差分方程模型

差分方程模型
差分方程模型

第九章 差分方程模型

1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个

离散变量取值所满足的平衡关系,从而建立差分方程。

差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。

第一节 差分方程的基本知识

一、 基本概念 1、 差分算子

设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。

而1--=?n n n x x x 为n x 在n 处的向后差分。以后我们都是指向前差分。可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2

)(?=??

称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

))((1n k n k x x -??=? 2、 差分算子 、不变算子、平移算子

记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。

则有:n n n n x I E Ix Ex x )(-=-=?

I E -=?∴ 由上述关系可得:

i n k

i i

k i k n i

k

i i

k i

k n k

n k

x C x E C x I E x +=-=-∑∑-=-=

-=?0

)1()

1()( (1)

这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。 反之,

由 n n n x x x -=?+1 得 n n n x x x ?+=+1:

n n n n x x x x +-=?++1222,得:n n n n x x x x 2122?++-=++,

这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。

…….. ,)

1(1

k n i n k i i

k i

k n k

x x C x ++-=-+-=

?∑得:

n k i n k i i

k i

k k n x x C x ?+--=+-=-+∑1

)

1( (2)

可以看出:

k n x +可以由n k n n x x x ??,...,,的线性组合表示出来

3、 差分方程

由n x 以及它的差分所构成的方程

),...,,,(1n k n n n k x x x n f x -??=? (3)

称之为k 阶差分方程。

由(1)式可知(3)式可化为

),...,,,(11-+++=k n n n k n x x x n F x (4) 故(4)也称为k 阶差分方程(反映的是未知数列n x 任意一项与其前,前面k 项之间的关系)。 由(1)和(2)可知,(3)和(4)是等价的。我们经常用的差分方程的形式是(4)式。

4、 差分方程的解与有关概念

(1) 如果n x 使k 阶差分方程(4)对所有的n 成立,则称n x 为方程(4)的解。

(2) 如果-=x x n (-

x 为常数)是(4)的解,即 ),...,,(-

--=x x n F x

则称-

=x x n 为(4)的平衡解或叫平衡点。平衡解可能 不只一个。平衡解的基本意义是:设n x 是(4)的解,考虑n x 的变化性态,其中之一是极限状况,如果x x n n =∞

→lim ,则方程(4)两边

取极限(x 就存在在这里面),应当有 ),...,,(-

--=x

x n F x (3) 如果(4)的解n x 使得-

-x x n 既不是最终正的,也不是最终负的,则称n x 为关 于平衡点-

x 是振动解。

(4) 如果令:-

-=x x y n n ,则方程(4)会变成

),...,,(1-++=k n n k n y y n G y (5) 则 0=y 成为(5)的平衡点。

(5) 如果(5)的所有解是关于0=y 振动的,则称k 阶差分方程 (5)是振动方程。 如果(5)的所有解是关于0=y 非振动的,则称k 阶差分方程(5)是非振动方程。

(6) 如果(5)有解n y ,使得对任意大的y N 有 0>≥n N n y Sup y

则称n y 为正则解。(即不会从某项后全为零)

(7) 如果方程(4)的解n x 使得-

→=x x Lim n n ,则称n x 为稳定解。

5、

差分算子的若干性质

(1)n n n n y x y x ?+?=+?βαβα)(.)(

(2)

)(1)(

1n n n n n n n n y x x y y y y x ?-?=?+

(3)n n n n n n y x x y y x ?+?=?+1)( (4)

∑∑==+++?+-=?b

a

k k k a b

a

k a b b k k y x y x y x x y

111

(5)∑=?=

+?==n

i i i

n n

n

n x C x I x E x 0

000)(

6、 Z 变换

定义:对于数列n x ,定义复数级数

∑∞

=-=

=0

)()(k k k

n z x

x Z z X (6)

这是关于z 洛朗级数。它的收敛域是:21R z R <<,

其中2R 可以为∞,1R 可以为0。 称)(n x Z 为n x 的z -变换。

由复变函数展开成洛朗级数的唯一性可知:z 变换是一一对应的,从而有逆变换,记为: ))((1z X Z x n -= (7)

z 变换是研究数列的有效工具 。 z 变换的若干重要性质:

(1)线性性 )()()(n n n n y Z x Z y x Z βαβα+=+

(2)平移性质 ])([)(1

∑-=-+-=N k k k

N

N n z x

z X z x Z

z 变换举例:

(1)???≠=∞=0

,00,)(n n n δ, 则∑∞

==--=?==001)1()())((k k k

k z z k n Z δδ

(2)???<≥=0

,00,1)(k k n u ,则∑∑∞=∞

=-->-===00,1,1)())((k k k k

z z z z z k u n u Z

(3)设,)(n

a n f =则∑∞

=->>-==0

,0,,)(k k k n a a z a z z z a a Z

(4)设,!1)(n n f =则0,!

1

)!1(01

>==∑∞

=-z e z k n Z k z k

第二节

差分方程常用解法与性质分析

1、 常系数线性差分方程的解

方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。

如果(9)有形如n n x λ=的解,带入方程中可得:

0...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。

基本结果如下:

(1) 若(10)有k 个不同的实根,则(9)有通解: n

k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n

m m n

c n c c λ)...(1

21--

-

-

+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=,α

β?βαρarctan ,2

2

=+=,则(9)的通解中有构成项:

n c n c n

n

?ρ?ρsin cos 21-

-

+

(4) 若有m 重复根:βαλi ±=,φ

ρλi e ±=,则(9)的通项中有构成项:

n n c n c c n n

c n c c n m m m m n

m m ?ρ?ρsin )...(cos )...(12211

21--

-++--

-

+++++++

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-

n x 如果能得到方程(8)的一个特解:*

n x ,则(8)必有通解:

=n x -

n x +*

n x (11)

(8) 的特解可通过待定系数法来确定。

例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如

)(n q b m n 形式的特解,

其中)(n q m 为m 次多项式;如果b 是r 重根时,可设特解:r

n n b )(n q m ,将其代入(8)中确定出系数即可。

2、 差分方程的z 变换解法

对差分方程两边关于n x 取Z 变换,利用n x 的Z 变换F (z )来表示出k n x +的Z

变换,然后通过解代数方程求出F (z ),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的n x 例1

设差分方程1,0,0231012===++++x x x x x n n n ,求n x

解:解法1:特征方程为0232

=++λλ,有根:2,121-=-=λλ 故:n n n c c x )2()1(21-+-=为方程的解。 由条件1,010==x x 得:n n n x )2()1(---=

解法2:设F (z )=Z(n x ),方程两边取变换可得:

0)(2))((3)1

.)((0102=+-+--z F x z F z z

x x z F z

由条件1,010==x x 得2

3)(2++=z z z

z F

由F (z ) 在2>z 中解析,有

∑∑∑∞

=∞=-∞

=--=---=+

-+=

+-+=000)21()1(2)1(1)1(211

111)2

1

11()(k k k k k k k k

k k

z z z z

z z z z z F 所以,n n n x )2()1(---=

3、 二阶线性差分方程组

设=)(n z )(

n

y x n

,)(

d c b

a A =,形成向量方程组 )()1(n Az n z =+ (12)

则 )1()1(z A n z n

=+ (13)

(13)即为(12)的解。

为了具体求出解(13),需要求出n

A ,这可以用高等代数的方法计算。常用的方法有: (1)如果A 为正规矩阵,则A 必可相似于对角矩阵,对角线上的元素就是A 的特征值,相似变换矩阵由A 的特征向量构成:

)1()()1(,,111z p p n z p p A p p A n n n Λ=+∴Λ=Λ=---。

(2)将A 分解成ηξξη,,/,

=A 为列向量,则有

A A n n n .)(.......).(1//.//-===ηξηξηξηξηξ 从而,)1(.)()1()1(1/Az z A n z n n -==+ηξ

(3) 或者将A 相似于约旦标准形的形式,通过讨论A 的特征值的性态,找出n

A 的内

在构造规律,进而分析解)(n z 的变化规律,获得它的基本性质。

4、 关于差分方程稳定性的几个结果

(1)k 阶常系数线性差分方程(8)的解稳定的充分必要条件是它对应的特征方程(10)

所有的 特征根k i i ...2,1,=λ满足

1

(2)一阶非线性差分方程

)(1n n x f x =+ (14)

(14)的平衡点-

x 由方程)(-

-=x f x 决定, 将)(n x f 在点-

x 处展开为泰勒形式:

)())(()(/

-

--+-=x f x x x f x f n n (15) 故有:1)(/

<-x f 时,(14)的解-

x 是稳定的,

1)(/>-

x f 时,方程(14)的平衡点-

x 是不稳定的。

第三节 差分方程建模举例

差分方程建模方法的思想与与一般数学建模的思想是一致的,也需要经历背景分析、确定 目标、预想结果、引入必要的数值表示(变量、常量、函数、积分、导数、差分、取最等)概念和记号、几何形式(事物形状、过程轨迹、坐标系统等),也就是说要把事物的性态、结构、过程、成分等用数学概念、原理、方法来表现、分析、求解。当然,由于差分方程的特殊性,首先应当把系统或过程进行特别分解,形成表现整个系统的各个部分的离散取值形式,或形成变化运动过程的时间或距离的分化而得到离散变量。然后通过内在的机理分析,找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程。另外,有时有可能 通过多个离散变量的关系得到我们关心的变量的关系,这实际上建立的是离散向量方程,它有着非常重要的意义。有时还需要找出决定变量的初始条件。有时还需要将问题适当分成几个子部分,分别求解。

模型1 种群生态学中的虫口模型:

在种群生态学中,考虑像蚕、蝉这种类型的昆虫数目的变化 ,他的变化规律是:每年夏季 这种昆虫成虫产卵后全部死亡,第二年春天每个虫卵孵化成一个虫子。建立数学模型来表现虫子数目的变化规律。

模型假设与模型建立:假设第n 年的虫口数目为n P ,每年一个成虫平均产卵c 个(这个假设有点粗糙,应当考虑更具体的产卵分布状况),则有:n n cP P =+1,这是一种简单模型; 如果进一步分析,由于成虫之间会有争斗以及传染病、天敌等的威胁,第n+1年的成虫数 会减少,如果考虑减少的主要原因是虫子之间的两两争斗,由于虫子配对数为

)1(21-n n p p 2

2

1n p ≈,

故减少数应当与它成正比,从而有:

2

1n n n bP cP P -=+

这个模型可化成:)1(1n n n x x x -=+λ,这是一阶非线性差分方程。这个模型的解的稳定性可以用相应一阶差分方程的判断方法,即(14)式来获得。

如果还考虑其它的影响成虫孵卵及成活的因素的定量关系,这个模型在此基础上仍可进一步改进,更加符合实际情形。这种关系一方面可以通过机理分析,确定减少量与影响因素的定量关系,另一方面也可以用统计的方法来线性估计影响程度。或者还可以用影响曲线的方法来直观表现影响的比例关系、周期关系、增量关系等等。

模型2 具周期性的运动过程的差分方程模型

建立差分方程描述振动台上的乒乓球垂直运动的方程,即把运动过程中的某些离散变化取值的变量的变化规律表现出来。

假设:乒乓球与振动台之间的振动恢复系数为1,≤αα。振动台台面的上下位移是t ~

sin ωβ-,乒乓球初始时刻在离台面垂直距离为H 处为自由落体运动H <<β。 又假设j t 为第j 次碰撞时刻,第 j 次碰撞前的速度为)(j t u -,碰撞后的速度为)(j t v 。假设)()(1j j t v t u =+。振动台台面的运动速度为t t dt d

t ~

~

cos )sin ()(ωβωβω-=-=

;又记g

v v t ~

~

2,ωωφ==,则有:g

t v t t j j j )(211++=

-,∴g

v t t j

j j ~

1~

2)(ωω=

-+,

∴j j j v =-+φφ1 (3.1)

另外,由碰撞规律分析可知:

))(()(1111+++++-=-j j j j t u t v ωαω 该式经简化处理后可得:

)cos(1j j j j v v v +-=+φγα (3.2) 由(1)和(2)式联立可得二阶差分非线性方程组

j j j v =-+φφ1

)cos(1j j j j v v v +-=+φγα

模型3 蛛网模型

(1) 经济背景与问题:在自 由市场经济中,有些商品的生产、销售呈现明显的周期性。农 业产品往往如此,在工业生产中,许多商品的生产销售是有周期性的,表现在:商品的投资、销售价格、产量、销售量在一定时期内是稳定的,因而整个某个较长的时期内这些经济数据表现为离散变量的形式。在这些因素中,我们更关心的是商品的销售价格与生产产量这两个指标,它们是整个经营过程中的核心因素,要想搞好经营,取得良好的经济效益,就必须把握好这两

个因素的规律,作好计划。试分析市场经济中经营者根据市场经济的规律,如何建立数学模型来表现和分析市场趋势的。 (2) 模型假设与模型建立

将市场演变模式划分为若干段,用自然数n 来表示; 设第n 个时段商品的数量为n x ,价格为n y ,n=1,2….; 由于价格与产量紧密相关,因此可以用一个确定的关系来表现:即设有

)(n n x f y = (3. 3)

这就是需求函数,f 是单调减少的对应关系;

又假设下一期的产量1+n x 是决策者根据这期的价格决定的,即:设)(1n n y h x =+,h 是单调增加的对应关系,

从而,有关系:)(1+=n n x g y (3.4) g 也是单调增加的对应关系.

因此可以建立差分方程:)]([1n n x f h x =+ (3.5) )]([1n n y h f y =+ (3.6) 这就是两个差分方程。属一阶非线性差分方程。

(3) 模型的几何表现与分析。

为了表现出两个变量n x 和n y 的变化过程,我们可以借助已有的函数f 和g ,通过对应 关系的几何表现把点列),(n n y x ,和),(1n n y x +在坐标系中描绘出来,进而分析它们的变化规律、趋势、找稳定点等等。其中)(,(),(),(,(),(111+++==n n n n n n n n x g x y x x f x y x

将点列.).........,(),,(),,(),,(344333122111y x p y x p y x p y x p 连接起来,就会形成象蛛网一 样的折线,这个图形被称作为蛛网模型。可以设想,这种形式可作为差分方程分析与求解的重要手段,它的主要数学技术是:图形的描绘,曲线上点列的描绘(设法由前一个点的一个坐标分量来算出下一个点的一个坐标分量,并确认它在哪条曲线上,就可以画出这个点;有时或者可由前两个点决定下一个点的一个坐标分量),也就是通过直观、几何形式,把我们关心的变量的所有可能取值表示出来。这里采用的方法是,引入两条曲线,因为在曲线上如果知道了一个分量,就可以作出另一个分量。可见几何形式表示有关系的变量是既方便又有意义的。

易见:如果点列

,(),,(),,(),,(344333122111y x p y x p y x p y x p 最后收敛于点0p ,则,0x x n →0y y n →,是两条曲线的交点,从而稳定的。这也表明,态。要想进一步发展就必须打破这种平衡,方法上有所改进。

几何上的进一步分析表明,如果曲线

),(x f y =和)(x g y =在交点0p 对值记为:g f k k ,,则当g f k k <时,0p 当 g f k k > 时,0p 是不稳定的。

(4)

模型的差分方程分析

设点),(000y x p 满足:)(),(0000y h x x f y ==,

在0p 点附近取函数)(),(x h x f 的一阶近似:

)

8.3.........(....................,.........0),()

7.3...(..............................,.........0),(00100>-+=>--=+ββααy y x x x x y y n n n n

合并两式可得:)9.3.........(,.........2,1,)1(01=++-=+n x x x n n αβαβ

这是关于n x 的一阶线性差分方程。当然它是原来方程的近似模型。作为数学模型,

本来就是客观实际问题的近似模拟,现在为了处理方便,适当取用其近似形式是合理的。 其中,α-为f 在0p 点处的切线斜率;β

1

为g(x)在0p 点处切线的斜率。

方程(3.9)递推可得:

)10.3...(....................])(1[)(011x x x n n n αβαβ--+-=+ 所以,0p 点稳定的充要条件是:,1<αβ即:β

α1

<

这个结论与蛛网模型的分析结果是一致的。 (4) 模型推广

如果决策时考虑到1+n x 与1,+n n y y 都有关系,则可假设

)11.3.....(..............................) (2)

(

1

1+++=n n n y y g x 这时数学模型为:)(n n x f y =

).2(1

1+++=n n

n y y g x 对此模型仍用线性近似关系可得:首先求出平衡点,即解方程 )(00x f y = )().2

(

00

00y g y y g x =+= 则有:

)

2(2

)

2(2

)(01010101y y y x x y y y y g x n n n n n n -+=

-∴-++

=++-+β

β

再结合(3.7)可得:

)2)()((2

00100001y x x y x x y x x n n n ---+--=

--+ααβ

0111)1(2x x x x n n n αβαβαβ+=++∴--+ 即:

)12.3.........(....................)1(2012x x x x n n n αβαβαβ+=++++

特征方程为: 022

=++αβαβλλ

特征根为:4

8)(22,1αβαβαβ

λ--

+-=

所以:8>αβ时,24

2-<-<

αβ

λ,此时解不稳定。 8<αβ时,

2

2,1αβ

λ=

,则2<αβ时,12,1<λ

从而解是稳定的。

这个条件比原来的模型解的稳定性条件放宽了。说明决策水 平提高了。 进一步来看,对这个模型还可以进行进一步的分析:考虑下一年的产量时,还可以近三年的价格来决定,例如:设

)3

(

2

11--+++=n n n n y y y h x ,;另外还可以考虑引

入投资额n z ,并建立有关的离散方程关系。

模型4 人口的控制与预测模型

背景分析:人口数量的发展变化规律及特性可以用偏微分方程的理论形式来表现和模拟。但在实际应用中不是很方便,需要建立离散化的模型,以便于分析、应用。人口数量的变化取决于诸多因素,比如:女性生育率、死亡率、性别比、人口基数等。试建立离散数学模型来表现人口数量的变化规律。

模型假设:以年为时间单位记录人口数量,年龄取周岁。 (1) 设这个地区最大年龄为m 岁

(2) 第t 年为i 岁的人数为,......2,1,0;....2,1),(==t m i t x i ,

这个数量指标是整个问题分析、表现的目标和载体,我们的目的就是找出这些变量的变化规律、内在的普遍联系。

(3) 设第t 年为i 岁的人口平均死亡率为)(t d i ,即这一年中i 岁人口中死亡数与基数之

比:)

()

1()()(1t x t x t x t d i i i i +-=

+

即: ,...2,1,0;1,...,2,),())(1()1(1=-=-=++t m i i t x t d t x i i i

(4) 设第t 年i 岁女性的生育率:即每位女性平均生育婴儿 数为)(t b i ,],[21i i 为生

育区间。)(t k i 为第t 年i 岁人口的女性比(占全部i 岁人口数)

由此可知:第t 年出生的人数为: ∑==

2

1

)()()()(i i i i

i

i

t x t k t b t f

(5) 记第t 年婴儿的死亡率为)(00t d ,则)())(1()(000t f t d t x -= (6) 设)

()

()

()

()(2

1

t t b t b t b t h i i i i i i i β=

=

∑=,它表示i 岁女性总生育率, 则)()()(t h t t b i i β=,如果假设t 年后女性出生率保持不变,则

)(...)()()(2

1

1

1t b t b t b t i i i +++=+β

)(...)1()(121211i i t b t b t b i i i -+++++=+

可见,)(t β表示每位妇女一生中平均生育的婴儿数,称之为总和生育率。它反映了人口变化的基本因素。

模型建立:根据上面的假设

∑∑∑====--=--=--=-=+2

121

2

1

)

()()()()()()())(1))((1()

()()())

(1))((1()

())(1))((1()())(1()1(/

000000000001i i i i i i i i i i i i i i i

i

i

t x t b t t x t k t h t t d t d t x t k t b t d t d t f t d t d t x t d t x ββ

)())(1()1(122t x t d t x -=+

……………………………….. )())(1()1(11t x t d t x m m m ---=+

为了全面系统地反映一个时期内人口数量的状况, 令 /21)](),...,(),([)(t x t x t x t x m =

n

m m t d t d t d t A ?-?????

???????????---=0)(1...00.......................00...0)(1000...00)(100 (000)

)(121

n

m i i t b t b t B i i ?????????

?????

???=0...

0 (000)

0...0...0000...0 (000)

0...0...0000)...

()...(00)( 则此向量)(t x 满足方程:

)()()()()()1(t x t B t t x t A t x β+=+

即:)13.3....(....................).........

())()()(()1(t x t B t t A t x β+=+ 这是一阶差分方程

其中)(t β是可控变量,)(t x 是状态变量,并且关于)(t β和)(t x 都是线性的,故称其为双线性方程。

模型分析:

在稳定的社会环境下,死亡率 、生育模式、女性比例、婴儿存活率是可以假设为不变的,故B t B A t A ==)(,)(为常数矩阵。从而,

)14.3......(..............................).........

()).(()1(t x B t A t x β+=+

只要总生育率)(t β确定下来,则人口的变化规律就可以确定下来。为了更全面地反映人口的有关信息,下面再引入一些重要的指标:

(1) 人口总数:∑==

m

i i t x t N 0

)()(

(2) 人口平均年龄:∑==m

i i t x i t N t R 0

)(.)(1)(

(3) 平均寿命:∑∑==-=

m j j

i i

t d t S 0

)](exp[)(,这里假定从第t 年分析,如果以后每年的死

亡率是不变的,即:...)1()(1=+=+t d t d i i 则

∑=j

i i t d 0

)(表示 t 年出生的人活到第j+1年期间的死亡率,这也表明其寿命为j

岁,j=1,2…m.而∑=-

j

i i t d 0

))(exp(表示寿命。

通过求出)(t x 的变化规律,就可以对上面引入的3个指标进行更具体的分析,从而对人口的分布状况、变化趋势、总体特征等有科学的认识和把握。具体求解分析这里不再进行。

模型5 线性时间离散弥漫网络模型

引言:一个国家在一定时间段内的财富依赖于许多因素,不同国家的相互交流是重要的方面。建立数学模型,表现国家财富的变化与国家间财富的流动之间的关系。 模型假设:设有n 个国家,用)

(t i

u 表示在时期{,...}2,1,0∈t 的财富。假设只考虑这些国家

之间仅仅两两国家之间有交流关系。并且假设财富流动的系数是γ。

模型的建立:国家间的财富关系应当满足

)()()

(1)

()(1)

(2

)

(1

)

1(1t t n

t t t t u u u u u u -+-=-+γγ

)

()()

(2)

(3

)

(2)(1)

(2

)

1(2

t t t t t t u u u u u u -+-=-+γγ

…………..

)()()

(1)

()(1)

(2

)

(1

)

1(1

t n t n

t n t n t n t n u u u u u u ----+--+-=-γγ

)()()

()

(1)

()(1)

()

1(t n t n t n t t n

t n

u u u u u u -+-=--+γγ

用矩阵形式表示:

令/)

()

(2)

(1)(),......,,(t n t t t u u u u =表示时期t 各个国家的财富状态;

令?

?

?

??

?

?

?

?

????

??

???

?????

???----------=210.0001121..00001.2.....

................00..121000..012110..0012.n A

则有:)10.3......(..............................)()()1(t n t u A I u γ-=+

记n n A I A γ-=~

,则 )11.3....(..........)0(~)

(u A u t

n t =

模型计算与分析:

计算可知n A 的特征值为;,1,sin 42

)

(n k n

k k ≤≤=π

λ

~

n A 的特征值为 n

k k π

γγλ2

)

(sin 4`11-=- 对应的特征向量为 n k v v v k n k k ≤≤=1......),......,(/)

()(1)

(

其中

)2sin 2(cos

1)

(n

km n km n

v k m

π

π+=

为讨论方便起见,引入如下记号: /)()

()1,...,1,1(1,0n

v n n =

,)1,...1,1(1

,/)0()()

0(n

v n =

=λλ

则有:n 为偶数时:

,4.........0)

2

()2

()12

()12

()

()

()

()

0(==<<=<<=<<==-+--n n n n n

k n k n λλ

λλλ

λ

λ

λ

n 为奇数时: 4......0)2

1

(

)2

1

(

)

()

()

()

0(<=<<=<<==+--n n k n k n λ

λλλλλ

记:k V 为由)

()(,k n k v v -张成的子空间,

则:∑-=><=1

)()0()()

0(,n k k k v u v u

∑∑∑∑=∈-=-=><-=><-=

><==]2

[0)0()(1

)

()0()()()

(~)

0(1

)

()

0(~)

(,)1(,)1(,n k V t k n o k k k t k k t

n n k k t

n t k

u v u v v A u

v u

A u

ωω

ωγλγλ

由此式进一步分析可以获得:当∞→t 时,)

(t n u 的渐进变化状态规律(略)。

模型 6 金融问题的差分方程模型

1、 设现有一笔p 万元的商业贷款,如果贷款期是n 年,年利率是 1r ,今采用月还款的方

式逐月偿还,建立数学模型计算每月的还款数是多少?

模型分析:在整个还款过程中,每月还款数是固定的,而待还款数是变化的,找出这个变量的变化规律是解决问题的关键。

模型假设:设贷款后第 k 个月后的欠款数是k A 元,月还款为m 元,月贷款利息

为12

1

r r =

。 模型建立:关于离散变量k A ,考虑差分关系有: m A rA A k k k +=++1,

即:m A r A k k -+=+)1(1 (3.15) 这里已知有:0,100000240==A A

模型求解:令

1--=k k k A A B ,则111)1()1(--+=+=k k k r B r B B k k B B B A A ++++=∴ (210)

])1(...)1(1[110-++++++=k r r B A

,...2,1,0],1)1[()1(0=-+-

+=k r r

m

r A k k

这就是差分方程(3.15)的解。把已知数据r A ,0代入0

12=n A 中,可以求出月还款额m 。例如: 2,0052125.0,100000===n r A 时,可以求出:356.444=m 元。 模型的进一步拓广分析:拓广分析包括条件的改变、目标的改变、某些特殊结果等。如果令A A k =,则r

m

A =

,并且 当r m A =0时,总有r m A k =,即表明:每月只还上了利息。只有当r

m

A <0时,

欠款余额逐步减少,并最终还上贷款。

2、 养老保险模型

问题:养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案供以选择,分析保险品种的实际投资价值。也就是说,分析如果已知所交保费和保险

收入,按年或按月计算实际的利率是多少?也就是说,保险公司需要用你的保费实际获得至少多少利润才能保证兑现你的保险收益?

模型举例分析:假设每月交费200元至60岁开始领取养老金,男子若25岁起投保,届时养老金每月2282元;如35岁起保,届时月养老金1056元;试求出保险公司为了兑现保险责任,每月至少应有多少投资收益率?这也就是投保人的实际收益率。

模型假设:这应当是一个过程分析模型问题。过程的结果在条件一定时是确定的。整个过程可以按月进行划分,因为交费是按月进行的。假设投保人到第k 月止所交保费及收益的累计总额为k F ,每月收益率为r ,用q p 、分别表示60岁之前和之后每月交费数和领取数,N 表示停交保险费的月份,M 表示停领养老金的月份。 模型建立:在整个过程中,离散变量k F 的变化规律满足:

??

?=-+=-=++=++M

N k q r F F N k p r F F k k k k ,...,,)1(1

,...,1,0,)1(11, 在这里k F 实际上表示从保险人开始交纳保险费以后,保险人帐户上的资金数值,我们关心的是,在第M 个月时,M F 能否为非负数?如果为正,则表明保险公

司获得收益;如为负数,则表明保险公司出现亏损。当为零时,表明保险公司最后一无所有,表明所有的收益全归保险人,把它作为保险人的实际收益。从这个分析来看,引入变量k F ,很好地刻画了整个过程中资金的变化关系,特别是引入收益率r ,虽然它不是我们所求的保险人的收益率,但是从问题系统环境中来看,必然要考虑引入另一对象:保险公司的经营效益,以此作为整个过程中各种量变化的表现基础。 模型计算:以25岁起保为例。假设男性平均寿命为75岁,则有 600,420;2282,20====M N q p ,初始值为00=F ,我们可以得到:

M

N k r r

q

r F F N k r r

p

r F F N k N k N k k k k ,...,1],1)1[()1(`,..,2,1,0],1)1[()1(0+=-+-+==-++

+=--

在上面两式中,分别取,N k =和M k =并利用0=M F 可以求出:

0)

1)(1()1(=+++-+-p q r p q r N

M M 利用数学软件或利用牛顿法通过变成求出方程的跟为:

00485.0=r

同样方法可以求出:35岁和45岁起保所获得的月利率分别为

00413.0,00461

.0==r r

练习题:

1、金融公司支付基金的流动模型:某金融机构设立一笔总额为S

/540 万的基金,分开放置位于A 城和B 城的两个公司,基金在平时可以使用,但每周末结算时必须确保总额仍为S

/540 万。经过一段时间运行,每过一周,A 城公司有10%的基金流动到B 城公司,而B 城公司则有12%

的基金流动到 A 城公司。开始时,A 城公司基金额为S

/260万,B 城公司为S /280万。试建立差分方程模型分析:两公司的基金数额变化趋势如何?进一步要求,如果金融专家认为每个

公司的支付基金不能少于S

/220万,那么是否需要在什么时间将基金做专门调动来避免这种情况?

2、某保险公司推出与养老结合的人寿保险计划,其中介绍的例子为:如果40岁的男性投保人每年交保险费1540元,交费期20岁至60岁,则在他生存期间,45岁时(投保满5年)可获返还补贴4000元,50岁时(投保满10年)可获返还补贴5000元,其后每隔5年可获增幅为1000元的返还补贴。另外,在投保人去世或残废时,其受益人可获保险金20000元 。试建立差分方程模型分析:若该投保人的寿命为76岁,其交保险费所获得的实际年利率是多少?而寿命若为74岁时,实际年利率又是多少?

3、Leslie 种群年龄结构的差分方程模型

已知一种昆虫每两周产卵一次,六周以后死亡(给除了变化过程的基本规律)。孵化后的幼虫2周后成熟,平均产卵100个,四周龄的成虫平均产卵150个。假设每个卵发育成2周龄成虫的概率为0.09,(称为成活率),2周龄成虫发育成4周龄成虫的概率为0.2。

(1) 假设开始时,0~2,2~4,4~6周龄的昆虫数目相同,计算2周、4周、6周后各种

周龄的昆虫数目;

(2) 讨论这种昆虫各种周龄的昆虫数目的演变趋势:各周龄的昆虫比例是否有一个稳

定值?昆虫是无限地增长还是趋于灭亡?

(3) 假设使用了除虫剂,已知使用了除虫剂后各周龄的成活率减半,问这种除虫剂是

否有效?

4、按年龄分组的种群增长一般模型及灵敏性分析

对在问题3中的模型做进一步的拓广。对于某种群建立数学模型分析其数量变化规律,。这里分析的对象是特定的种群,变化过程可以按相等间隔的时段末来记录。为了精确表现种群的变化,自然需要将种群进行分类,不妨按与时间段长度相同的年龄进行分组。为了简化模型,对每一时段的种群取相同的最大年龄,这里相当于认为很大年龄的那部分视作为相同年龄,在下一个时段全部消失。考虑每一时段中不同年龄组种群数量构成的向量、不同年龄组的繁殖率i b 和存活率i s ,(1)建立差分方程分析种群的变化规律;(2)进行种群数量的稳定性分析,即时间充分长以后种群年龄结构及数量变化;(3)对i b 和i s 关于种群的增减进行灵敏性分析(提示:考虑由i b 和i s 所构作的新参数11121......-+++=n n s s b s b b R ,解释这个参数的实际意义,并利用它进行灵敏性分析 )

补充知识:矩阵P= ??????

?

??

??????

?????--00

00000

000001

10

1210n n n P P P F F F F F

,其中

1,...,,0,0;,...,1,0,0-=>=≥n i i P n j F i j 称矩阵P 为Leslie 矩阵。

基本概念:设矩阵的特征值为n λλλ,...,,10,将它们的模按从大到小的顺序排列(不妨设为):n λλλ≥≥≥

...10,则称0λ为矩阵的主特征值,如果10λλ>,则称0

λ为严格主特征值。

Leslie 矩阵P 的几个基本性质:

(1) 特征多项式为:

)...(...)()()(1102

21011001n n N n n n F P P P F P P F p F p ---+-----=λλλλλ

它有唯一一个正的单特征值0λ(重数为1),且为主特征值。 (2) 如果λ为L 矩阵P 的一个非零特征值,则

T n n P

P P P P P )...,...,,,

1(1102100λ

λλαλ-= 为与λ对应的一个特征向量。

(3) 若L 矩阵第一行有两个相临元素非零,则它的唯一正特征根0λ为严格主特征值。 (4) 若m k k k ,...,,21是L 矩阵中第一列中非零元素所处的列数,且m k k k ,...,,21互素,

则0λ为严格主特征值。

(完整版)差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i Λ=关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x Λ, (1) 或者表示为 0),,,,(1=++k n n n x x x n F Λ (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21Λ为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a Λλλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21Λ称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21Λ,则

学校大作业人口预测模型

人口预测模型 摘要

一、 问题重述 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。 近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。 关于中国人口问题已有多方面的研究,并积累了大量数据资料。试从中国的实际情况和人口增长的上述特点出发,建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。 二、 问题分析 人口问题关乎众多,影响国家的发展,如何做到对人口的准确预测和趋势的分析对于指导国家政策的制定,指导国民经济的发展至关重要。数学建模就是利用现有的有限的统计数据,提取其中的有效数据,对我国人口作出预测。并分析模型的优点和缺点,做出相应的修正,并提出相应的优化和改进模型。 三、 模型建立与模型求解 1、 模型一: 1.1、 模型假设: 本题解答中假设有以下条件成立: (1).人口在考察的时间内不发生迁移,或是迁移数量很少,不影响结果的总体趋势。 (2).人口出生率农村城镇城市的在考察时间内基本保持不变。 1.2、 模型建立: 考虑到市,镇,乡村的人口性别比例,妇女生育率以及人口的死亡率都有所差别,我们分别建立市,镇,乡村的差分方程模型。市,镇,乡村合起来即可得到全国人口增长的差分方程模型。 (1)首先,在不考虑人口迁移的情况下(以人口的户籍变动为准),以乡村为例,建立人口增长的LESLIE 模型。 记乡村第t 年i 岁的人口数为1()i x t (用上标1表示乡村,上标2表示镇,上标3表示市),乡村第t 年i 岁人口的死亡率为1()i d t ,乡村第t 年i 岁人口的存活率为 1()i s t 。则11()1()i i s t d t =-。这里我们假设1()i b t 和1()i d t (从而 1()i s t )不随时间t 变化,在稳定的情况下这个假设是合理的。 于是第(1)t +年(1)i +岁人口数为: 111111(1)()()(1())()i i i i i x t s t x t d t x t ++==- (1) 假设生育率与年龄和时间有关,记t 年i 岁乡村女性生育率(每位女性平均生育的婴儿数)为1()i b t ,育龄区间为[]12,i i (根据题目附录二数据取15到49岁为育龄区间). 进一步将1()i b t 分解为 111()()()i i b t t h t β=, 2 1 1()1i i i i h t ==∑; (2) 其中:1()i h t 是生育模式,而1()t β满足

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

人口预测模型

一、问题重述 人口的数量和结构是影响经济社会发展的重要因素。从20世纪70年代后期以来,我国实行计划生育政策,有效地控制了我国人口的过快增长,对经济发展和人民生活的改善做出了积极的贡献。但该政策实施30多年来,其负面影响也开始显现。如临近超低生育率水平、人口老龄化、出生性别比失调等问题,这些对经济社会健康、可持续发展将产生一系列影响,引起了中央和社会各界的重视。党的十八届三中全会提出了开放单独二孩,今年以来许多省、市、自治区相继出台了具体的政策。政策出台前后各方面人士对开放“单独二孩”的效应进行了大量的研究和评论。 党的十八届三中全会《决定》提出,启动实施单独两孩政策。这是新时期我国生育政策的重大调整完善,备受社会关注。 请解决以下问题: (1)针对国家卫生计生委副主任王培安单独二孩不会导致人口大增的人口预测,根据每十年一次的全国人口普查数据,建立模型,对单独二孩会不会导致人口大增进行分析,并发表自己的独立见解。 (2)建立数学模型,针对深圳市讨论计划生育新政策(可综合考虑城镇化、延迟退休年龄、养老金统筹等政策因素,但只须选择某一方面作重点讨论)对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 二、问题分析 问题1、启动实施单独二胎政策,是经过充分的论证和评估的。对于我国目前为什么要放开二胎政策这个问题,以及为什么单独二孩不会导致人口大增是有以下情况决定的。 进入本世纪以来,我国人口形势发生了重大变化。一是生育水平稳中趋降,我国目前总和生育率为1.5-1.6,如果不实行单独二胎新政策,总和生育率将继续下降。二是人口结构性问题,劳动年龄人口开始减少,人口老龄化速度加快,出生人口性别比长期偏高。三是家庭规模持续缩减。四是城乡居民生育意愿发生很大变化,少生优生、优育优教的生育观念正在形成。 通过建立动态差分方程模型预测老龄化的人口数、劳动人口数以及总人口数。根据预测的数据画出老龄化程度的趋势图和人口红利的趋势图,最终通过分析老龄化程度、生育率高低、出生性别比例和人口红利变化来验证单独二孩政策的必要性以及单独二孩不会导致人口大增的预测。

差分方程模型理论与方法

差分方程模型的理论和方法 引言 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

Leslie人口模型及例题详解

Leslie 人口模型 现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化。如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型。20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。 模型假设 (1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化。假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化; (2) 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记 )](,),(),([)(21t n t n t n t n m = 第i 年龄组女性生育率为i b (注:所谓女性生育率指生女率),女性死亡率为i d ,记 1,i i s d =-假设,i i b d 不随时间变化; (3) 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响; (4) 生育率仅与年龄段有关,存活率也仅与年龄段有关。 建立模型与求解 根据以上假设,可得到方程 )1(1+t n =∑=m i i i t n b 1 )( )()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为 )()1(t Ln t n =+ 其中,L =?????? ? ? ??--000000000121121m m m s s s b b b b (1) 记 )]0(,),0(),0([)0(21m n n n n = (2) 假设n (0)和矩阵L 已经由统计资料给出,则 t 1 +t

差分方程模型习题+答案

1. 一老人60岁时将养老金10万元存入基金会,月利率0.4%, 他每月取1000元作为生活费,建立差分方程计算他每岁末尚有多少钱?多少岁时将基金用完?如果想用到80岁,问60岁时应存入多少钱? 分析:(1) 假设k 个月后尚有k A 元,每月取款b 元,月利率为 r ,根据题意,可每月取款,根据题意,建立如下的差分方程: 1k k A aA b +=-,其中a = 1 + r (1) 每岁末尚有多少钱,即用差分方程给出k A 的值。 (2) 多少岁时将基金用完,何时0k A =由(1)可得: 01k k k a A A a b r -=- 若0n A =,01 n n A ra b a = - (3) 若想用到 80 岁,即 n =(80-60)*12=240 时,2400A =,240 0240 1 A ra b a =- 利用 MA TLAB 编程序分析计算该差分方程模型,源程序如下: clear all close all clc x0=100000;n=150;b=1000;r=0.004; k=(0:n)'; y1=dai(x0,n,r,b); round([k,y1']) function x=dai(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)-b; end (2)用MA TLAB 计算: A0=250000*(1.004^240-1)/1.004^240

思考与深入: (2) 结论:128个月即70岁8个月时将基金用完 (3) A0 = 1.5409e+005 结论:若想用到80岁,60岁时应存入15.409万元。 2. 某人从银行贷款购房,若他今年初贷款10万元,月利率0.5%,他每月还1000元。建立差分方程计算他每年末欠银行多少钱,多少时间才能还清?如果要10年还清,每月需还多少? 分析:记第k个月末他欠银行的钱为x(k),月利率为r,且a=1+r,b为每月还的钱。则第k+1个月末欠银行的钱为 x(k+1)=a*x(k)+b,a=1+r,b=-1000,k=0,1,2… 在r=0.005 及x0=100000 代入,用MA TLAB 计算得结果。 编写M 文件如下: function x=exf11(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)+b; end MA TLAB计算并作图: k=(1:140)'; y=exf11(100000,140,0.0005,-1000); 所以如果每月还1000元,则需要11年7个月还清。 如果要10年即n=120 还清,则模型为: r*x0*(1+r)^n/[1-(1+r)^n b=-r*x0*(1+r)^n/[1-(1+r)^n] 用MA TLAB 计算如下: >> x0=100000; >> r=0.005; >> n=120; >> b=-r*x0*(1+r)^n/[1-(1+r)^n] b= 1.1102e+003 所以如果要10年还清,则每年返还1110.2元。 3. 在某种环境下猫头鹰的主要食物是田鼠,设田鼠的年平均增长率为1r,猫头鹰的存在引起的田鼠增长率的减少与猫头鹰的数量成正比,比例系数为1a;猫头鹰的年平均减少率为

中国人口增长预测模型

中国人口增长预测模型 摘要 人口发展战略是国民经济和社会发展的基础性战略。以人为本的科学发展观强调,在以经济建设为中心的同时,更好地促进人的全面发展。优先投资于人的全面发展是科学发展观在人口发展战略中的具体体现。优先投资于人能够在人的发展与物资财富的增长之间建立有机联系,符合社会发展趋势,体现了历史合理性。 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。因此,就需要对人口增长问题进行研究。 在考虑人口变化的数学模型中,传统的数学模型主要是微分方程模型,其主要缺点是数值计算较困难。本文结合中国的实际情况,考虑到人口的巨大迁移数,将LESLIE 差分方程模型做了进一步推广,得到了某地区(主要考虑市,镇,乡)人口发展的差分方程模型,以男性为例: 其中00(),(),(),i i i X t U t g t 分别是该 地区第t 年i 岁男性人口的数量,死 亡率,迁入率。 0()t φ是第t 年出生的男婴总数,由方程 ()()()()49 015 ()[1]1[11]i i i i i t t k t X t Y t φαα==---+-∑决定,其中i α是第()1t -年平 均每个妇女所生的孩子;()1i k t -是第()1t -年女性人数的比例;()1i Y t -是第()1t -年女性人数;()t α表示t 年女婴的比重;类似的可以得到了 ()()()()()()()()() 0010010i i i i i o i X t X t U t X t g t X t t X P i φ+?+=-+? =?? =?

女性的差分方程模型。 利用SPSS软件的自回归模型对()t α及各个参数进行了估计。对出生率和死亡率通过随机变量期望法可以估计。其它的参数也可以通过相应的办法得到估计。 利用所建立的差分方程,利用MATLAB和SPSS软件,我们获得了各地区各年龄段男,女人口的详细数据,在此基础上我们对数据进行了详细的分析和预测,研究了全国人口和各地区人口数量、性别比、老龄化、总和生育率、稳定性以及抚养比的分析和预测得到以下结论: 全国人口数量开始持续增长,大约在年,达到最大值,然后持续下降,在年降到,在年里降到;全国人口男女性别比到年基本上保持在正常水平,但以后有显著性的变化;在年达到。我国现在已经进入老年化社会,抚养比在年达到最大,约为,然后趋于平稳,其值约为;由人口的稳定性分析可知:从长远角度来说,如果现有政策不改变,人口结构趋于稳定。通过对总和生育率的分析,农村的总和生育率为;城镇的总和生育率为;城市的总和生育率为;所以我国现阶段的总和生育率是偏低的。 关键字:差分方程、自回归、参数估计、加权平均、生育率、死亡率。 问题重述 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和

人口预测方法(情况总结)

1. 人口总量预测 (1)人口总量趋势外推模型 图 1 永康市1985年以来历年的人口变化 (2)人口增长率预测模型 人口增长率预测模型是根据计划生育有关指标而进行的一种人口预测方法。数学公式表示为: + 1( =) + P P n? k P (3-2)0 式中: P表示规划期总人口(人),P0表示规划基期总人口(人),ΔP表示规划期间人口机械增长数(人),n表示规划年期,k表示规划期间人口自然增长率。人口自然增长率k可用出生率b和死亡率d表示: =(3-3) k- d b

图 2 永康市1989年以来历年的人口出生率、死亡率和自然增长率 图3 永康市1989年以来历年的户籍人口迁移数量

(3)人口离散预测模型 人口离散预测模型也即人口差分方程预测模型,又称“宋健模型”,是我国自行提出的比较成功的人口发展预测模型,能较好的运用人口普查资料对未来人口进行预测。该模型是根据分年龄的人口结构递推公式进行预测,模型的数学表达如下: 1 ,...,2,1,0) ()()](1[)1()()()()()](1[)(10002 1-=+?-=+????-=+∑m i t f t X t t X t X t k t h t t t X i i i i r r i i i μβμ (3-6) 式中:X 0(t)为t 年代0岁出生婴儿数,X i (t)为t 年代之年龄组人口数,μ00(t)为t 年出生婴儿当年死亡率,β(t)为妇女总和生育率,即社会人中平均意义下一个妇女在整个育龄时期的生育总数(r 2,r 1即为生育年龄的上下限),h i (t)为生育模式,反映某一地区某一个育龄妇女生育状态分布,k i (t)为t 年代之年龄组女性性别比,μi (t)为t 年代之年龄组人口死亡率,f i (t)为t 年代之年龄组净迁移数。 在模型的具体应用中,课题组工作的重点是如何确定公式3-6中的各种参数。①第五次人口普查资料中的数据是2000年11月1日的数据,而规划所需的数据是年末的数据,课题组将普查的户籍人口分龄人口数按比例修正到2000年底的统计人口总数作为X i (t);②从普查资料来看45岁以下的性别比比较稳定,为了简化模型,t 年代之年龄组女性性别比k i (t)用常量 k 表示,即采用普查资料中的45岁以下的男女性别比=104.85(女性=100)推算,故k= 0.488326;③根据普查资料,妇女总和生育率取2000年的数据β(t)= 0.8795;④模型中出生婴儿当年死亡率μ00(t)假定与2000年出生婴儿当年死亡率的80%,即采用μ00=3.88‰。⑤从第五次人口普查资料看来,2000年分龄死亡率的数据波动较大,课题组结合1990第四次人口普查资料,对2000年分龄死亡率的数据进行移动平均处理,并采用死亡修正80%后作为死亡模式μi (t)1;⑥以第五次人口普查资料分龄生育率为生育模式h i (t);⑦第五次人口普查统计2000年迁入人口2 032人,迁出人口5 777人,当年人口机械增长呈负增长,而根据统计年鉴数据(图6),2000年人口机械增长接近于零,故在本模型预测中先按封闭模型进行预测。 将上述确定的参数代入模型3-6,进行计算机模拟预测,得到如下结果:2007年人口总数为212 648人,2020年为200 600人。另人口机械按增长率预测模型取2000~2007年间的人口机械增长数为ΔP =1 000 7=7 000,取2008~2020年间为ΔP=2 000 13=26 000。则有2007年人口总数为219 648人,2020年为233 600人。 1 移动平均采用公式:μi =0.25μi-1+0.5μi +0.25μi+1

差分方程模型习题+答案

1. 一老人 60 岁时将养老金 10 万元存入基金会,月利率 0.4%, 他每月取 1000 元作为生活 费,建立差分方程计算他每岁末尚有多少钱?多少岁时将基金用完?如果想用到 80 岁,问 60 岁时应存入多少钱? 分析: (1) 假设 k 个月后尚有 A k 元,每月取款 b 元,月利率为 r ,根据题意,可每月取款, 根据题意,建立如下的差分方程: A k 1 aA k b ,其中 a = 1 + r 每岁末尚有多少钱 ,即用差分方程给出 A k 的值。 (2) 多少岁时将基金用完,何时 A k 0 由( 1)可得: A A a k b a k 1 k 0 r n 若 A n 0 , b A 0 ra n a1 (3) 若想用到 80 岁,即 n = (80-60)*12=240 时, A 240 0 , b A 0 ra 240 (1) 240 利用 MATLAB 编程序分析计算该差分方程模型,源程序如下: clear all close all clc x0=100000;n=150;b=1000;r=0.004; k=(0:n)'; y1=dai(x0,n,r,b); round([k,y1']) function x=dai(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)-b; end (2) 用 MATLAB 计算: A0=250000*(1.004^240-1)/1.004^240 a 1

思考与深入: (2)结论: 128 个月即 70 岁 8 个月时将基金用完 (3)A0 = 1.5409e+005 结论:若想用到80 岁, 60 岁时应存入15.409 万元。 2.某人从银行贷款购房,若他今年初贷款10 万元,月利率 0.5%,他每月还 1000 元。建立 10 年还清,每月需还多差分方程计算他每年末欠银行多少钱,多少时间才能还清?如果要 少? 分析:记第k 个月末他欠银行的钱为 x( k),月利率为r,且a=1+r,b 为每月还的钱。则第k+1 个月末欠银行的钱为 x(k+1)=a*x(k)+b,a=1+r,b=-1000,k=0,1,2? 在r=0.005 及 x0=100000 代入,用 MATLAB 计算得结果。 编写M文件如下: function x=exf11(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)+b; end MATLAB 计算并作图 : k=(1:140)'; y=exf11(100000,140,0.0005,-1000); 所以如果每月还1000 元,则需要11 年 7 个月还清。 如果要 10 年即 n=120 还清,则模型为: r*x0*(1+r)^n/[1-(1+r)^n b=-r*x0*(1+r)^n/[1-(1+r)^n] 用MATLAB 计算如下: >>x0=100000; >>r=0.005; >>n=120; >>b=-r*x0*(1+r)^n/[1-(1+r)^n] b= 1.1102e+003 所以如果要10 年还清,则每年返还1110.2 元。 3. 在某种环境下猫头鹰的主要食物是田鼠,设田鼠的年平均增长率为r1,猫头鹰的存在引起的田鼠增长率的减少与猫头鹰的数量成正比,比例系数为a1;猫头鹰的年平均减少率为

我国人口中长期预测模型讲解

我国人口总量和结构的中长期预测模型 摘要 近年来,由于计划生育政策的实施和人民生育观念的改变,我国人口出现了总量减少、老龄化、性别比例失衡等问题,如何适时调整我国的人口政策已成为国家的重要课题。本文运用差分方程的思想,围绕是否及何时全面放开二胎对我国未来人口总量和人口的老龄化水平、性别比例产生的影响建立了按年龄分组的离散人口模型,并由此对国家的人口政策给出了合理化建议。 针对问题一,考虑到人口主要由妇女的生育情况决定,以及不同的年龄结构对未来人口的较大影响,在分析近几年我国人口数据后,将人口按年龄每5岁划分为一个年龄组,相应地,年份的也每5年划分为一个时段,然后根据近几年自然增长率数据,首先对2015年各个年龄组的人口做出预测,之后提出生育模式的概念,表示生育率按年龄的分布情况,并进行曲线拟合,建立了基于Leslie 矩阵的人口预测模型,计算当前总和生育率约 1.22,代入模型,运用迭代法求解。对未来30年我国的人口总量和结构进行了预测。得出保持当前生育情况不变,我国人口总量在未来30年将持续减少,并在2045年减少到10.3亿,人口老龄化加剧,性别比例失衡有所缓解的结论。 针对问题二,通过对我国城镇化水平和国民收入情况的分析,估算出放开二胎后的总和生育率约为1.9,在模型一的基础上,通过改变总和生育率和人口的初始分布,建立了2016年和2020年放开二胎后的按年龄分组的人口模型,并进行对比,发现方案一(2016年放开二胎)到2045年人口总量约11.1亿,方案二(2020年放开二胎)则30年后约为10.5亿,两种方案老龄化水平、性别失衡情况均优于政策未调整时的情况,其中方案一对人口老龄化修复效果更好,方案二对性别比例失衡修复效果较好。 针对问题三,在问题一、二的基础上对未来我国的劳动力数量进行预测,并提出国家综合考虑经济、人口老龄化、性别比例、社会稳定的影响,尽早逐步放开二胎的建议。 关键词:人口预测,二胎政策,年龄结构,Leslie矩阵,差分方程模型,总和生育率

中国人口增长预测数学建模

高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会评阅前进行编号):

高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

中国人口增长预测 摘要 中国乃泱泱人口大国,人口规模是城市规划和土地利用总体规划中一项重要的控制性指标,预测人口模型的合理性,不仅影响到未来地区经济和社会发展,而且会影响到地区生态环境可持续发展。因此,建立合理的模型,准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和现实意义。 对此,本文通过建立适当的模型,预测出了短期和中长期(到2050年)中国人口的变化趋势和走向,并给出了在这段时间内人口结构的具体预测数据和曲线走向,包括总人口数、年龄结构、出生率和死亡率等。 在此模型中,为精确预测,我们用到了人口密度、生育率、死亡率、人口总数以及迁出率等影响人口的因数,并将我国人口整合为一个由城市男性、城市女性、城镇男性、城镇女性、乡村男性、乡村女性组成的1x6的矩阵。同时用人口密度、生育率、死亡率及迁出率作为参数并结合人口发展偏微分方程,再通过完善和改进,建立了一个一阶偏微分方程的模型。最后以此模型作为基础,进行人口数据的相关预测。 对于求解一阶偏微分方程模型中的相关参数,我们首先用MATLAB和EXCEL等软件对题目所给的2001年到2005年的数据进行处理和适当筛选。在求解生育率时,通过用MATLAB的曲线拟合工具箱,经处理和比较,最后选取

差分方程模型

差分方程模型 一、引言 数学模型按照离散的方法与连续的方法, 可以分为离散模型与连续模型。 1、确定性连续模型 1) 微分法建模(静态优化模型), 如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2、确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二、 差分方程简介 在实际中,许多问题所研究的变量都就是离散的形式,所建立的数学模型也就是离散的,譬如,像政治、经济与社会等领域中的实际问题。有些时候,即使所建立的数学模型就是连续形式,例如像常见的微分方程模型、积分方程模型等。但就是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论与求解方法在数学建模与解决实际问题的过程中起着重要作用。 1、 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i Λ=关联起来得到的方程,则称这个方程为差分方程。 2、 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x Λ, (1) 或者表示为 0),,,,(1=++k n n n x x x n F Λ (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21Λ为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a Λλλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21Λ称为(1)式的特征根。 2、1 差分方程的解 常系数线性齐次差分方程的解主要就是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根与复根的情况给出方程解的形式。 2、1、1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21Λ,则

差分方程人口预测模型

1 差分方程人口预测模型 一、名词和符号说明 名词解释: (1)拟合: 对于某个变化过程中的多个相互依赖的变量,可建立适当的数学模型,用于分析预报决策或控制该过程.对于两个变量可通过用一个一元函数去模拟这两个变量的取值.用不同的方法可得到不同的模拟函数.下面使用图表介用Mathematica 做曲线拟合。 (2)差分方程:含有自变量,未知函数以及未知函数差分的函数方程,称为差分方程。 (3)迭代法:是牛顿在17世纪提出的一种求解方程f(x)=0.多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。 设r 是f(x)=0的根,选取x0作为r 初始近似值,过点(0x ,f(0x ))做曲线y=f(x)的切线L ,L 的方程为))(()(000x x x f x f y -'+=,求出L 与x 轴交点的横坐标 ) () (0001x f x f x x '- =,称1x 为r 的一次近似值,过点(1x ,f(1x ))做曲线y=f(x)的切线,并求该切线与x 轴的横坐标) () (1112x f x f x x '- =称2x 为r 的二次近似值,重复以上过程,得r 的近似值序列{Xn},其中) () (11n n n n X f X f X X '-=++, 称为r 的n+1次近似值。上式称为牛顿迭代公式。 符号说明: )(k x i 第 k 年i 岁的女性总人数 )(k x 女性人口的(按年龄)分布向量 )(k b i 第k 年i 岁的女性生育率 i d 第k 年i 岁的女性死亡率 i s 第 k 年i 岁的女性存活率 i 岁女性的生育模式 )β(k k 年总和生育率(控制人口数量的主要参数) i h

算法大全第16章_差分方程模型

-192- 第十六章 差分方程模型 离散状态转移模型涉及的范围很广,可以用到各种不同的数学工具。下面我们对差分方程作一简单的介绍,下一章我们将介绍马氏链模型。 §1 差分方程 1.1 差分方程简介 规定t 只取非负整数。记t y 为变量y 在t 点的取值,则称t t t y y y ?=Δ+1为t y 的一阶向前差分,简称差分,称t t t t t t t y y y y y y y +?=Δ?Δ=ΔΔ=Δ+++1212 2)(为t y 的二阶差分。类似地,可以定义t y 的n 阶差分t n y Δ。 由t y t 、及t y 的差分给出的方程称为t y 的差分方程,其中含t y 的最高阶差分的阶数称为该差分方程的阶。差分方程也可以写成不显含差分的形式。例如,二阶差分方程 02=+Δ+Δt t t y y y 也可改写成012=+?++t t t y y y 。 满足一差分方程的序列t y 称为差分方程的解。类似于微分方程情况,若解中含有 的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。若解中不含任意常数,则称此解为满足某些初值条件的特解。 称如下形式的差分方程 )(110t b y a y a y a t n t n t n =+++?++L (1) 为n 阶常系数线性差分方程,其中n a a a ,,,10L 是常数,00≠a 。其对应的齐次方程为 0110=+++?++t n t n t n y a y a y a L (2) 容易证明,若序列) 1(t y 与) 2(t y 均为(2)的解,则)2(2) 1(1t t t y c y c y +=也是方程(2)的 解,其中21,c c 为任意常数。若) 1(t y 是方程(2)的解,) 2(t y 是方程(1)的解,则 )2()1(t t t y y y +=也是方程(1)的解。 方程(1)可用如下的代数方法求其通解: (I )先求解对应的特征方程 001 10=+++?a a a n n L λ λ (3) (II )根据特征根的不同情况,求齐次方程(2)的通解。 (i )若特征方程(3)有n 个互不相同的实根n λλ,,1L ,则齐次方程(2)的通解为 t n n t c c λλ++L 11 (n c c ,,1L 为任意常数) (ii )若λ是特征方程(3)的k 重根,通解中对应于λ的项为t k k t c c λ)(1 1?++L , ),,1(k i c i L =为任意常数。 (iii )若特征方程(3)有单重复根 i βαλ±=,通解中对应它们的项为 t c t c t t ?ρ?ρsin cos 21+,其中22βαρ+=为λ的模,α β ?arctg =为λ的幅角。 (iv )若i βαλ±=是特征方程(3)的k 重复根,则通解对应于它们的项为 t t c c t t c c t k k k t k k ?ρ?ρsin )(cos )(12111?+?+++++L L