难点和模型评价 (17) 8.1程序实现难点 (17) 8.2模型评价 (17) 9. 参考文献 (17) 10. 附录 (17) 10.1动画实现的核心程序 (17) 10.2 M/M/N模型计算主要程序 (22)

M/M/N 排队系统的模拟仿真 摘要 排队是在日常生活中经常遇到的事,由于顾客到达和服务时间的随机性,使得排队不可避免。因此,本文建立标准的M/M/N模型,并运用Matlab软件,对M/M/N排队系统就行了仿真,从而更好地深入研究排队问题。 问题一,基于顾客到达时间服从泊松分布和服务时间服从负指数分布,建立了标准的M/M/N模型。运用Matlab软件编程,通过输入服务台数量、泊松分布参数以及负指数分布参数,求解出平均队长、服务利用率、平均等待时间以及平均排队长等重要指标。然后,分析了输入参数与输出结果之间的关系。得出当服务台数增加时,几个参数都会变小的结论。 问题二,为了更加清晰地反映出实际排队过程。本文通过运用Matlab软件编程,制作了M/M/1排队过程的动画仿真,通过输入泊松分布参数以及负指数分布参数来模拟不同情况下的排队过程。通过仿真动画,可以看到明显的等待和排队过程。 问题三,为了清晰地展示程序执行的效果以及程序功能的使用方法。本文特意制作了程序运行指南,并做了程序运行实例分析。通过详细地介绍,使读者能更好地理解M/M/N模型以及如何使用该仿真程序。 最后,对建立的M/M/N模型做了评价,并提出了一些改进的思路。同时,指出了程序实现的难点等问题。 关键词:M/M/N排队系统泊松分布负指数分布动画模拟仿真

相关文档
最新文档