模型检验技术

数学建模常用各种检验方法

各种检验方法 1.单个总体2 Nμσ的均值μ的检验: (,) 2 σ已知,关于均值的检验用ztest命令来实现. [h,p,ci]=ztest(x,mu,sigma,alpha,tail) 2 σ已知,关于均值的检验用ttest命令来实现. [h,p,ci]=ttest(x,mu,alpha,tail) 2.两个正态总体均值差的检验(t 检验) 还可以用t 检验法检验具有相同方差的2 个正态总体均值差的假设。在Matlab 中 由函数ttest2 实现,命令为: [h,p,ci]=ttest2(x,y,alpha,tail) 3.分布拟合检验 在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检 验关于分布的假设。下面介绍2χ检验法和专用于检验分布是否为正态的“偏峰、峰度 检验法”。 2 χ检验法 0 H :总体x的分布函数为F(x) , 1 H : 总体x的分布函数不是F(x). 在用下述χ 2检验法检验假设0 H 时,若在假设0 H 下F(x)的形式已

知,但其参数 值未知,这时需要先用极大似然估计法估计参数,然后作检验。 偏度、峰度检验 4.其它非参数检验 Wilcoxon秩和检验 在Matlab中,秩和检验由函数ranksum实现。命令为: [p,h]=ranksum(x,y,alpha) 其中x,y可为不等长向量,alpha为给定的显著水平,它必须为0和1之间的数量。p返回 产生两独立样本的总体是否相同的显著性概率,h返回假设检验的结果。如果x和y的总 体差别不显著,则h为零;如果x和y的总体差别显著,则h为1。如果p 接近于零,则可对 原假设质疑。 5.中位数检验 在假设检验中还有一种检验方法为中位数检验,在一般的教学中不一定介绍,但在 实际中也是被广泛应用到的。在Matlab中提供了这种检验的函数。函数的使用方法简单, 下面只给出函数介绍。 signrank函数

特征选择方法在建模中的应用

特征选择方法在建模中的应用 ——以CHAID树模型为例 华东师范大学邝春伟

特征选择是指从高维特征集合中根据某种评估标准选择输出性能最优的特征子集,其目的是寻求保持数据集感兴趣特性的低维数据集合,通过低维数据的分析来获得相应的高维数据特性,从而达到简化分析、获取数据有效特征以及可视化数据的目标。 目前,许多机构的数据均已超载,因此简化和加快建模过程是特征选择的根本优势。通过将注意力迅速集中到最重要的字段(变量)上,可以降低所需的计算量,并且可以方便地找到因某种原因被忽略的小而重要的关系,最终获得更简单、精确和易于解释的模型。通过减少模型中的字段数量,可以减少评分时间以及未来迭代中所收集的数据量。 减少字段数量特别有利于Logistic 回归这样的模型。

SPSS Modeler是一个非常优秀的数据挖掘软件。它的前身是SPSS Clementine及PASW Modeler。该软件 的特征选择节点有助于识别用于预测特定结果的最重要的字段。特征选择节点可对成百乃至上千个预测变量进行筛选、排序,并选择出可能是最重要的预测变量。最后,会生成一个执行地更快且更加有效的模型—此模型使用较少的预测变量,执行地更快且更易于理解。 案例中使用的数据为“上海高中生家庭教育的调查”,包含有关该CY二中的304名学生参与环保活动的信息。 该数据包含几十个的字段(变量),其中有学生年龄、性别、家庭收入、身体状况情况等统计量。其中有一个“目标”字段,显示学生是否参加过环保活动。我们想利用这些数据来预测哪些学生最可能在将来参加环保活动。

案例关注的是学生参与环保活动的情况,并将其作为目标。案例使用CHAID树构建节点来开发模型,用以说明最有可能参与环保活动的学生。其中对以下两种方法作了对比: ?不使用特征选择。数据集中的所有预测变量字段 均可用作CHAID 树的输入。 ?使用特征选择。使用特征选择节点选择最佳的4 个预测变量。然后将其输入到CHAID 树中。 通过比较两个生成的树模型,可以看到特征选择如何产生有效的结果。

多元线性回归模型的各种检验方法-7页文档资料

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具 有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参 数的(狭义意义上的)显著性检验。如果拒绝 0H ,说明解释变量j X 对被解释变量Y 具有显著的线性 影响,估计值j β?才敢使用;反之,说明解释变量 j X 对被解释变量Y 不具有显著的线性影响,估计值j β?对我们就没有意义。具体检验方法如下: (1) 给定虚拟假设 0H :j j a =β; (2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-= -= 的数值; (3) 在给定的显著水平α 下( α 不能大于 1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )?(?j j j Se t βββ-= 必须服从已知的 t 分布函数。什么情况或条件下才会这 样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随 机样 (){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性, 0))())(((=--j j i i u E u u E u Cov 。 (2) 条件期望值为0。给定解释变量的任何值,误差 u 的期望值为零。即有 这也保证了误差u 独立于解释变量 X X X ,,,21Λ,即模型中的解释变量是外生性的,也使得 0)(=u E 。 (3) 不存在完全共线性。在样本因而在总体中,没有一个解释变量是常数,解释变量之间也不存在严格的线性关系。 (4) 同方差性。常数==2 21),,,(σk X X X u Var Λ。 (5) 正态性。误差u 满足 ),0(~2 σNormal u 。 在以上5个前提下,才可以推导出: 由此可见, t 检验方法所要求的条件是极为苛刻的。 二、 对参数的一个线性组合的假设的检验 需要检验的虚拟假设为 0H :21j j ββ=。比如21ββ=无 法直接检验。设立新参数 211ββθ-=。

多元线性回归模型的各种检验方法.doc

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性,

常见的特征选择或特征降维方法

URL:https://www.360docs.net/doc/f51119083.html,/14072.html 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更强,减少过拟合 2.增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。 在许多机器学习的书里,很难找到关于特征选择的容,因为特征选择要解决的问题往往被视为机器学习的一种副作用,一般不会单独拿出来讨论。本文将介绍几种常用的特征选择方法,它们各自的优缺点和问题。 1 去掉取值变化小的特征Removing features with low variance 这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。

2 单变量特征选择Univariate feature selection 单变量特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征。对于回归和分类问题可以采用卡方检验等方式对特征进行测试。 这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效);这种方法有许多改进的版本、变种。 2.1 Pearson相关系数Pearson Correlation 皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关(这个变量下降,那个就会上升),+1表示完全的正相关,0表示没有线性相关。 Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。 Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系, Pearson相关性也可能会接近0。 2.2 互信息和最大信息系数Mutual information and maximal information coefficient (MIC)

模型检验(闵应骅)

模型检验(1)(091230) 大家承认,计算机领域的ACM图灵奖相当于自然科学的诺贝尔奖。2007年图灵奖授予Edmund M. Clarke,E. Allen Emerson,和Joseph Sifakis。他们创立了模型检验---一种验证技术,用算法的方式确定一个硬件或软件设计是否满足用时态逻辑表述的形式规范。如果不能满足,则提供反例。他们在1981年提出这个方法,经过28年的发展,已经在VLSI电路、通信协议、软件设备驱动器、实时嵌入式系统和安全算法的验证方面得到了实际应用。相应的商业工具也已出现,估计今后将对未来的硬件和软件产业产生重大影响。 2009年11月CACM发表了三位对模型检验的新的诠释。本人将用几次对他们的诠释做一个通俗的介绍,对我自己也是一个学习的过程。 Edmund M. Clarke现在是美国卡内基梅隆大学(CMU)计算机科学系教授。E. Allen Emerson 是在美国奥斯汀的德州大学计算机科学系教授。Joseph Sifakis是法国国家科学研究中心研究员,Verimag实验室的创立者。 模型检验(2)(091231) 程序正确性的形式验证依靠数学逻辑的使用。程序是一个很好定义了的、可能很复杂、直观上不好理解的行为。而数学逻辑能精确地描述这些行为。过去,人们倾向于正确性的形式证明。而模型检验回避了这种证明。在上世纪60年代,流行的是佛洛伊德-霍尔式的演绎验证。这种办法像手动证明一样,使用公理和推论规则,比较困难,而且要求人的独创性。一个很短的程序也许需要很长的一个证明。 不搞程序正确性证明,可以使用时态逻辑,一种按时间描述逻辑值变化的形式化。如果一个程序可以用时态逻辑来指定,那它就可以用有限自动机来实现。模型检验就是去检验一个有限状态图是否是一个时态逻辑规范的一个模型。 对于正在运行的并发程序,它们一般是非确定性的,像硬件电路、微处理器、操作系统、银行网络、通信协议、汽车电子及近代医学设备。时态逻辑所用的基本算子是F(有时),G(总是),X(下一次),U(直到)。现在叫线性时间逻辑(LTL)。

数据分析的特征选择实例分析

数据分析的特征选择实例分析 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必须经过评估确认其是否符合数据挖掘标准。以决定预期结果,也就选择了这项工作的最优算法。 (2)提取、清洗和校验数据:提取的数据放在一个结构上与数据模型兼容的数据库中。以统一的格式清洗那些不一致、不兼容的数据。一旦提取和清理数据后,浏览所创建的模型,以确保所有的数据都已经存在并且完整。 (3)创建和调试模型:将算法应用于模型后产生一个结构。浏览所产生的结构中数据,确认它对于源数据中“事实”的准确代表性,这是很重要的一点。虽然可能无法对每一个细节做到这一点,但是通过查看生成的模型,就可能发现重要的特征。 (4)查询数据挖掘模型的数据:一旦建立模型,该数据就可用于决策支持了。 (5)维护数据挖掘模型:数据模型建立好后,初始数据的特征,如有效性,可能发生改变。一些信息的改变会对精度产生很大的影响,因为它的变化影响作为基础的原始模型的性质。因而,维护数据挖掘模型是非常重要的环节。 聚类分析是数据挖掘采用的核心技术,成为该研究领域中一个非常活跃的研究课题。聚类分析基于”物以类聚”的朴素思想,根据事物的特征,对其进行聚类或分类。作为数据挖掘的一个重要研究方向,聚类分析越来越得到人们的关注。聚类的输入是一组没有类别标注的数据,事先可以知道这些数据聚成几簇爪也可以不知道聚成几簇。通过分析这些数据,根据一定的聚类准则,合理划分记录集合,从而使相似的记录被划分到同一个簇中,不相似的数据划分到不同的簇中。 2.特征选择与聚类分析算法 Relief为一系列算法,它包括最早提出的Relief以及后来拓展的Relief和ReliefF,其中ReliefF算法是针对目标属性为连续值的回归问题提出的,下面仅介绍一下针对分类问题的Relief和ReliefF算法。 2.1 Relief算法 Relief算法最早由Kira提出,最初局限于两类数据的分类问题。Relief算法是一种特征权重算法(Feature weighting algorithms),根据各个特征和类别的相关性赋予特征不同的权重,权重小于某个阈值的特征将被移除。Relief算法中特征和类别的相关性是基于特征对近距离样本的区分能力。算法从训练集D中随机选择一个样本R,然后从和R同类的样本中寻找最近邻样本H,称为Near Hit,从和R不同类的样本中寻找最近邻样本M,称为NearMiss,然后根据以下规则更新每个特征的权重:如果R和Near Hit在某个特征上的距离小于R和Near Miss 上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;反之,如果R和Near Hit 在某个特征的距离大于R和Near Miss上的距离,说明该特征对区分同类和不同类的最近邻起负面作用,则降低该特征的权重。以上过程重复m次,最后得到各特征的平均权重。特征的权重越大,表示该特征的分类能力越强,反之,表示该特征分类能力越弱。Relief算法的运行时间随着样本的抽样次数m和原始特征个数N的增加线性增加,因而运行效率非常高。具体算法如下所示:

第11章 模型的诊断与检验

第11章 模型的诊断与检验 习 题 一、多项选择题 1.计量经济模型的检验一般包括内容有 (ABCD ) A 、经济意义的检验 B 、统计推断的检验 C 、计量经济学的检验 D 、预测检验 E 、对比检验 2.对美国储蓄与收入关系的计量经济模型分成两个时期分别建模,重建时期是1946—1954;重建后时期是1955—1963,模型如下: 重建时期: ;重建后时期: ; 关于上述模型,下列说法正确的是(ABCD ) A. ,时则称为重合回归 B. ,时称为平行回归 C. ,时称为共点回归 D. ,时称为相异回归 E. ,时,表明两个模型没有差异 二、问答题 1.对模型需要进行检验的原因。 2.计量经济学检验的主要内容。 三、计算题 1.利用下表所给数据,估计模型。其中Y=库存和X=销售量, 均以10亿美元计。 (a) 估计上述回归模型(记为原模型)。 (b) 对原模型回归残差进行正态性检验。 (c) 原模型否为自相关模型?若原模型为自相关模型,如何修正该问题? (d) 对原模型进行异方差检验。若原模型为异方差模型,如何修正该问题? 表1 1950-1991年美国制造业的库存与销售(10亿美元) 年份 销售 库存 年份 销售 库存 1950 38596 59822 1971 117023 188991 1951 43356 70242 1972 131227 203227 1952 44840 72377 1973 153881 234406 t t t X Y 121μλλ++=t t t X Y 243μλλ++=3 1λλ=42λλ=42λλ=3 1λλ≠31λλ=42λλ≠3 1λλ≠42λλ≠31λλ≠4 2λλ=t t t X Y μββ++=10

回归分析方法

回归分析方法Newly compiled on November 23, 2020

第八章回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要

占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

线性回归模型检验方法拓展-三大检验

第四章线性回归模型检验方法拓展——三大检验作为统计推断的核心内容,除了估计未知参数以外,对参数的假设检验是实证分析中的一个重要方面。对模型进行各种检验的目的是,改善模型的设定以确保基本假设和估计方法比较适合于数据,同时也是对有关理论有效性的验证。 一、假设检验的基本理论及准则 假设检验的理论依据是“小概率事件原理”,它的一般步骤是 (1)建立两个相对(互相排斥)的假设(零假设和备择假设)。 (2)在零假设条件下,寻求用于检验的统计量及其分布。 (3)得出拒绝或接受零假设的判别规则。 另一方面,对于任何的检验过程,都有可能犯错误,即所谓的第一类错误 P(拒绝H |H0为真)=α 和第二类错误 P(接受H |H0不真)=β 在下图,粉红色部分表示P(拒绝H0|H0为真)=α。黄色部分表示P(接受H0|H0不真)=β。 而犯这两类错误的概率是一种此消彼长的情况,于是如何控制这两个概率,使它们尽可能的都小,就成了寻找优良的检验方法的关键。

下面简要介绍假设检验的有关基本理论。 参数显著性检验的思路是,已知总体的分布(,)F X θ,其中θ是未知参数。总体真实分布完全由未知参数θ的取值所决定。对θ提出某种假设 001000:(:,)H H θθθθθθθθ=≠><或,从总体中抽取一个容量为n 的样本,确定 一个统计量及其分布,决定一个拒绝域W ,使得0()P W θα=,或者对样本观测数据X ,0()P X W θα∈≤。α是显著性水平,即犯第一类错误的概率。 既然犯两类错误的概率不能同时被控制,所以通常的做法是,限制犯第一类错误的概率,使犯第二类错误的概率尽可能的小,即在 0()P X W θα∈≤ 0θ∈Θ 的条件下,使得 ()P X W θ∈,0θ∈Θ-Θ 达到最大,或 1()P X W θ-∈,0θ∈Θ-Θ 达到最小。其中()P X W θ∈表示总体分布为(,)F X θ时,事件W ∈{X }的概率,0 Θ为零假设集合(0Θ只含一个点时成为简单原假设,否则称为复杂原假设)。 0Θ-Θ为备择假设集合,并且0Θ与0Θ-Θ不能相交。由前述可知,当1H 为真时,它被拒绝(亦即H 0不真时,接受H 0)的概率为β,也就是被接受(亦即H 0不真时,拒绝H 0)的概率是1β-(功效),我们把这个接受1H 的概率称为该检验的势。在对未知参数θ作假设检验时,在固定α下,对θ的每一个值,相应地可求得1β-的值,则定义 =1()()P X W θβθ-∈

故障检测与诊断的模型

故障检测与诊断的模型 发表时间:2017-08-01T11:15:27.483Z 来源:《电力设备》2017年第9期作者:陈明庆 [导读] 摘要:快速、准确的故障检测与诊断离不开有效的系统模型。针对故障检测与诊断的特点,文章简要介绍了机理建模(南京理工大学江苏南京 210094) 摘要:快速、准确的故障检测与诊断离不开有效的系统模型。针对故障检测与诊断的特点,文章简要介绍了机理建模、知识建模和数据驱动建模三类传统建模方法,并从不同维度对以上几种建模方法作了比较阐述,同时基于上述各模型的特点,给出了几种混合建模的思路。 关键词:机理;知识;数据驱动;混合模型 0 引言 故障检测与诊断是一门相对独立的技术。我国在1979 年才初步接触故障检测与诊断技术,经过30多年的发展,故障检测与诊断技术已在自动驾驶、人造卫星、航天飞机、汽轮发电机组、大型电网系统等重要核心领域得到广泛应用。 目前,故障检测与诊断的模型大致有基于机理的模型、基于知识工程的模型、基于数据驱动的模型,文章将结合各模型的特点重点探讨故障检测与诊断中混合建模的思路。 1 机理模型 基于机理模型的方法首先需要被诊断系统精确的机理模型,然后利用构造出来的观测器预估系统的输出值,再将估计值与实际值做差产生残差。当系统运行正常时,残差应为零或近似于零;当系统出现故障时,残差量会明显超出允许范围。基于机理模型的方法根据残差产生的原因可细分为参数估计法、状态估计法、等价空间法等。参数估计法根据观测数据来辨识系统的动态参数,依据系统参数与模型参数的差值来判断系统是否出现故障。状态估计法通过对系统的状态进行重构,通过与可测变量做差生成残差序列,并采用统计检验法从残差序列中把故障检测出来,前提是系统可观测或者部分可观测,一般用各种状态观测器或滤波器进行状态估计。等价空间法是通过系统的输入输出真实值来检验系统机理的等价性,通过确定系统的输入输出间的冗余,实现检测和分离故障的效果。 基于解析模型的故障诊断方法充分体现了过程的内部机理,外延性好。但当系统过于复杂时无法获取其内部机理的全部信息,具有一定的局限性。 2知识工程模型 基于知识的方法主要是通过相关的经验建立系统的定性模型来解决复杂的故障诊断问题。基于神经网络、模糊逻辑方法是常用的方法。其中,神经网络因其具有处理非线性和自学习以及并行计算能力的特点,有利于非线性系统的故障诊断。模糊逻辑由于其概念易于理解,表达上更接近人的思维,适用于复杂的故障诊断中。 基于知识的方法不需要精确的定量机理模型,其适用于有相关经验和知识的对象,且诊断的结果易于理解。但是,其最大的缺点是通用性差,必须通过大量的经验知识才能够建立“知识库”;当系统比较复杂时,很容易出现一种未知故障会导致误报和漏报的情况。此时,基于知识的方法将不再适用。 3数据驱动模型 基于数据驱动的方法是通过采集系统的输入输出数据,然后分析数据的各种统计特征,建立过程的数据特征模型。目前,常用的方法有小波分析、神经网络、主成分分析等。小波分析方法是对所采集的信号进行相关处理,处理后的信号中除去由于输入变化引起的奇异点,剩下的奇异点即为系统可能出现的故障点。神经网络能够实现自组织、自学习,同时还具有处理非线性、并行、信息分布存储等能力,这大大提高了故障诊断的效率。主成分分析方法的主要是通过坐标变换将数据从高维空间映射到低维空间,建立正常情况下的主成分模型,当实测信号偏离所建模型时即可判断系统出现异常。 基于数据驱动的方法不必像基于机理模型那样需要过程的模型或先验知识只需对过程数据进行处理与分析,简单方便,实时性好,实用性强。但是数据模型的内插性及外延性较差,无法获取大量的各种状态下的过程数据。 4 混合模型 基于机理与基于数据驱动模型相结合的混合建模技术既能保证模型有明确的物理意义,又能保证模型具有较高的精度[6]。

线性回归 异方差的诊断 检验和修补 SPSS操作

线性回归(异方差的诊断、检验和修补)—S P S S操作首先拟合一般的线性回归模型,绘制残差散点图。步骤和结果如下: 为方便,只做简单的双变量回归模型,以当前工资作为因变量,初始工资作为自变量。(你们自己做的时候可以考虑加入其他的自变量,比如受教育程度等等) Analyze——regression——linear 将当前工资变量拉入dependent框,初始工资进入independent 点击上图中的PLOTS,出现以下对话框: 以标准化残差作为Y轴,标准化预测值作为X轴,点击continue,再点击OK 第一个表格输出的是模型拟合优度2R,为0.775。调整后的拟合优度为0.774. 第二个是方差分析,可以说是模型整体的显着性检验。F统计量为1622.1,P值远小于0.05,故拒绝原假设,认为模型是显着的。 第三个是模型的系数,constant代表常数项,初始工资前的系数为1.909,t检验的统计量为40.276,通过P值,发现拒绝原假设,认为系数显着异于0。 以上是输出的残差对预测值的散点图,发现存在喇叭口形状,暗示着异方差的存在, 故接下来进行诊断,一般需要诊断异方差是由哪个自变量引起的,由于这里我们只选用一个变量作为自变量,故认为异方差由唯一的自变量“初始工资”引起。接下来做加权的最小二乘法,首先计算权数。

Analyze——regression——weight estimation 再点击options, 点击continue,再点击OK,输出如下结果: 由于结果比较长,只贴出一部分,第二栏的值越大越好。所以挑出来的权重变量的次数为2.7。得出最佳的权重侯,即可进行回归。Analyze——regression——linear 继续点击save, 在上面两处打勾,点击continue,点击ok 这是输出结果,和之前同样的分析方法。 接下需要绘制残差对预测值的散点图,首先通过transform里的compute 计算考虑权重后的预测值和残差。 以上两个步骤后即可输出考虑权重后的预测值和残差值 然后点击graph,绘制出的散点图如下:

疾病诊断模型

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D 中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东商学院参赛队员(打印并签名):1. 邓思文 2. 苏境财 3. 吴妙 指导教师或指导教师组负责人(打印并签名):戴宏亮 日期:2012 年8 月18 日赛区评阅编号(由赛区组委会评阅前进行编号)

2010 高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

疾病诊断问题 摘要 随着就医压力增加,在降低误诊率的前提下提高诊断效率是非常重要的,本文利用确诊样本数据建立判别模型,并利用模型筛选出主要元素,对就诊人员进行诊断。 针对问题(1),利用确诊数据建立Fisher判别模型、Logistic 回归模型和BP神经网络模型,运用matlab、spss求解,定出判别标准,并进行显著性检验和回代检验,判别模型的准确率。结果显示Fisher 判别模型的准确率为%,Logistic回归模型和BP神经网络模型准确率均为100%,Logistic 回归模型相对简便。 针对问题(2),选择问题一中检验准确率为100%的Logistic 回归模型和BP神经网络模型对40 名就诊人员进行诊断,结果如下表: 针对问题(3),建立Logistic 逐步回归模型对元素进行筛选,利用spss 软件求解,确定Ca和Fe 是影响人们患这种病的主要因素,因此在建立诊断模型时,其他元素不作为参考指标。 针对问题(4),筛选出主要影响因素后,将Ca和Fe作为指标建立Logistic 回归模型和BP 神经网络模型,发现两个模型的诊断结果一致,如下: 针对问题(5),对比问题二和问题四结果,发现无关元素会影响模型进行诊断的准

特征选择

特征选择是实用机器学习的重要一步,一般数据集都带有太多的特征用于模型构建,如何找出有用特征是值得关注的内容。 1. Feature selection: All-relevant selection with the Boruta package 特征选择两种方法用于分析: (1)最少最优特征选择(minimal-optimal feature selection)识别少量特征集合(理想状况最少)给出尽可能优的分类结果; (2)所有相关特征选择(all-relevant feature selection)识别所有与分类有关的所有特征。 本文使用Boruta包,它使用随机森林分类算法,测量每个特征的重要行(z score)。 2. 使用caret包 使用递归特征消除法,rfe参数 x,预测变量的矩阵或数据框 y,输出结果向量(数值型或因子型) sizes,用于测试的特定子集大小的整型向量 rfeControl,用于指定预测模型和方法的一系列选项 一些列函数可以用于rfeControl$functions,包括:线性回归(lmFuncs),随机森林(rfFuncs),朴素贝叶斯(nbFuncs),bagged trees(treebagFuncs)和可以用于caret的train函数的函数(caretFuncs)。 1)移除冗余特征

移除高度关联的特征。 Caret R包提供findCorrelation函数,分析特征的关联矩阵,移除冗余特征 [python] view plain copy 1.set.seed(7) 2.# load the library 3.library(mlbench) 4.library(caret) 5.# load the data 6.data(PimaIndiansDiabetes) 7.#P calculate correlation matrix 8.correlationMatrix <- cor(PimaIndiansDiabetes[,1:8]) 9.# summarize the correlation matrix 10.p rint(correlationMatrix) 11.# find attributes that are highly corrected (ideally >0.75) 12.h ighlyCorrelated <- findCorrelation(correlationMatrix, cutoff=0.5) 13.# print indexes of highly correlated attributes 14.p rint(highlyCorrelated) 2) 根据重要性进行特征排序 特征重要性可以通过构建模型获取。一些模型,诸如决策树,内建有特征重要性的获取机制。另一些模型,每个特征重要性利用ROC曲线分析获取。 下例加载Pima Indians Diabetes数据集,构建一个Learning Vector Quantization(LVQ)模型。varImp用于获取特征重要性。从图中可以

模型诊断与检验

模型诊断与检验 (1)回归函数的F 检验。 (2)回归参数的t 检验。 (3)检验线性约束条件是否成立的F 检验。 (4)JB 正态性检验 (5)邹突变点检验(Chow Breakpoint Tests ) (6)回归系数的稳定性检验(Chow 检验) (7)平方的残差值序列的Q 检验 (8)Ramsey RESET 检验(Ramsey 模型设定误差检验) (9)格兰杰非因果性检验 (10)赤池信息准则、施瓦茨准则(贝叶斯信息准则)和汉南准则 (11)递归残差检验 (1)回归函数的F 检验。 多元回归模型, y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t , H 0:β1= β2 = … = βk -1 = 0;H 1:βj 不全为零 原假设成立条件下,统计量 F = ) /() 1/(k T SSE k SSR --~ F (k -1,T -k ) (1) 其中SSR 是回归平方和,SSE 是残差平方和。k 表示被估参数个数。 注意:SSR 旧指回归平方和(r egression s um of s quares ),现指残差平方和(s um of s quared r esiduals )。SSE 旧指残差平方和(e rror s um of s quares (sum of squared errors)),现指回归平方和(e xplained s um of s quares )。 检验规则是,若 F ≤ F α (k -1,T -k ),接受H 0; 若 F > F α (k -1,T -k ) , 拒绝H 0。 (2)回归参数的t 检验。 对于多元回归模型, y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t , 如果F 检验的结论是接受原假设,则检验止。如果F 检验的结论是拒绝原假设,则进一步作t 检验。 H 0:βj = 0;H 1:βj ≠ 0,(j = 1, 2, …, k -1) 原假设成立条件下,统计量 t = )?(?j j s ββ~ t (T -k ) (2) 判别规则:若∣ t ∣≤ t α(T -k ),接受H 0; 若∣ t ∣> t α(T -k ),拒绝H 0。 (3)检验线性约束条件是否成立的F 检验。 约束条件的F 检验可以用来检验回归参数的一个或多个线性约束条件,如H 0:β1 = 0,β2 = 0,α1 +β0 + β1 =1,β1 /β2 =0.8等。

常见的特征选择或特征降维方法

URL:https://www.360docs.net/doc/f51119083.html,/14072.html 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更强,减少过拟合 2.增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。 在许多机器学习的书里,很难找到关于特征选择的内容,因为特征选择要解决的问题往往被视为机器学习的一种副作用,一般不会单独拿出来讨论。本文将介绍几种常用的特征选择方法,它们各自的优缺点和问题。 1 去掉取值变化小的特征 Removing features with low variance 这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。 2 单变量特征选择 Univariate feature selection

时间序列中回归模型的诊断检验

时间序列中回归模型的诊断检验 【摘要】:时间序列是指被观测到的依时间次序排列的数据序列。从经济、金融到工程技术,从天文、地理到气象,从医学到生物,几乎在各个领域中都涉及到时间序列。对时间序列数据进行统计分析及推断,被称为时间序列分析。近几十年来,金融时间序列分析得到了人们广泛的关注。Engle在1982年对英国的通货膨胀率数据进行分析时提出一种统计建模思想:时间序列自回归模型误差的条件方差不一定是常数,可以随时间的变化而不同。基于这个思想,Engle首次提出了条件异方差模型,即人们熟知的ARCH(p)模型。由于Engle出色的开创性工作,金融时间序列条件异方差模型很快在学术界和实际应用中得到了极大的关注。许多专家学者根据实际中经济、金融数据的各种特征,提出了各种各样的条件异方差模型,并研究各种参数或非参数估计方法。但是,提出的模型是否合理?或者说,观测数据是否真的来自这一模型?人们往往不太关心。这个问题实际上是所谓的模型检验问题。对于著名的Box-Jenkins时间序列建模三步曲:模型的建立、模型的参数估计和模型的检验,理论上他们具有同等重要的地位。但是,正如专著Li所述,人们关注更多的是前面两步工作,而第三步(即模型的检验)常常得不到应有的重视。对于近二十年来受到广泛关注的条件异方差模型,模型检验问题同样没有得到应有的关注,相关的研究寥寥无几。对传统的回归模型,文献中主要有两大类模型检验方法:局部光滑方法和整体光滑方法。局部光滑方法涉及用非参数

估计方法估计其均值函数从而有可能导致维数问题。为了避免维数问题,学者们提出了各种各样的整体光滑方法用于模型检验,构造的检验不需要非参数光滑,但是对高频备择不敏感。上述两种方法各有优缺点。另外,这两种方法基本上都是针对因变量为一元情形。因此,本文提出一些新的方法来处理时间序列自回归模型的模型检验问题。需要特别指出的是,本文考虑的时间序列包括一元和多元情形,回归函数形式可以非常一般,自回归变量可以有多个后置项。本文首先研究了一元时间序列一般形式的自回归模型(包括条件异方差模型的均值模型和方差模型)的模型检验问题。通过模型的残差或标准化的残差进行加权平均,我们构造了一个得分型检验统计量。该检验具有许多优良性质,比如:在零假设模型下是渐近卡方分布的,处理起来简单;对备择假设敏感,能检测到以参数的速度收敛到原假设的备择假设模型;通过权函数的选择可以构造功效高的检验。在方向备择情形,我们研究得到了最优(功效最高)的得分型检验。当备择不是沿着某一方向而是多个可能的方向趋于原假设时,我们构造了极大极小(maximin)检验,该检验是渐近分布自由的,并具有许多优良性质。另外,对备择完全未知(即完全饱和备择)情形,我们也基于得分型检验的思想提出了一个构造万能检验(omnibustest)的可行性方案。需要指出的是,关于时间序列回归模型的诊断检验问题,本文是第一篇理论上研究检验的功效性质的文章。另外,在进行功效研究的过程中,我们得到了当模型被错误指定时参数估计(拟极大似然估计)的渐近性质。注意到得分型检验在构造过程中涉及渐近方差的插入估计

相关文档
最新文档