食品加工中重要的酶食品伙伴网

食品加工中重要的酶食品伙伴网
食品加工中重要的酶食品伙伴网

第二节食品加工中重要的酶

一、淀粉酶

凡催化淀粉水解的酶,称为淀粉酶。淀粉酶是糖苷水解酶中最重要的一类酶。因水解淀粉的方式不同,可将淀粉酶分为四类:α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和脱支酶。

(一)α-淀粉酶

α-淀粉酶广泛存在于动物、植物和微生物中。在发芽的种子、人的唾液、动物的胰脏内含量甚多。现在工业上已经能利用枯草杆菌、米曲霉、黑曲霉等微生物制备高纯度的α-淀粉酶。天然的α-淀粉酶分子中都含有一个结合得很牢固的Ca2+,Ca2+起着维持酶蛋白最适宜构象的作用,从而使酶具有高的稳定性和最大的活力。α-淀粉酶是一种内切酶,以随机方式在淀粉分子内部水解α-1,4糖苷键,但不能水解α-1,6糖苷键。在作用于淀粉时有两种情况:第一种情况是水解直链淀粉,首先将直链淀粉随机迅速降解成低聚糖,然后把低聚糖分解成终产物麦芽糖和葡萄糖。第二种情况是水解支链淀粉,作用于这类淀粉时终产物是葡萄糖、麦芽糖和一系列含有α-1,6糖苷键的极限糊精或异麦芽糖。由于α-淀粉酶能快速地降低淀粉溶液的黏度,使其流动性加强,故又称为液化酶。

不同来源的α-淀粉酶有不同的最适温度和最适pH。最适温度一般在55~70 ℃,但也有少数细菌α-淀粉酶最适温度很高,达80 ℃以上。最适pH一般在4.5~7.0之间,细菌中α-淀粉酶的最适pH略低。

(二)β-淀粉酶

β-淀粉酶主要存在于高等植物的种子中,大麦芽内尤为丰富。少数细菌和霉菌中也含有此种酶,但哺乳动物中还尚未发现。

β-淀粉酶是一种外切酶,它只能水解淀粉分子中的α-1,4糖苷键,不能水解α-1,6糖苷键。β-淀粉酶在催化淀粉水解时,是从淀粉分子的非还原性末端开始,依次切下一个个麦芽糖单位,并将切下的α-麦芽糖转变成β-麦芽糖。β-淀粉酶在催化支链淀粉水解时,因为它不能断裂α-1,6糖苷键,也不能绕过支点继续作用于α-1,4糖苷键,因此,β-淀粉酶分解淀粉是不完全的。β-淀粉酶作用的终产物是β-麦芽糖和分解不完全的极限糊精。

β-淀粉酶的热稳定性普遍低于α-淀粉酶,但比较耐酸。

(三)葡萄糖淀粉酶

葡萄糖淀粉酶主要由微生物的根霉、曲霉等产生。最适pH为4~5,最适温度在50~60 ℃范围。

葡萄糖淀粉酶是一种外切酶,它不仅能水解淀粉分子的α-1,4糖苷键,而且能水解α-1,6糖苷键和α-1,3糖苷键,但对后两种键的水解速度较慢。葡萄糖淀粉酶水解淀粉时,是从非还原性末端开始逐次切下一个个葡萄糖单位,当作用于淀粉支点时,速度减慢,但可切割支点。因此,葡萄糖淀粉酶作用于直链淀粉或支链淀粉时,终产物均是葡萄糖。工业上用葡萄糖淀粉酶来生产葡萄糖。所以也称此酶为糖化酶。

(四)脱支酶

脱支酶在许多动植物和微生物中都有分布,是水解淀粉和糖原分子中α-1,6

糖苷键的一类酶,有普鲁兰酶和异淀粉酶之分。

(五)淀粉酶在食品工业中的应用

淀粉酶在食品工业上应用很广泛。淀粉酶制剂是最早实现工业化生产和产量最大的酶制剂品种,约占整个酶制剂总产量的50%以上,被广泛应用于食品、发酵及其他工业中。如:淀粉酶用于酿酒、味精等发酵工业中水解淀粉;在面包制造中为酵母提供发酵糖,改进面包的质构;用于啤酒除去其中的淀粉浑浊;利用葡萄糖淀粉酶可直接将低黏度麦芽糊精转化成葡萄糖,然后再用葡萄糖异构酶将其转变成果糖,提高甜度等。目前商品淀粉酶制剂最重要的应用是用淀粉制备麦芽糊精、淀粉糖浆和果葡糖浆等。

二、蛋白酶

蛋白酶从动物、植物和微生物中都可以提取得到,也是食品工业中重要的一类酶。生物体内蛋白酶种类很多,以来源分类,可将其分为动物蛋白酶、植物蛋白酶和微生物蛋白酶三大类。根据它们的作用方式,可分为内肽酶和外肽酶两大类。还可根据最适pH的不同,分为酸性蛋白酶、碱性蛋白酶和中性蛋白酶。也有根据其活性中心的化学性质不同,分为丝氨酸蛋白酶(酶活性中心含有丝氨酸残基)、巯基蛋白酶(酶活性中心含有巯基)、金属蛋白酶(酶活性中心含金属离子)和酸性蛋白酶(酶活性中心含羧基)。

(一)动物蛋白酶

在人和哺乳动物的消化道中存在有各种蛋白酶。如胃黏膜细胞分泌的胃蛋白酶,可将各种水溶性蛋白质分解成多肽;胰腺分泌的胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶和羧肽酶等内肽酶和外肽酶,可将多肽链水解成寡肽和氨基酸;小肠黏膜能分泌氨肽酶、羧肽酶和二肽酶等,将小分子肽分解成氨基酸。人体摄取的蛋白质就是在消化道中这些酶的综合作用下被消化吸收的。胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶等先都分别以无活性前体的酶原形式存在,在消化道需经激活后才具有活性。

在动物组织细胞的溶酶体中有组织蛋白酶,最适pH为5.5左右。当动物死亡之后,随组织的破坏和pH的降低,组织蛋白酶被激活,可将肌肉蛋白质水解成游离氨基酸,使肌肉产生优良的肉香风味。但从活细胞中提取和分离组织蛋白酶很困难,限制了它的应用。

在哺乳期小牛的第四胃中还存在一种凝乳酶,是由凝乳酶原激活而成,pH 5时可由已有活性的凝乳酶催化而激活,在pH 2时主要由H+(胃酸)激活。随小牛长大,由摄取母乳改变成青草和谷物时,凝乳酶逐渐减少,而胃蛋白酶增加。凝乳酶也是内肽酶,能使牛奶中的酪蛋白凝聚,形成凝乳,用来制作奶酪等。

动物蛋白酶由于来源少,价格昂贵,所以在食品工业中的应用不甚广泛。胰蛋白酶主要应用于医药上。

(二)植物蛋白酶

蛋白酶在植物中存在比较广泛。最主要的3种植物蛋白酶,即木瓜蛋白酶、无花果蛋白酶和菠萝蛋白酶已被大量应用于食品工业。这3种酶都属巯基蛋白酶,也都为内肽酶,对底物的特异性都较宽。

木瓜蛋白酶是番木瓜胶乳中的一种蛋白酶,在pH 5时稳定性最好,低于pH 3和高于pH 11时,酶会很快失活。该酶的最适pH虽因底物不同而有不同,但一般在5~7之间。与其他蛋白酶相比,其热稳定性较高。

无花果蛋白酶存在于无花果胶乳中,新鲜的无花果中含量可高达1%左右。无花果蛋白酶在pH 6~8时最稳定,但最适pH在很大程度上取决于底物。若以酪蛋白为底物,活力曲线在pH 6.7和9.5两处有峰值;以弹性蛋白为底物时,最适pH为5.5;而对于明胶,最适pH则为7.5。

菠萝汁中含有很强的菠萝蛋白酶,从果汁或粉碎的茎中都可提取得到,其最适pH值范围在6~8。

以上3种植物蛋白酶在食品工业上常用于肉的嫩化和啤酒的澄清。特别是木瓜蛋白酶的应用,很久以前民间就有用木瓜叶包肉,使肉更鲜嫩、更香的经验。现在这些植物蛋白酶除用于食品工业外,还用于医药上作助消化剂。

(三)微生物蛋白酶

细菌、酵母菌、霉菌等微生物中都含有多种蛋白酶,是生产蛋白酶制剂的重要来源。生产用于食品和药物的微生物蛋白酶的菌种主要是枯草杆菌、黑曲霉、米曲霉三种。

随着酶科学和食品科学研究的深入发展,微生物蛋白酶在食品工业中的用途将越来越广泛。在肉类的嫩化,尤其是牛肉的嫩化上应用微生物蛋白酶代替价格较贵的木瓜蛋白酶,可达到更好的效果。微生物蛋白酶还被运用于啤酒制造以节约麦芽用量。但啤酒的澄清仍以木瓜蛋白酶较好,因为它有很高的耐热性,经巴氏杀菌后,酶活力仍还存在,可以继续作用于杀菌后形成的沉淀物,以保证啤酒的澄清。在酱油的酿制中添加微生物蛋白酶,既能提高产量,又可改善质量。除此之外,还常用微生物蛋白酶制造水解蛋白胨用于医药,以及制造蛋白胨、酵母浸膏、牛肉膏等。细菌性蛋白酶还常用于日化工业,添加到洗涤剂中,以增强去污效果,这种加酶洗涤剂对去除衣物上的奶斑、血斑等蛋白质类污迹的效果很好。

三、果胶酶

果胶酶是能水解果胶类物质的一类酶的总称。它存在于高等植物和微生物中,在高等动物中不存在,但蜗牛是例外。

(一)果胶酶的分类及作用

果胶酶根据其作用底物的不同,可分为果胶酯酶、聚半乳糖醛酸酶和果胶裂解酶3种类型。

1.果胶酯酶果胶酯酶存在于植物及部分微生物种类里。果胶酯酶催化果胶脱去甲酯基生成聚半乳糖醛酸链和甲醇的反应。不同来源的果胶酯酶的最适pH不同,霉菌来源的果胶酯酶的最适pH在酸性范围,细菌来源的果胶酯酶在偏碱性范围,植物来源的果胶酯酶在中性附近。不同来源的果胶酯酶对热的稳定性也有差异,例如霉菌果胶酯酶在pH3.5时,50 ℃加热0.5 h,酶活力无损失,当温度提高到62 ℃时,酶基本上全部失活。而蕃茄和柑橘果胶酯酶在pH 6.1时,70 ℃加热1 h,酶活力也只有50%的损失。

在一些果蔬的加工中,若果胶酯酶在环境因素下被激活,将导致大量的果胶脱去甲酯基,从而影响果蔬的质构。生成的甲醇也是一种对人体有毒害作用的物质,尤其对视神经特别敏感。在葡萄酒、苹果酒等果酒的酿造中,由于果胶酯酶的作用,可能会引起酒中甲醇的含量超标,因此,果酒的酿造,应先对水果进行预热处理,使果胶酯酶失活以控制酒中甲醇的含量。

2.聚半乳糖醛酸酶聚半乳糖醛酸酶是降解果胶酸的酶,根据对底物作用方式不同可分两类:一类是随机地水解果胶酸(聚半乳糖醛酸)的苷键,这是聚

半乳糖醛酸内切酶;另一类是从果胶酸链的末端开始逐个切断苷键,这是聚半乳糖醛酸外切酶。聚半乳糖醛酸内切酶多存在于高等植物、霉菌、细菌和一些酵母中,聚半乳糖醛酸外切酶多存在于高等植物和霉菌中,在某些细菌和昆虫中也有发现。

聚半乳糖醛酸酶来源不同,它们的最适pH也稍有不同,大多数内切酶的最适pH在4.0~5.0范围以内,大多数外切酶最适pH在5.0左右。

聚半乳糖醛酸酶的外切酶与内切酶,由于作用方式不同,所以它们作用时对果蔬质构影响或果汁处理效果也有差别。例如同一浓度果胶液,内切酶作用时,只要3%~5%的果胶酸苷键断裂,黏度就下降;而外切酶作用时,则要10%~15%的苷键断裂才使黏度下降50%。

3.果胶裂解酶果胶裂解酶是内切聚半乳糖醛酸裂解酶、外切聚半乳糖醛酸裂解酶和内切聚甲基半乳糖醛酸裂解酶的总称。果胶裂解酶主要存在于霉菌中,在植物中尚无发现。

果胶裂解酶是催化果胶或果胶酸的半乳糖醛酸残基的C4~C5位上的氢进行反式消去作用,使糖苷键断裂,生成含不饱和键的半乳糖醛酸。

以上3种酶的作用方式如图2-1所示。

图2-1果胶酶的作用方式

(二)果胶酶在食品工业上的应用

果胶酶在食品工业中具有很重要作用,尤其在果汁的提取和澄清中应用最广。如在苹果汁的提取中,应用果胶酶处理方法生产的汁液具有澄清和淡棕色外观,如果用直接压榨法生产的苹果汁不经果胶酶处理,则表现为浑浊,感官性状差,商品价值受到较大影响;经果胶酶处理生产葡萄汁,不但感官质量好,而且能大大提高葡萄的出汁率;柑橘汁的色泽和风味依赖于果汁中的混浊成分,混浊是由果胶、蛋白质构成的胶态不沉降的微小粒子的作用,若橘汁中果胶酶不失活,其作用结果会导致柑橘汁中的果胶分解,橘汁沉淀、分层、从而成为不受欢迎的饮料,因此,柑橘汁加工时必须先经热处理,使果胶酶失活。在蕃茄的生产中,用热打浆法可以很快破坏果胶酶的活性,有利于保持产品质地均匀。在水果罐头加工中,切开的果块先经热烫是一种钝酶措施,其中包括钝化果胶酶以防止果肉在罐藏中过度软化。另外,在提取植物蛋白时,常使用果胶酶处理原料,以提高蛋白质的得率。总之,果胶酶在食品贮藏加工中的应用是越来越广。

四、多酚氧化酶

多酚氧化酶广泛存在于各种植物和微生物中。在果蔬食物中,多酚氧化酶分布于叶绿体和线粒体中,但也有少数植物,如马铃薯块茎,几乎所有的细胞结构中都有分布。

多酚氧化酶的最适pH常随酶的来源不同或底物之不同而有差别,但一般在pH 4~7范围之内。同样,不同来源的多酚氧化酶的最适温度也有不同,一般多在20~35 ℃之间。在大多数情况下从细胞中提取的多酚氧化酶在70~90 ℃下热处理短时就可发生不可逆变性。低温也影响多酚氧化酶活性。较低温度可使酶失活,但这种酶的失活是可逆的。阳离子洗涤剂、Ca2+等能活化多酚氧化酶。抗坏血酸、二氧化硫、亚硫酸盐、柠檬酸等都对多酚氧化酶有抑制作用,苯甲酸、肉桂酸等有竞争性抑制作用。

多酚氧化酶是一种含铜的酶,主要在有氧的情况下催化酚类底物反应形成黑色素类物质。在果蔬加工中常常因此而产生不受欢迎的褐色或黑色,严重影响果蔬的感官质量。

多酚氧化酶催化的褐变反应多数发生在新鲜的水果和蔬菜中,例如香蕉、苹果、梨、茄子、马铃薯等。当这些果蔬的组织碰伤、切开、遭受病害或处在不正常的环境中时,很容易发生褐变。这是因为当它们的组织暴露在空气中时,在酶的催化下多酚氧化为邻醌,再进一步氧化聚合而形成褐色素或称类黑素。

五、其他酶类

(一)脂肪酶

脂肪酶存在于含有脂肪的组织中。植物的种子里含脂肪酶,一些霉菌、细菌等微生物也能分泌脂肪酶。

脂肪酶的最适pH常随底物、脂肪酶纯度等因素而有不同,但多数脂肪酶的最适pH在8~9,也有部分脂肪酶的最适pH偏酸性。微生物分泌的脂肪酶最适pH在5.6~8.5之间。脂肪酶的最适温度也因来源、作用底物等条件不同而有差异,大多数脂肪酶的最适温度在30~40 ℃范围之内。也有某些食物中脂肪酶在冷冻到-29 ℃时仍有活性。除了温度对脂肪酶的活性有影响外,盐对脂肪酶的活性也有一定影响,对脂肪具有乳化作用的胆酸盐能提高酶活力,重金属盐一般具有抑制脂肪酶的作用,Ca2+能活化脂肪酶并可提高其热稳定性。

脂肪酶能催化脂肪水解成甘油和脂肪酸,但是对水解甘油酰三酯的酯键位置具有特异性,首先水解1,3位酯键生成甘油酰单酯后,再将第二位酯键在非酶异构后转移到第一位或第三位,然后经脂肪酶作用完全水解成甘油和脂肪酸。

脂肪酶只作用于油—水界面的脂肪分子,增加油水界面能提高脂肪酶的活力,所以,在脂肪中加入乳化剂能大大提高脂肪酶的催化能力。

脂肪酶不但在生物体内有催化脂类物质代谢的重要生理功能,而且在食品加工中也有重要作用。含脂食品如牛奶、奶油、干果等产生的不良风味,主要来自脂肪酶的水解产物(水解酸败),水解酸败又能促进氧化酸败。当然,食品加工中脂肪酶作用后释放一些短链的游离脂肪酸(丁酸、己酸等),当它们浓度低于一定水平时,会产生好的风味和香气,如牛乳和干酪的酸值分别为1.5和2.5时,就会有好的风味,如果酸值大于5,则产生陈腐气味、苦味或者类似山羊的膻味。

利用特异性脂肪酶可以从廉价的脂原料生产可可奶油。当然,脂肪酶不单在食品工业中有广泛用途,在绢纺、皮革脱酯等轻化工及医药工业上也有重要用途。

(二)脂氧合酶

脂氧合酶广泛地存在于植物中。各种植物的种子,特别是豆科植物的种子含量丰富,尤其以大豆中含量最高。

脂氧合酶对底物具有高度的特异性,它作用的底物脂肪,在其脂肪酸残基上必须含有一个顺,顺1,4-戊二烯单位(—CH =CH —CH 2—CH =CH —)。必需脂肪酸的亚油酸、亚麻酸、花生四烯酸都含有这种单位,所以必需脂肪酸都能被脂氧合酶所利用,特别是亚麻酸更是脂氧合酶的良好底物。作用机理如图2-2。

图2-2 脂氧合酶作用机理 上述式中第一步反应是脂氧合酶作用于脂肪酸,有选择性地取走了一个氢,然后再转移到氧,这样就形成了脂肪酸游离基和过氧化物游离基。第二步是脂肪酸游离基被异构化,因而导致双键也被异构化,脂肪酸残基上原来的顺,顺1,4-戊二烯单位变成了顺,反1,3-戊二烯单位。第三步是异构化的脂肪酸游离基得到一个质子形成脂肪酸氢过氧化物。脂氧合酶作用于脂肪酸时参与上述全过程,直至脂肪酸氢过氧化物形成后,酶才再生。

脂氧合酶对食品质量的影响较复杂,它在一些条件下可提高某些食品的质量,例如在面粉中加入含有活性的脂氧合酶的大豆粉,由于脂氧合酶的作用,使得面筋网络更好地形成,从而较好地改善了面包的质量;做成面条,可使产品漂白,口感滑润。存在于番茄、豌豆、香蕉、黄瓜等果蔬中的脂氧合酶,为这些果蔬的良好风味也发挥了作用。可是脂氧合酶在很多情况下又能损害一些食品的质量,例如能直接或间接地影响肉类的酸败和对食品中一些维生素的破坏;减少食品中不饱和脂肪酸的含量和使高蛋白食品产生不良风味等。此外,由于脂氧合酶耐受低温能力强,因此低温下贮藏的青豆、大豆、蚕豆等最好也能经热烫处理,使脂氧合酶钝化,否则易造成质量变劣。在加工豆奶时,将未浸泡的脱壳大豆在80~100 ℃的热水中研磨10 min 左右,也可去除因脂氧合酶作用产生的豆腥味等。显然,控制食品加工时的温度是使脂氧合酶失活的有效方法。

(三)葡萄糖氧化酶

葡萄糖氧化酶最初从黑曲霉和灰绿曲霉中发现,米曲霉、青霉等多种霉菌都能产生葡萄糖氧化酶。但在高等动物和植物中,目前还没发现。葡萄糖氧化酶是一种需氧脱氢酶,在有氧条件下催化葡萄糖的氧化。反应如下:

葡萄糖氧化酶 R 1—CH CH —CH 2—CH CH —R 2 + O 2 顺 顺 R 1—CH CH —CH —CH CH —R 2 + OOH

· · 顺 顺 R 1—CH CH —CH CH —CH —R 2 + OOH · · 顺 顺 R 1—CH CH —CH

CH —CH —R 2 OOH 顺 反 脂氧合酶

葡萄糖+O2葡萄糖酸+H2O2利用该酶促反应可以除去葡萄糖或氧气。例如葡萄糖氧化酶可用在蛋品生产中以除去葡萄糖而防止引起产品变色的美拉德反应,又可用它减少土豆片中的葡萄糖,从而使油炸土豆片产生金黄色而不是棕色。葡萄糖氧化酶还常用于除去封闭包装系统中的氧气以抑制脂肪的氧化和天然色素的降解。例如,螃蟹肉和虾肉浸渍在葡萄糖氧化酶和过氧化物酶的混合溶液中可抑制其颜色从粉红色变成黄色。光催化反应生成的过氧化物会破坏橘子汁、啤酒和酒中的风味物并生成一种不良的异味,也可以用该方法通过减少容器顶隙氧气而加以克服。商品葡萄糖氧化酶试剂中常含有过氧化氢酶,在商品试剂的葡萄糖氧化酶 过氧化氢酶体系中,葡萄糖氧化酶能吸收氧而形成葡萄糖酸和过氧化氢,而过氧化氢酶能催化过氧化氢分解成水和氧。总反应如下:

葡萄糖氧化酶

过氧化氢酶

葡萄糖+1/2O2葡萄糖酸

(四)过氧化氢酶

过氧化氢酶主要是从微生物中提取,它之所以重要是因为它能分解过氧化氢。过氧化氢是食品用葡萄糖氧化酶催化葡萄糖氧化时生成的一种产物,也是食品中少数几种氧化反应的产物,还是一些食品中采用的冷杀菌试剂,所以是一种可能存在于食品中的成分。由于这种成分的强氧化性,它会导致食品的品质不稳定,而且会降低食品的食用安全性。所以,它在食品中的含量应当越低越好。利用过氧化氢酶于食品的意义就在于降低它的含量。例如用过氧化氢可对牛乳进行巴氏消毒,经过处理的牛乳就比较稳定,而且对某些易受热破坏的干酪的制作过程也是合适的,其中过剩的过氧化氢可用过氧化氢酶消除。

(五)过氧化物酶

过氧化物酶广泛存在于所有高等植物中,也存在牛奶中。过氧化物酶通常含有一个血红素作为辅基,催化以下反应:

ROOH+AH2H2O+ROH+A

其中ROOH可以是过氧化氢或有机过氧化物,AH2是供氢体。当ROOH被还原时,AH2即被氧化。AH2可以是抗坏血酸盐、酚、胺类或其他还原性强的有机物。这些还原剂被氧化后大多能产生颜色,因此可以用比色法来测定过氧化物酶的活性。由于过氧化物酶具有很高的耐热性,而且广泛存在于植物中,测定其活性的比色测定法既灵敏又简单易行,所以可以作为考查热烫处理是否充分的指示酶。当食物进行热处理后,如果检测证明过氧化物酶的活性已消失,则表示其他的酶一定受到了彻底破坏,热烫处理已充分了。

从营养和风味方面来看,过氧化物酶也是很重要的,如过氧化物酶能催化维生素C氧化而破坏其生理功能;能催化不饱和脂肪酸的过氧化物裂解,产生不良气味的羰基化合物,同时破坏食品中的许多其他成分;还能催化类胡萝卜素漂白和花青色脱色。

(六)风味酶

水果和蔬菜中的风味化合物,一些是由风味酶直接或间接地作用于风味前体,然后转化生成的。当植物组织保持完整时,并无强烈的芳香味,因为酶与风味前体是分隔开的,只有在植物组织破损后,风味前体才能转变为有气味的挥发

性化合物。而有的是经过贮藏和加工过程而生成的。例如香蕉、苹果或梨在生长过程中并无风味,甚至在收获期也不存在,直到成熟初期,由于生成少量的乙烯的刺激而发生了一系列酶促变化,风味物质才逐渐形成。

对风味物前体转化为风味物产生关键催化作用的专一性酶被称为风味酶。例如蒜氨酸酶、葡萄糖硫苷酶、脂肪氧合酶和S-烷基-L-半胱氨酸亚砜断裂酶分别是蒜氨酸转变为蒜素、芥子苷转变为异硫氰酸酯、亚麻酸转变为黄瓜醛和香茹酸转变为香茹精反应中关键的效应酶,所以它们都是风味酶。

第三节酶的固定化

随着酶学研究的深入和酶工程的发展,酶的应用越来越广泛。将酶用物理或化学的方法固定在不溶于水的载体上,形成一种可以重复使用的酶,叫固定化酶。固定化酶既保持了酶的催化特性,又克服了游离酶的不稳定性,具有可反复或连续使用、易与反应产物分离等显著优点,广泛应用于医药、轻工、食品等行业。

一、固定化酶的制备方法

制备固定化酶的方法很多,有包埋法、吸附法、共价偶联法,以及交联法等(图2-3)。

1.包埋法将酶或含酶菌体包埋在多孔载体中,使酶固定化的方法称为包埋法。

包埋法根据载体材料和方法的不同,可以分为凝胶包埋法和微胶囊包埋法。凝胶包埋法是将酶和含酶菌体包埋在各种凝胶内部的微孔中,制成一定形状的固定化酶的方法。最常用的凝胶有琼脂、琼脂糖、海藻酸钙、卡拉胶、聚丙烯酰胺等。微胶囊包埋法是将酶包埋在高分子半透膜中,制成微胶囊固定化酶的方法。常用的半透膜有尼龙膜、醋酸纤维膜等。

2.吸附法利用各种固体吸附剂将酶或含酶菌体吸附在其表面而使酶固定化的方法称为吸附法。吸附法常用的吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃、硅胶、羧基磷灰石等。

吸附法制备固定化酶,操作简便、条件温和,不会引起酶的变性失活,载体价廉易得,而且可反复使用。但由于是靠物理吸附作用,结合力较弱,酶与载体结合不太牢固而易脱落。

3.共价偶联法利用酶活性中心外的非必需基团与固相载体上的基团共价结合而制成固定化酶的方法叫共价偶联法,也叫共价结合法。这种方法的优点是酶与载体牢固,制得的固定化酶稳定性好。缺点是制备过程中反应条件较为强烈,难以控制,易使酶变性失活。共价偶联法常用的载体有纤维素、葡聚糖、琼脂糖、甲壳素等。

4.交联法交联法是采用双功能试剂使酶分子之间或酶分子与固相载体之间发生交联作用而制成固定化酶的方法。常用的双功能试剂有戊二醛、己二胺、顺丁烯二酸酐、双偶氮苯等。其中应用最广泛的是戊二醛。

用交联法制备的固定化酶结合牢固,可长时使用。但由于交联反应较激烈,酶分子的多个基团被交联,酶活力损失较大。实际使用时,往往与其他固定化方法联用,如将酶先经凝胶包埋后,再经交联等。这种采用两个或多个方法进行固定化的技术,称为双重或多重固定化法,用此法可制备出酶活性高、机械强度好

的固定化酶。

图2-3 制备固定化酶的各种方法

二、固定化酶的性质

酶经固定化以后,由于受到载体等因素的影响,其特征可能会发生某些改变。为此,在固定化酶的应用过程中,必须了解固定化酶的性质与游离酶之间的差别,并对操作条件加以适当调整。

1.稳定性固定化酶的稳定性一般比游离酶的稳定性好,主要表现在对热、蛋白酶、各种变性剂的耐受性增强,使用和保存的稳定性提高。

2.最适温度固定化酶的最适作用温度一般与游离酶差不多,活化能也变化不大。但也有些固定化酶的最适温度与游离酶比较有明显的差别。例如,氨基酸酰化酶最适温度一般在60 ℃左右,用DEAE-纤维素固定化后,其最适温度高达72 ℃。

3.最适pH 酶经固定化后,其最适pH往往会发生变化,这一点在使用时必须引起注意。影响固定化酶最适pH因素主要有两个:一个是载体的带电性质;另一个是酶催化反应的产物性质。

载体的带电性质对固定化酶的最适pH也有明显的影响。一般说来,带负电的载体制备固定化酶,其最适pH比游离酶高;而带正电的载体制备的固定化酶其最适pH比游离酶低;而用电中性的载体制备的固定化酶,其最适pH一般不改变。

酶催化反应的产物性质对固定化酶的最适pH也有一定的影响。一般来说,产物为酸性时固定化酶的最适pH比游离酶高一些;产物为碱性时,固定化酶的最适pH比游离酶低一些,产物为中性时,最适pH一般不改变。

4.底物特异性固定化酶的底物特异性与游离酶比较有所不同。比如对一些可作用于大分子底物,也可作用于小分子底物的酶而言,经固定化后,由于受到载体空间位阻作用的影响,大分子底物难于接近酶分子,而使其催化反应速度大大降低,而小分子底物的反应速度则不受影响。

三、固定化酶在食品工业中的应用

自1953年N·Grubhofer用共价偶联法,在载体聚氨基聚苯乙烯树脂上连接了淀粉酶、羧肽酶、胃蛋白酶与核糖核酸酶,获得首批固定化酶之后,经多年实线,运用各种各样的方法,现已制备出数百种固定化酶。如生产中使用规模最大

的固定化酶是在DEAE-葡聚糖凝胶上固定的氨基酸酰化酶。该酶水解N-酰基-L-氨基酸中的酰胺键,对于N-酰基-D-氨基酸无作用,故可用来拆分DL-氨基酸,制备L-氨基酸。

在食品工业中,可把固定化的α-淀粉酶与葡萄糖淀粉酶混合装柱,糊化的淀粉溶液流经此柱后,淀粉便水解为葡萄糖,这是近几年提出的酶法制葡萄糖的一条新途径。近几年来,不少地方采用过氧化氢对牛奶灭菌,为了除去牛奶中过量的过氧化氢,可用固定化的过氧化氢酶使之分解。此外,还有人介绍固定化的葡萄糖氧化酶清除蛋清中微量的葡萄糖,以防制成的蛋白干片在贮存中发生褐变。

固定化酶在食品工业上还有以下几方面的应用:如用固定化果胶酶澄清果汁;用固定化木瓜蛋白酶澄清啤酒;用固定化葡萄糖异构酶将葡萄糖转变为果糖等。一旦固定化酶大规模用于食品工业,必将有助于更经济更有效地生产高质量的食品。

发酵食品与酿造工艺学实验指导

发酵与酿造食品工艺学实验指导书 食品科学与工程实验室 徐君飞

实验一腐乳的加工 1、实验目的 1.1 掌握豆腐乳发酵的工艺过程。 1.2 观察豆腐乳发酵过程中的变化。 2、原理 豆腐乳是我国独特的传统发酵食品,是用豆腐发酵制成。民间老法生产豆腐乳均为自然发酵,现代酿造厂多采用蛋白酶活性高的鲁氏毛霉或根霉发酵。豆腐坯上接种毛霉,经过培养繁殖,分泌蛋白酶、淀粉酶、谷氨酰胺酶等复杂酶系,在长时间后发酵中与腌坯调料中的酶系、酵母、细菌等协同作用,使腐乳坯蛋白质缓慢水解,生成多种氨基酸,加之由微生物代谢产生的各种有机酸与醇类作用生成酯,形成细腻、鲜香的豆腐乳特色。 早在公元5世纪的北魏古籍中,就有关于腐乳生产工艺的记载“于豆腐加盐成熟后为腐乳”。明李晔的《蓬栊夜话》亦云:“黟(移)县人喜于夏秋间醢腐,令变色生毛随拭之,俟稍干……”。千百年来,腐乳一直受到人们的喜爱。这是因为经过微生物的发酵,豆腐中的蛋白质被分解成小分子的肽和氨基酸,味道鲜美,易于消化吸收,而腐乳本身又便于保存。腐乳品种多样,如红豆腐乳、糟腐乳、醉方、玫瑰红腐乳、辣腐乳、臭腐乳、麻辣腐乳等。品种虽多,但酿造原理相同。 发酵豆制品营养丰富,易于消化,在发酵过程中生成大量的低聚肽类,具有抗衰老、防癌症、降血脂、调节胰岛素等多种生理保健功能,对身体健康十分有利。 具有降低血液中胆固醇浓度、减少患冠心病危险的功能。发酵豆制品中含有丰富的苷元型异黄酮,它是大豆和豆腐中原有的异黄酮经发酵转化的,但比原有的异黄酮功能性更强,且更易吸收。60克豆豉、60克豆酱或100克腐乳就含有50毫克的高活性异黄酮,达到美国食品与药物管理局推荐预防冠心病的每日摄取量。

高中生物选修1《第3章食品加工技术第1节发酵食品加工【实验】利用发酵法以果汁...》17北师大教案设计

1 《利用发酵法以果汁制作酒和醋》教学设计 汕头市澄海实验高级中学 陈沛纯 一、教学内容分析 本节课主要是以葡萄酒和葡萄醋为例介绍果酒和果醋的制作和检测方法,重在培养学生设计实验,动手操作等科学探究能力。葡萄酒的制作是以酵母菌的细胞呼吸为知识基础,与必修内容联系十分密切,熟练掌握葡萄酒的制作原理以及能够设计出合理的制作装置对于学生更好的理解酵母菌的有关内容是十分必要的。 二、学情分析 通过必修1的学习,学生对于酵母菌细胞呼吸的方式已掌握得比较清楚,掌握制作果酒和果醋的基本操作方法比较容易,但由于高二学生知识体系还在不断完善,动手操作的能力较弱,在葡萄酒的制作过程中控制发酵条件难度较大。 三、教学目标 依据课标、考纲要求以及本校学生的特点,确定教学目标如下: 1.知识与技能 (1)说出酵母菌的细胞呼吸方式,会写相关反应式。 (2)说明果酒和果醋制作的原理,列举其对社会生产和人

类生活的意义。 (3)说出果酒、果醋的实验流程,正确理解影响发酵的因素。 (4)可以正确使用一般的实验器具,尝试设计简易的葡萄酒的制作装置,独立完成葡萄酒的制作。 2.过程与方法 (1)引导学生主动参与探究过程,培养学生搜集和处理科学信息的能力,获取新知识的能力以及用简约科学术语表达问题的能力。 (2)在学习中体会已有知识的不足和进一步探究、拓展的必要性。 3.情感、态度与价值观 (1)积极参加实验设计,在合作交流中探索未知,在发现、探究、操作过程中,获得知识,体验成功的乐趣,激发学习的热情,树立学习的信心。 2 (2)关注生活,体验葡萄酒制作的乐趣,感受传统发酵技术给人类生活带来的变化。 四、教学重点和难点 1.说明果酒和果醋的制作原理,设计制作装置,制作出果酒和果醋为重点。 2.制作过程中发酵条件的控制为难点。

酶工程技术在食品中的应用

酶工程技术在食品中的应用 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分。自从1906年人类发现了用于液化淀粉生产乙醇的细菌淀粉酶以来,经过几十年的发展,酶制剂已经广泛地应用于食品加工、纺织、洗涤剂、饲料、医药等行业,给这些行业带来了新的生机和活力。酶是具有生物催化能力的蛋白质,其催化反应具有高效性和专一性。国际生物化学联合会把酶分成六大类---氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类。本文将简要介绍几种常用于食品加工中的酶的特性及其作用机理。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 一、酶工程技术简介 1.酶制剂的生产来源 酶制剂的生产酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。它们大多数由微生物生产,这是因为微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故可在短时间内廉价地大量生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。基因工程技术的最大贡献在于,它能按照人们的意愿构建新的物种,或者赋予新的功能。虽然目前基因工程

还未形成大规模的产业,但是它作为一种改良菌种,提高产酶能力,改变酶性能的手段,已受到了人们的极大关注。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。基因工程菌生产a一淀粉酶是目前人们研究最多的课题,美国CPC国际公司的Moffet研究中心,已成功地采用基因工程菌生产了a一淀粉酶,并已获得美国食品药品管理局(FDA)的批准。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。 2.酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节,目前采用的技术主要有沉淀法,吸附法和色谱法,分子筛分法,陈结法,减压浓缩法和电泳法等。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化技术是酶工程的关键技术之一,自从1969年世界上第一次使用固相酶技术以来,至今已有30多年的历史。应用固定化葡萄糖异构酶生产高果糖浆是现代酶工程在工业生产中最成功、规模最大的应用。固定化酶可用于处理液态食品,价格昂贵的酶经固定化后,可以提高稳定性,降低成本,延长使用寿命,实现连续化和自动控制,减少精制过程中沉淀,过滤等操作费用。

酶制剂在食品工业中的应用 论文

酶制剂在食品工业中的应用 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用。并对酶制剂在食品工业中的发展方向和安全问题进行了讨论。 关键词:酶制剂;食品工业;应用 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。 随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 1.酶与食品的关系 在食品生产加工中,为了保持食物原有的色、香、味和结构,就要尽量避免引起剧烈的化学反应。酶是一类具有专一性生物催化能力的蛋白质,因此作用条件非常温和。许多酶所催化的反应从动植物最初生长时就开始了,当它被作为食品时,其体内酶的催化作用仍然继续进行着。如动物体死后,其合成代谢停止,而分解代谢加快,因此就会导致组织腐败,但这可能也会改善某些食品原料的风味。在大多数成熟的水果中,由于某些酶的增加,会使得其呼吸速度加快,淀粉转变为糖,叶绿素发生降解,细胞体积快速增加。这些变化,对于水果风味的改善是有益的;而对蔬菜来讲,叶绿素的降解则是有害的。 2.与食品生产有关的酶制剂 2.1与淀粉糖和甜味剂生产有关的酶制剂 淀粉酶工业上应用酶制剂已有数十年的历史,淀粉加工用酶所占比例达到15%,是酶制剂最大的市场。近年来淀粉酶类耐热性大大提高,并已通过基因工程技术改善其品质。特别要提到的是一系列新的酶制剂的发现和应用,如在1995年已经工业化的酶转化淀粉生产海藻糖,改变了先前从酵母等食物中抽提的生产方法,生产成本大大下降。这种糖不仅耐酸、耐热、防龋齿,还可抑制蛋白质变性和油脂酸败,市场日益扩大。 2.2与油脂生产有关的酶制剂 油脂是人类食品的主要营养成分之一,有赋予食品不可缺少的风味,而且用酶法生产有益健康的油脂的正逐步应用成熟,如用DNA等高度不饱和脂肪酸作为食品的原材料所制作的食品销售额已达400亿日元。 2.3与蛋白质有关的酶制剂 蛋白质在食品加工中,不仅具有营养的功能还具有各种物理功能,提高这类功能将会增加其附加值,要达到这个目的需要利用蛋白酶类。为了以蛋白质水解后的产物作为生产氨基酸系列的调味品,就必须把蛋白质彻底分解为氨基酸。 2..4与面包生产有关的酶制剂

酶工程在食品方面的应用

浅谈酶工程及其在食品领域中的应用 摘要:酶工程是现代生物技术的重要组成部分。酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控。本文介绍了酶工程和酶在食品领域中的应用,并对酶工程技术研究应用前景做了整体展望。 关键词:酶工程,固定化,食品 1.酶和酶工程 1.1简述酶和酶工程 酶是由生物体产生的具有催化活性的蛋白质.它能特定地促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点.这些特点比传统的化学反应具有较大的优越性.【1】酶工程技术是现代五大生物工程技术之一,是利用酶或者微生物细胞、动植物细胞、细胞器等所具有的某些功能,借助于工程学手段来提供产品或服务于社会的一门科学技术。酶工程技术的应用范围很广,主要包括酶的分离和提取、各类酶的开发和生产、固定化技术的研发、酶反应器的研制等几个方面【2】 1.2酶的来源、提取、分离和纯化 酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。酶是蛋白质,因此一切蛋白质的分离原则都应该遵行。酶作为特殊的蛋白质,最重要的原则是纯化过程中一定要保持其活性。酶的分离纯化化学方法一般很据酶的分子量、等电点、疏水性等生化性质,选择相应的沉淀、盐析、层析方法。 1.3酶的生产 微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故酶大多有微生物生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。【4】基因工程的克隆流程包括:目的基因的获得、将目的基因克隆到合适的质粒载体;、将重组质粒转染细胞和表达产物的检测。其中,目的基因的获得主要有三条途径:以含有目的的基因的生物DNA 中获得、以DNA作为目的基因和用化学方法合成目的基因。在宿主体系的选择方面,目前在食品级酶的生产中,原核生物一般选用枯草杆菌、地衣芽抱杆菌、乳酶链球菌、嗜热链球菌等。真核生物一般以酵母和哺乳动物细胞作宿主细胞。【16】 1.4 固定化酶 1.4.1固定化酶简介 酶的固定化是用固体材料将酶束缚或限制于一定区域内,进行特有的催化反应,并可回收及重复利用的技术。酶的化学本质是蛋白质,其最大弱点是不稳定性,对酸、碱、热及有机溶液容易发生酶蛋白的变性作用,从而降低或失去活性。而且酶往往在溶液中进行反应,反应以后会残留在溶液系统中不易回收,造成最终产品生化分离提纯操作上的麻烦。加之酶反应只能分批进行,难于连续化、自动化操作。这大大地阻碍了酶工程的发展应用为克服上述缺点,要将游离酶固定化后进行应用。固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以它原则上能在批量操作或连续操作中重复使用酶。固定化酶技术是酶工程的核心,它使酶工程提高到一个新水平。【6】 1. 4.2吸附法 吸附法是通过非特异性物理吸附法或生物物质的特异吸附作用将酶吸附在炭、有机聚合物、玻璃、无机盐、金属氧化物或硅胶等材料上。该方法又分为物理吸附法和离子吸附法。

高中生物第二章第一节发酵与食品加工课后训练

发酵与食品加工 1 发酵是利用微生物生产有用代谢产物的一种生产方式,通常说的乳酸菌发酵是()。 A.固体发酵B.氨基酸发酵 C.厌氧发酵 D.需氧发酵 2 下列关于醋酸菌的叙述,正确的是()。 A.醋酸菌为严格有氧呼吸 B.醋酸菌在有氧或无氧的环境中都能生存 C.醋酸菌能形成芽孢 D.醋酸菌能将淀粉分解成醋酸 3 酒精与重铬酸钾在酸性条件下颜色反应为()。 A.红色 B.紫色 C.灰绿色 D.棕色 4 利用酵母菌酿制啤酒,需要先通气,后密封,下列说法不正确的是()。 A.酵母菌是兼性厌氧型微生物 B.先通气,酵母菌大量繁殖,其种群的增长曲线为“S”型 C.密封后酵母菌可进行无氧呼吸产生酒精 D.密封的时间越长,产生的酒精越多 5 以下不属于发酵的是()。 A.利用需氧型青霉菌生产青霉素 B.缺氧时人的组织细胞产生乳酸 C.利用酵母菌的无氧呼吸获得酒精 D.利用乳酸菌制作泡菜 6 泡菜坛内有时会长一层白膜,这层白膜主要是由下列哪种生物的繁殖造成的?() A.酵母菌 B.毛霉菌 C.乳酸菌 D.醋酸菌 7 葡萄酒呈现红色的原因是()。 A.在发酵过程中产生了红色的物质 B.在发酵的最后程序中加入了红色的食用色素 C.红色葡萄皮中的色素溶解在发酵液中 D.酒精发酵的最终产物C2H5OH是红色的 8 下列哪项操作会引起发酵液受污染?() A.榨汁机只用温水进行清洗,并晾干 B.发酵瓶先用温水清洗,再用75%的酒精擦拭后晾干使用 C.葡萄先去除枝梗,再冲洗多次 D.每次排气时,只拧松瓶盖,不将盖完全揭开 9 下列条件不是酵母菌快速生长繁殖因素的是()。 A.含糖量高的培养基 B.温度20 ℃左右 C.pH=2.5 D.pH=6 10 下列关于发酵的叙述,正确的是()。 A.发酵就是无氧呼吸 B.发酵就是发酵工程 C.发酵就是只获得微生物的代谢产物 D.发酵是通过微生物的培养来大量生产各种代谢产物的过程 11 (2010·北京高考理综)在家庭中用鲜葡萄制作果酒时,正确的操作是()。 A.让发酵装置接受光照 B.给发酵装置适时排气 C.向发酵装置通入空气 D.将发酵装置放在45 ℃处

食品科学与工程专业发酵食品工艺学课程教学大纲

发酵食品工艺学课程教学大纲 课程名称:发酵食品工艺学(Fermented Food Technology) 课程编号:FFT205 课程类别:专业课程课程性质:选修 总学时:44,其中(理论学时,20 ;实践学时:24 )学分:2 适用专业:食品科学与工程责任单位:生物食品学院 先修课程: 一、课程性质、目的 发酵食品工艺学是以食品微生物学、食品发酵基础为支撑,利用微生物细胞的特定性状,通过现代化工程技术,生产食品、保健品或添加剂的一门科学技术。它不但是支撑现代食品工业的重要技术,同时也是生物技术产业化的重要手段。为此,食品科学与工程专业开设《发酵食品工艺学》课程,该课程为食品科学与工程专业的专业必修课之一。《发酵食品工艺学》以发酵和酿造食品的工业化生产为主,注重现代生物技术在该领域的应用,对各类产品的发酵、酿造技术和食品工业废弃物的生物学处理进行了论述,为学生从事该领域的生产和科学研究提供必要的基础知识。通过本课程的学习,使学生们熟悉食品发酵与酿造的生产的一般过程,掌握发酵与酿造食品,如酒精发酵与酿酒、氨基酸与有机酸发酵、发酵豆制品、酶制剂等生产的基本理论和技术,了解食品发酵与酿造工业的发展状况及新技术、新设备的应用情况。 二、课程主要知识点及基本要求 第一章绪论 一、发酵食品的概念二、发酵食品的种类三、发酵食品的特点四、发酵食品的发展历史 教学目的与要求:了解发酵食品的概念、种类、特点及发展历史。明确学习这门课程的目的和任务。 重点:发酵、发酵食品的概念 第二章发酵食品与微生物 第一节发酵食品与细菌 一、乳酸菌二、醋酸菌三、枯草杆菌四、棒杆菌 第二节发酵食品与酵母 一、酵母的繁殖方式二、酵母的糖代谢三、常见的酵母种类 第三节发酵食品与霉菌 教学目的与要求:了解食品发酵过程中的主要微生物的形态、特征及生理特性,掌握发酵食品中常见微生物的判别方法和用途,生产出优质发酵食品。 重点:发酵食品常用微生物的形态、特征及生理特性。

酶在食品工业中的应用与前景

食品科学,2006(12):酶在食品工业中的应用与前景 肖玫1郭雪山2 (1南京农业大学工学院,南京210031 2南京财经大学食品科学与工程学院,南京210003) XIAO Mei 1 GUO Xue shan 2 (1. Engineering College,Nanjing Agricultural Universituy, Nanjing 210031,China ; 2. Food Science And Engineering College,Nanjing Universituy of Finance And Economics,Nanjing 210003,China) 摘要:本文介绍了酶在食品工业中的重要作用;概括了酶在肉类、鱼类加工、蛋品加工、乳品工业、果蔬加工、饮料、酿酒工业、焙烤食品和制糖中的应用;展望了酶对食品工业的发展前景。 关键词:酶;食品工业;应用;前景 The Application and the prospect of developmentof Enzy matic Techology in the Food Industry Abstracts:This paper introduces important effect of enzy in food industry,summarizes the application of enzy in the production of flesh, fish, eggs, milk, vegetable, beverage, vintage, toast food and refine suger,and gives developing prospect of enzy in food industry. Key words: Enzy;Food Industry;Application Prospect 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分,是利用酶的特异催化功能,将一种物质转化为另一种物质的技术,即将生物体内具有特定催化作用的酶类或细胞、细胞器分离出来,在体外借助工业手段和生物反应器进行催化反应来生产某种产品的工程技术。当前酶制剂的生产,主要依靠从微生物发酵液或细胞中提取有用的酶类,如——淀粉酶、糖化酶、蛋白酶、脂酶、果胶酶、纤维素酶、葡萄糖氧化酶、葡萄糖异构酶以及用于重组DNA技术的各种工具酶等。这些酶类已被广泛用于食品加工、纺织、制革、医药、加酶洗涤剂生产和基因工程中。 生物技术在食品工业中应用的代表就是酶的应用。目前已有几十种酶成功地用于食品工业。例如,葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品的

酶工程的发展状况及其应用前景

酶工程的发展状况及其应用前景 摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。 关键词:酶工程生物催化剂酶的固定 正文: 随着酶生产的不断发展,酶的应用越来越广泛。现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。 一、酶工程的发展及应用现状 (一)国内外酶制剂的发展现状 BCC最新研究报告显示,未来4年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至2016年的约61亿美元。该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。2011年生物酶的市场价值达12亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。2011年食品和饮料活性酶的市场价值接近13亿美元,未来4年还将以%的年均复合增长率增长,预计2016年达21亿美元。2011年其他酶制剂的市场价值为15亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。 我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。 (二)酶工程的应用现状 一、酶工程技术在医药工业中的应用 1、酶的固定化技术 酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrierorsupport),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。不使用固体材料作为载体,通过酶分子之间的相互交联形成聚集体,也可将酶固定化,称为无载体酶固定化。由于酶的蛋白质属性,进人人体后产生免疫反应,因稀释效应,而无法集中于靶器官组织,常不能保持最适合的治疗浓度,而固定化酶则很好的克服了游离酶的这些缺点,应用于治疗镁缺乏症、代谢异常症及制造人工内脏方面,如固定化L-天冬酰胺酶用于治疗白血病。葡萄糖氧化酶被固定化在纳米微带金电极上可用于活体检测的微生物传感器③。 固定化酶技术可用于治疗一些代谢障碍疾病。已知人类关于新陈代谢的疾病已过120余种,很多病因归结为人体缺乏某种酶的活性,一种可能的治疗方法就是通过某种方式给病人提供他所缺乏的酶。其提供的方式主要有:①将固定化酶用于体内作为治疗药物;②将固定化酶组装成体外生物反应器,通过体外循环作为临床治疗剂。将固定化酶用于临床诊断的例子很多,如各种酶测试盒层出不穷,采用固定化酶柱反应器的FIA(流动注射法)可用于临床诊断检测尿酸、葡萄糖、氨、尿素、胆甾醇、谷氨酸、乳酸、无机磷等。 2、酶催化技术 主要介绍非水相介质中的酶催化,传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等。用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酰胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。目前非水相中的酶催化技术已衍生出以下几类体系:①水与有机溶剂的互溶均相体系;②水与有机溶剂形

1运用发酵技术加工食品

1. 运用发酵技术加工食品 【学习目标】 1、简述果酒、果醋、腐乳的制作原理。 2、说出制作果酒、果醋和腐乳的相关微生物及其代谢特点 3、尝试利用简单装置制作果酒、果醋和腐乳 【考纲要求】1.果酒、果醋的制作:B级2腐乳的制作:A级 【基础回顾】 1、发酵是指 。 2、果酒制作利用的微生物是,其来源是,其代谢类型是。最适宜温度一般为。 3、酵母菌有氧呼吸的反应式为, 酵母菌酒精发酵的反应式为。 4、在果酒的生产中,还广泛使用和等酶制剂,它们的作用分别是 5、果醋制作利用的微生物是,其代谢类型是,其最适生长温度是。若氧气、糖源充足时,醋酸菌将葡萄汁中的糖分解成,其反应式为:。如果以淀粉为原料时需加 和以产生淀粉酶和糖化酶;以二糖或单糖为原料时,需加入等。 6、多种微生物参与了豆腐的发酵,其中起主要作用的是。腐乳制作的原理是 。其适宜的温度为。工业生产腐乳的三部曲为 加盐的要求,其目的 加料酒的目的 加香辛料的目的 【共同探究】 一、果酒和果醋的制作 (一)果酒制作的原理是: 微生物:酵母菌;原理:酵母菌的无氧呼吸(酒精发酵);温度控制:18—25℃。 酵母菌有氧呼吸的反应式为, 酵母菌酒精发酵的反应式为。 (二)果醋制作的原理 微生物:醋酸菌;原理:醋酸菌的有氧呼吸;温度控制:30—35℃。 若氧气、糖源充足时,醋酸菌将葡萄汁中的糖分解成,其反应式 为:。如果以淀粉为原料时需加和 以产生淀粉酶和糖化酶;以二糖或单糖为原料时,需加入等。 (三)实验流程:

挑选葡萄清洗葡萄榨取葡萄汁发酵葡萄汁果酒 1、材料的选择与处理: 选择新鲜的葡萄,榨汁前先冲洗后去枝梗,以防止葡萄汁流失及污染 2、菌种的来源:。 【思考题1】为什么新鲜的葡萄榨汁前不宜反复冲洗? 3、防止发酵液被污染: 4、发酵条件的控制: 葡萄汁装入发酵瓶时,要留约1/3空间,目的是先让酵母菌进行有氧呼吸快速繁殖,耗尽氧气后再进行酒精发酵,防止发酵过程中产生的co2造成发酵液的溢出 【思考题2】(10北京卷)在家庭中用鲜葡萄制作果酒时,正确的操作是 A.让发酵装置接受光照B.给发酵装置适时排气 C.向发酵装置通入空气D.酵母菌装置放在45℃处 严格控制温度:18℃—25℃利于酵母菌的繁殖和酒精发酵;30℃—35℃利于醋酸菌的繁殖和醋酸发酵 充气:酒精发酵为无氧发酵,需封闭充气口;醋酸发酵为需氧发酵,需经充气口充气 5、检验果洒的制作是否成功,可嗅味和品尝初步鉴定,还可利用来检测酒精的存在,其原理是。 【注意】 果酒制作和果醋制作过程都需要微生物的参与,但二者所需要的条件不同,如温度、对氧的需求。 果酒制作:前期需氧,后期不需氧,最适温度为20℃ 果醋制作:一直需氧,最适温度为30℃—35℃ 【思考题3】下列关于果酒制作过程的叙述中,正确的是 A.应先去除葡萄的枝梗,再进行冲洗,这样洗得彻底 B.使发酵装置的温度维持在20 ℃左右最好 C.在发酵过程中,需从充气口不断通入空气 D.由于酵母菌的繁殖能力很强,不需要对所用的装置进行消毒处理 【思考题4】下列关于用塑料瓶制作果酒和果醋的叙述,正确的是 A.为了提高果酒的产出量,果汁应尽量装满发酵瓶 B.醋酸发酵阶段应封闭充气口,防止杂菌污染 C.制果酒和果醋过程中每天需适时拧松或打开瓶盖 D.果酒制成后,可将装置转移至温度较高的环境中制果醋 【思考题5】果酒和果醋制作过程中,发酵条件的控制至关重要,相关措施正确的是 A.葡萄汁要装满发酵瓶,造成无氧环境,有利于发酵 B.在葡萄酒发酵过程中,每隔12h左右打开瓶盖一次,放出CO2 C.果酒发酵过程中温度控制在30℃,果醋发酵过程中温度控制在20℃ D.在果醋发酵过程中,要适时通过充气口充气,有利于醋酸菌的代谢 二、腐乳的制作 1、实验原理:主要微生物是毛霉。 豆腐中的蛋白质在毛霉等微生物产生的蛋白酶作用下水解成肽、氨基酸,豆腐中的脂肪在毛霉等微生物产生的脂肪酶作用下水解成甘油、脂肪酸等。 2

多酚氧化酶在食品中的应用

多酚氧化酶在食品中的研究进展 摘要:多酚氧化酶(PPO)存在于许多种类的食品中,是引起食物褐变的主要因素,酶促褐变严重影响了食品的感官品质,使得食品的保质期缩短和价值显著降低,不少新鲜食品的销售市场因此受到限制[1]。本文介绍了多酚氧化酶的酶学性质以及相应的抑制方法,并对其应用做出论述。 关键词:多酚氧化酶;性质;抑制方法;应用 多酚氧化酶(PPO)是自然界中分布十分广泛的一类末端氧化酶,属于铜金属酶类,其化学性质稳定,是植物叶子、果实等发生褐变的主要作用酶类[2]。此外,还会引起食品的褐变,损害食品的感官风味质量[3-4]。PPO普遍存在于植物、昆虫和真菌之中,甚至在腐烂的植物残渣上都还可以检测到它的存在。因此该酶与果蔬的加工品质密切相关,科学家们很早就开始对它进行深入彻底的研究[5-6]。 农产品的酶促褐变与多酚氧化酶活性和含量密切相关。这方面研究很多,酶促褐变不仅影响产品外观、风味、营养和加工性能,而且大大降低耐贮性,尤其对肉色较浅且容易碰伤的水果和蔬菜影响更为严重,产生的经济损失更大[7-9]。通常PPO 与底物被区域化分开,PPO 在质体中以潜伏状态存在,而PPO 的底物存在于液泡中。只有当植物体内发生生理紊乱或组织受损时,PPO 与底物的亚细胞区域化才被打破,PPO 底物被激活产生黑色或褐色的沉积物,这是果蔬等农产品酶促褐变的主要原因[10]。 1、多酚氧化酶的酶学性质 与多酚氧化酶酶学性质的主要研究内容有:酶的分离和纯化、测定酶促反应的速度、了解影响酶促反应的因素等等[11]。 在分离和纯化时,一般是进行纯化,再将纯度高的PPO酶液进行酶学的性质研究[12-13]。PPO活性检测则一般通过测定产物生长速度(初速度)来测定,通过采用分光光度法,即在一定波长下测定从醌生成的色素的吸光度,再根据吸光度来定义酶的活性大小[14]。目前,已知的影响PPO酶促反应速度的因素主要有:温度、同一底物不同浓度、不同的底物、pH值、激活剂、抑制剂等[15]。

高中生物第二章发酵技术实践第4课时运用发酵技术加工食品同步备课教学案苏教版

第4课时 运用发酵技术加工食品(Ⅰ) [学习导航] 1.结合教材P 37,掌握发酵作用的基本原理和方法。2.结合教材P 39~40,学习制作果酒、果醋的实际操作技能。3.设计并安装简单的生产果酒及果醋的装置。 [重难点击] 1.掌握发酵作用的基本原理和方法。2.学习制作果酒、果醋的实际操作技能。 3.设计并安装简单的生产果酒及果醋的装置。 一、果酒、果醋制作的原理 1.发酵技术的应用 (1)发酵:是指利用微生物的生命活动来制备微生物菌体或其代谢产物的过程。 (2)发酵技术:是指利用微生物的发酵作用,大规模生产发酵产品的技术。 (3)应用:发酵技术在生产单细胞蛋白(如酵母菌)、含醇饮料(如果酒、白酒、啤酒)、发酵乳制品(如酸奶、奶酪)、调味品和发酵食品(如味精、醋、腐乳、泡菜)、甜味剂(如木糖醇、糖精)、食品添加剂(如柠檬酸、赖氨酸)等方面具有广泛的应用。 2.果酒的酿制 (1)原料:各种果汁为原料。 (2)利用技术:通过微生物发酵而制成的含酒精的饮料。 (3)菌种:酿酒酵母菌。 ①类型:真核生物,具有由核膜包被的细胞核。 ②繁殖方式:出芽生殖和孢子生殖。温度低时形成孢子,进入休眠状态;温度适宜时,进行出芽生殖,繁殖速度快。 ③代谢类型:异养兼性厌氧微生物。 (4)制作原理 ①在有氧条件下,酵母菌进行有氧呼吸,大量繁殖,反应式为:C 6H 12O 6+6O 2+6H 2O ――→酶6CO 2 +12H 2O +能量。 ②在无氧条件下,酵母菌进行酒精发酵,反应式为: C 6H 12O 6――→酶2C 2H 5OH +2CO 2+能量。 3.果醋制作的原理 (1)醋酸菌:又名醋酸杆菌。 ①类型:单细胞原核生物。 ②繁殖方式:二分裂。 ③代谢类型:异养需氧型。

酶工程在食品工业中的开发应用

酶工程在食品工程中的开发应用 系部:安全工程系 学生姓名: 张开科 专业班级:2014级食品营养与检测 学号:1401050204 指导老师:刘振平

酶工程在食品工业中的开发应用 食品营养与检测 学生:张开科导师:刘振平 摘要: 酶工程在食品工业中的应用,介绍酶工程在水解纤维素、生产功能性糖类、生产环状糊精、干奶酪制品、酿酒工业中以及其他食品加工中中的应用,从而对酶工程在新世纪发的展做出了展望 酶工程技术就是利用了酶所具有的催化功能生产人类生活所需产品的技术,其中包括了酶的生产与研制,酶和其细胞或细胞器的固定化技术,酶分子的改造和修饰,以及生物传感器。酶是活细胞产生的具有高度专一性、高度受控性和高效催化功能的特殊蛋白质。酶的催化作用可在在常温、常压下进行,又有可调控性,酶工程技术在食品工业中是使用最广泛的也是众多行业中使用最早的 生物技术在食品工业中应用的典型代表可以说是酶在食品工业中的各种 应用。酶制剂在食品工艺中的应用为新时代的食品工业注入了新的活力,开辟了新的发展方向,极大地推动了新世纪食品生产工业技术的发展。80年代末,就已经研发出多种蛋白酶、脂肪酶,到目前为止,国际上食品工业酶的应用超过了50多种。主要有、蛋白酶、淀粉酶、果胶酶、糖化酶、纤维素酶等。主要应用于食品保鲜,瓜果蔬菜的加工、蛋白质制品加工、淀粉生产以及改善食品品质等。酶工程技术在食品工业中的应用不仅降低了生产成本,更提高了食品的质量,还为食品工业生产带来了巨大的经济效益和社会效益。 关键词:酶工程食品工业

目录 第一章酶工程的概述 (3) 1.1 酶工程的概念 (3) 1.2酶工程的发展史 (3) 1.3酶的主要用途 (3) 第二章酶基本概念、命名及其分类 (4) 2.1酶的生产方法 (4) 2.2酶的分类 (5) 2.3酶的命名 (6) 2.4酶的分离纯化 (6) 第三章微生物发酵产酶 (6) 3.1 产酶细胞的要求 (6) 3.2 酶发酵生产常用的微生物 (7) 3.3 提高酶产量的措施 (7) 第四章酶工程在食品工业中的应用 (7) 4.1酶工程技术在乳品加工中的应用 (7) 4.2酶工程技术在果蔬加工中的应用 (8) 4.3 鱼肉制品的加工 (8) 参考文献: (9)

高中生物发酵食品加工

高中生物发酵食品加工2019年3月21日 (考试总分:100 分考试时长: 120 分钟) 一、单选题(本题共计 20 小题,共计 100 分) 1、(5分)下列是有关腐乳制作的几个问题,其中正确的是 ①腐乳的制作主要是利用了微生物发酵的原理,起主要作用的微生物是青霉、曲霉和毛霉 ②含水量为70%左右的豆腐适于作腐乳,用含水量过高的豆腐制腐乳,不易成形,且不利于毛霉的生长 ③豆腐上生长的白毛是毛霉的白色菌丝,严格地说是直立菌丝,豆腐中还有匍匐菌丝 ④决定腐乳特殊风味的是卤汤 ⑤腐乳的营养丰富,是因为大分子物质经过发酵作用分解成小而且易于消化的物质 ⑥卤汤中含酒量应该控制在21%左右,酒精含量过高,腐乳成熟的时间会延长;含量过低,不足以抑制微生物的生长 A.②③④⑤ B.①②③④ C.③④⑤⑥ D.①③④⑥ 2、(5分)下列有关泡菜的制作和亚硝酸盐含量的测定的实验叙述中,正确的是 A.将新鲜蔬菜与煮沸冷却的盐水(盐和清水的质量比为4:1)混匀装瓶 B.发酵过程始终要保持密封状态,泡菜坛盖边缘的水槽中要始终装满水 C.在酸化条件下,亚硝酸盐与对氨基苯磺酸发生重氮化反应形成玫瑰红色沉淀 D.随发酵进行,亚硝酸盐含量逐渐增加,用比色法可进行亚硝酸盐含量的测定 3、(5分)下列关于腐乳及腐乳制作的描述,错误的是 A.在腐乳制作过程中必须有能产生蛋白酶的微生物参与 B.含水量大于85%的豆腐利于保持湿度,适宜制作腐乳 C.在腐乳的制作过程中,让豆腐长出毛霉不需要严格杀菌 D.腐乳味道鲜美,易于消化、吸收是因为其主要含有多肽、氨基酸、甘油和脂肪酸等小分子 4、(5分)关于“腐乳的制作”实验,下列叙述正确的是 A.菌种选择:发酵过程中起主要作用的是乳酸杆菌 B.毛霉生长:豆腐堆积摆放可提高温度,促进毛霉生长 C.加盐腌制:加盐可析出豆腐中全部的水分,使豆腐块变硬 D.密封腌制:卤汤中的香辛料和料酒均有防腐作用 5、(5分)在制作果酒、果醋、腐乳、泡菜的发酵过程中,菌种由原料本身提供的有 ①果酒②果醋③腐乳④泡菜 A.①② B.②③ C.③④ D.①④ 6、(5分)酵母菌、乳酸菌和醋酸菌异化作用的类型依次是 ①需氧型②厌氧型③兼性厌氧型 A.①②① B.③②① C.③②② D.②②③ 7、(5分)下列有关家庭制作果酒、果醋和腐乳的叙述,正确的是A.菌种均可来自于自然环境,接种纯净的菌种则品质更佳 B.均需在适宜温度下进行发酵,果酒发酵温度最高 C.果酒、果醋发酵需无氧环境,腐乳制作需有氧环境 D.变酸的酒表面的菌膜含大量酵母菌,腐乳的“皮”为毛霉菌丝 8、(5分)判断以下部位不含有微生物的是 A.洗干净的脸上 B.洗完澡后的皮肤 C.刷完牙后的口腔 D.灼烧之后的灭菌环 9、(5分)关于生活中的生物技术,下列说法错误的是 A.利用发酵技术,在鲜奶中加入乳酸菌可制成乳酸制品 B.制作泡菜的坛子加水密封隔绝空气是为了抑制乳酸菌繁殖 C.白酒的酿造过程中利用了霉菌和酵母菌两种微生物的发酵作用 D.厨师常在夏天将做好的菜肴放在冰箱中冷藏,其目的是抑制微生物的繁殖 10、(5分)如表为某培养基的配方,有关叙述正确的是 B.能在此培养基上生长的是大肠杆菌 C.此培养基上生长的菌落不一定是黑紫色 D.此培养基可以用来检测自来水中细菌含量是否符合饮用水标准 11、(5分)下列关于果酒和果醋制作的叙述,不正确的是 A.参与发酵的微生物都含有核糖体 B.发酵过程中培养液pH都保持不变 C.制作果酒时瓶口需密封,而制果醋时需要通入氧气 D.果酒制成后可将装置移至温度略高的环境中制果醋 12、(5分)下列有关颜色反应的叙述,错误的是 A.在酸性条件下,重铬酸钾与酒精反应呈现蓝绿色 B.在盐酸酸化条件下,亚硝酸盐与对氨基苯磺酸发生重氮化反应后,与N-1-萘基乙二胺盐酸盐结合形成玫瑰红色染料 C.细菌分解尿素后,会使培养基的碱性增强,使得加入的酚红指示剂变红 D.刚果红可以与像纤维素这样的多糖形成红色复合物 13、(5分)下列关于腐乳制作的叙述中,正确的是 A.腐乳的整个制作过程都在无菌条件下进行 B.发酵过程中起主要作用的微生物是乳酸菌 C.加盐和加酒所发挥的作用相同的是抑制微生物的生长,避免豆腐块腐败变质 D.卤汤中酒的含量要控制在21%左右 14、(5分)如图是泡菜的制作及测定亚硝酸盐含量的实验流程示意图,下列说法错误的是

第十章 酶在食品分析中的应用

第10章酶在食品分析中的应用 主要内容: 1 酶法分析的特点及应用类型 2 酶联免疫测定(ELISA) 3 聚合酶链式反应(PCR) 4 酶生物传感器 5 酶抑制率法 酶法分析的发展 ?酶在定量分析中的应用可以追溯到19世纪中期。当时,曾采用麦芽提取物作为过氧化物酶源,以愈创木酚作为共底物或指示剂测定过氧化氢。 ?然而,酶法分析真正的发展应归于它在临床实验室中的广泛应用。 酶法分析的发展 ?如早在1914年临床上就开始采用脲酶测定尿中的尿素,但是在临床实验室中酶分析的真正突破要推迟到1958年,当时转氨酶分析发展成为诊断肝病和心脏病的一个有效手段。 ?到了20世纪50年代前已有60种物质能借助于酶法分析。近年来,酶法分析发展迅速,广泛应用于临床检验、食品、环境等生物及其它样品的检测。 1. 酶法分析的特点及应用类型 ?酶的特性 酶在食品分析中的应用类型 ?1. 去除样品中的杂质。如测定果糖、多糖等。 ?2. 催化待测物生成新的产物,而这种产物更容易被定量分析。如:淀粉的测定。 ?3. 测定食品中酶的活性作为食品的指标,如过氧化物酶的测定。 ?4. 利用酶催化反应所产生的一些信息。如酶联免疫法、酶电极法等。 2 酶联免疫测定(ELISA) ?酶联免疫测定(enzyme-linked immunosorbent assay ,ELISA)是继放射免疫测定技术之后发展起来的一项新的免疫学技术。 ?ELISA自上世纪70年代出现开始,就因其高度的准确性、特异性、适用范围宽、检测速度快以及费用低等优点,在临床和生物疾病诊断与控制等领域中倍受重视,成为检验中最为广泛应用的方法之一。 2.1 ELISA的基本原理 ?(1)利用抗原与抗体的特异反应将待测物与酶连接(或建立关联)。 ?(2)通过酶与底物产生颜色反应,用于定量测定。 ?它将酶促反应的高效率和免疫反应的高度专一性有机地结合起来,可对生物体内各种微量有机物的含量进行测定。测定的对象可以是抗体也可以是抗原。 ELISA试剂盒的组成 ?完整的ELISA试剂盒包含以下各组分: (1)包被抗原或抗体的固相载体(免疫吸附剂); (2)酶标记的抗原或抗体(标记物); (3)酶作用的底物(显色剂); (4)阴性和阳性对照品(定性测定),参考标准品和控制血清(定量测定); (5)结合物及标本的稀释液; (6)洗涤液;(含吐温20磷酸盐缓冲液) (7)酶反应终止液。(常用硫酸) 酶标仪和酶标板

食品发酵论文食品发酵 论文

发酵食品生产技术实验教学及其改革 发酵食品生产技术是我院食品加工专业、食品生物技术专业的一门实践性极强、与生产实际联系非常紧密的专业核心课程。该课程培养学生对食品发酵的科学原理理解、实验技能操作、科研研究思路及实际动手能力有着非常重要的作用。目前,国内有食品科学专业的很多高校都开设发酵食品生产技术这门课程,尽管所开设实验的种类和项目有所不同,但是其共同特点是每个实验都分班级按照独立的小实验进行,实验缺少综合性、整体性。同时在实验结束后,缺少对“实验产品”食品品质鉴定相关的实验内容。因此,本文主要论述自己在发酵食品生产技术实际实验教学过程中的经验及改革建议。 一、发酵食品生产技术实验课存在的问题 1.教学方法传统老套,学生学习的积极性不高 传统的实验教学大多采用注入式教学,过分强调教师的讲解,从而忽视学生的探索,即由教师给出实验目的、实验仪器、实验材料以及实验方法,然后由学生进行实验。这种教学方法的缺点是忽略了对学生探索能力和应用能力的培养,大大降低了对学生学习主动性的培养。因此大多数情况下,往往是一个实验项目完成后,很多学生还不能够系统地阐述该实验的原理与步骤,学生的学习效果无法得到保证。 2.学生缺少到相关食品企业进行参观实践,理论与实践脱节 目前大多数实验课时,学生对整个实验过程的认识仅仅是老师的讲解和实验指导书的文字,缺少到相关食品企业进行参观实践,对实验过程缺少一个感性的认识。这一点,国外相关食品专业的实验教学做的相对较好,他们强调学生的动手能力和实验设计能力,注重学生到工厂企业的参观与实习。 3. 考核方式不科学 过去的学生实验成绩评定,主要是根据实验报告的撰写进行评分,但在实际操作过程中,出现了相当一部分学生不认真操作,基本技能掌握不好,但实验报告却写得非常好的不良现象。 二、对发酵食品生产技术实验课程教学改革的探索 1. 认真做好预实验,进行启发式教学 课前认真备课、做好预实验,确定新材料、新仪器使用的最佳条件。在授课中,指导老师通过提问检查学生的预习情况,讲解实验原理与操作主要事项,并就实验内容提出问题,让学生带着问题到实验中去寻求答案。这样既能提高学生学习兴趣,又能加深对知识的了解。此外,教师要及时在每天实验结束时对当天的实验做出总结,评析学生讨论实验结果,并鼓励学生大胆提出疑问,查阅文献,解决实验过程中遇到的问题。 2. 建立以学生为中心的实验教学模式 形成以自主式、合作式、研究式为主的学习方式。在开设发酵食品生产技术这门课程之前,学生已学过了食品微生物实验、食品化学、仪器分析等课程,此时的学生已经具备了相关的微生物操作和相关仪器操作的基本技能和理论知识。上课前,学生自由组合,5~7人一组,形成一个团队。开始上课后,老师对每个小组进行提问,对每个小组的实验设计进行检查,纠正错误,然后在实验小组内讨论修订实验设计,最后共同商定一个可行的实验方案。例如,在做发酵酸奶实验时,很多学生结合日常生活,以草莓、葡萄、西红柿等不同的果蔬原料做出不同口味的酸奶;在做酒酿实验时,有的小组采用不同品质的糯米为原料,来考察糯米品种因素对酒酿口味的影响。通过这种实验设计,一方面大大提高了学生实验的积极性,另一方面大大提高了学生对知识的掌握。 学生为了设计好自己的实验,主动查阅相关资料,预习实验内容,能够积极与同学进行讨论,在老师提问时能够踊跃发言,甚至在实验过程中发现实验的不足之处,并加以改进。这种互动也督促老师要积极备课,在课前查阅大量的资料,以应对学生提出各种问题。这种教学相长的良性循环有力地促进学生学习的飞跃。让学生自主设计实验的教学方式,不仅能培养学生的

相关文档
最新文档