子的配分函数及其计算

子的配分函数及其计算
子的配分函数及其计算

§1.4常用的分布及其分位数(精)

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

百分位数计算公式上课讲义

精品文档 假设你的数据在A列 在B1输入=PERCENTILE(E1:E10,0.1) 得到的是第10百分位数 在B2输入=PERCENTILE(E1:E10,0.9) 得到的是第90百分位数 追问 我想用函数做,如何进行呢? 回答 不知道你的具体含义。在excel里函数与我们平常说的公式是一个概念。 推测你是要使用宏? 追问 我找到了计算百分位数的函数PERCENTILE(array,k),但是不知如何 使用。 回答 你找到的函数不就是我给出答案里的公式吗 假设你的数据在A列A1~A10 , 在B1输入=PERCENTILE(A1:A10,0.1) 得到的是第10百分位数 在B2输入=PERCENTILE(A1:A10,0.9) 得到的是第90百分位数 提问者评价 我明白了,谢谢。 什么是百分位数 统计学术语,如果将一组数据从大到小排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列如,处于p%位置的值称第p百分位数。 中位数是第50百分位数。 第25百分位数又称第一个四分位数(First Quartile),用Q1表示;第50百分位数又称第二个四分位数(Second Quartile),用Q2表示;第75百分位数又称第三个四分位数(Third Quartile),用Q3表示。若求得第p百分位数为小数,可完整为整数。 分位数是用于衡量数据的位置的量度,但它所衡量的,不一定是中心位置。百分位数提供了有关各数据项如何在最小值与最大值之间分布的信息。对于无大量重复的数据,第p百分位数将它分为两个部分。大约有p%的数据项的值比第p 百分位数小;而大约有(100-p)%的数据项的值比第p百分位数大。对第p百分位数,严格的定义如下。 第p百分位数是这样一个值,它使得至少有p%的数据项小于或等于这个值,精品文档

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟

统计学三大分布及正态分布的关系

统计学三大分布与正态分布的关系 [1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1.三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量222 212n =+X X χ++…X 为服从自由度为n 的2χ分布, 记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n α χχ,对给定的实数),10(<<αα称满足条 件:αχχα χα ==>?+∞ ) (2 22)()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查 用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student ”的笔名 首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/T Y n = 服从自由度为n 的t 分布,记为~()T t n .

配分函数的分析与计算

2014届本科毕业论文配分函数的分析与计算 姓名:张坤 系别:物理与电气信息学院专业:物理学 学号:100314025 指导教师:王保玉 2014年4月12日

目录 摘要 ................................................................................................................................................... I 0 引言 (1) 1 配分函数的分析 (1) 1.1 配分函数体现的粒子在各个能级上的分配性质 (1) 1.2 配分函数表示的是所有的可能量子态相对的概率之和 (1) 1.3 配分函数表示粒子离开基态的程度大小的量度 (2) 1.4 配分函数是状态函数 (3) 1.5 配分函数属于特性函数 (3) 2 配分函数的计算 (4) 2.1 统计系综的几率分布与配分函数 (5) 2.2 近独立系统的配分函数 (6) 2.2.1 近独立系统的经典统计 (6) 2.2.2 近独立系统的量子统计 (6) 结束语 (9) 参考文献 (10) 致谢 (10)

配分函数的分析与计算 摘要 配分函数在统计物理中占有非常重要的地位,它是一个非常重要并且也比较难理解的物理量,本文将从配分函数的定义出发,阐述其物理意义,阐释其在统计物理中的重要作用,全面分析配分函数,进而研究了常见的各种系综的配分函数的相关计算,并讨论其应用。 关键词:配分函数;物理意义;作用;系统;系综 Analysis and calculation of partition function Abstract Partition function plays an important role in statistical physics, It is a very important and also difficult to understand the physical quantity. This article will begin with the definition of partition function, expatiate it’s physical meaning and illustrate the important role in statistical physics, then give a comprehensive analysis of the partition function. and then study Calculation of partition function in various common ensemble:Classical statistical and Quantum statistics in Near independent system, finally make a comprehensive study of the partition function. Key word: Partition function The physical significance System Ensemble

配分函数

配分函数是统计物理学中经常应用到的概念,统计物理学通过对大量微观粒子统计行为的计算,将微观物理状态与宏观物理量相互联系起来,而配分函数就是联系微观物理状态和宏观物理量的桥梁。 配分函数的定义是: 其中 ωl为能级εl的简并度; k为玻尔兹曼常数; T为体系的绝对温度。 不难看出配分函数实际是体系所有粒子在各个能级依最可几分布排布时候对体系状态的一个描述。由配分函数可以方便地求出体系的内能、广义力、熵、自由能等等热力学参量。 内能的表达式: 广义力的表达式(方向是外界对系统): 特别地,作为广义力的一种情况,压强的表达式是(注意没负号): 熵的表达式: 自由能的表达式: 粒子的微观性质如质量、振动频率、转动惯量与热力学系统的U,H,S,A,G等宏观性质将要通过配分函数联系起来。 众所周知,关于热现象的理论分为宏观方面的和微观方面的,这也就是我们经常说的热力学和统计物理学。统计物理学根据对物质微观结构及微观粒子相互作用的认识,用概率统计的方法,对由大量粒子组成的宏观物体的物理性质及宏观规律作出微观解释的理论物理学,它认为表征系统宏观性质的宏观量是大量微观粒子的统计平均值。所以,我们完全可以通过对微观世界的

研究来探索宏观的物理性质。然而,我们都知道,微观粒子运动是非常复杂的也是非常多样的,我们不能完全采用宏观的方法和手段来认知微观世界的物理现象,微观世界需要有适合自己的一套理论,微观量研究清楚了,宏观性质也就可以相应地被表示出来。配分函数就是跨接宏观和微观的桥梁,通过配分函数,我们就能够很容易地实现用复杂的微观量来表示系统的宏观性质了,这也应该是统计物理学的一个非常重要的研究思想和方法。首先,配分函数体现了粒子在各能级的分配特性。而且,配分函数体现了粒子在各个能级的分配特性。其次,配分函数表示了单个粒子所有可能的状态之和。此外,配分函数是一个状态函数。配分函数是系统各微观态的总体反映, 系统的宏观态一旦确定, 配分函数的值是唯一的, 所以配分函数是一个状态函数。配分函数也是特性函数。系统宏观量是相应的微观量的统计平均值, 这是统计物理学的一个基本原理,而配分函数是系统各微观状的总体反映。知道了系统的配分函数,可以求得系统的基本热力学函数,从而确定系统平衡态的全部热力学性质。由此可见,系统的宏观量可以通过配分函数求出。配分函数Z 可求出系统的热力学函数,所以配分函数是一个特性函数。综上所述,配分函数的物理意义主要体现在粒子状态的“配分”,即粒子在各种不同的能级或量子态的分布状况,配分函数就是充分描述这种分布特性的物理量。而统计物理学最关键的问题恰恰是热力学系统中微观粒子的分布问题。同时, 配分函数还体现了特性函数的性质, 而统计物理学的核心内容正是利用配分函数的这种特殊性质来搭架微观到宏观的桥梁。因此充分认识、理解配分函数的物理意义对学习掌握统计物理学具有很大的帮助。

(完整word版)统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系[1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1. 三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅 (Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量222 212n =+X X χ++…X 为服从自由度为n 的2χ 分布,记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n α χχ,对给定的实数),10(<<αα称满足条件: αχχαχα==>? +∞ ) (2 22 )()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student”的笔名首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/T Y n = 服从自由度为n 的t 分布,记为~()T t n . t 分布的密度函数为

配分函数与热力学函数的关系

第七章统计热力学基础 教学目的与要求: 通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。 重点与难点: 统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。 §7.1 概论 统计热力学的研究任务和目的 统计力学的研究对象是大量微观粒子所构成的宏观系统。从这一点来说,统计热力学和热力学的研究对象都是一样的。但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。 统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。统计力学建立了体系的微观性质和宏观性质之间的联系。从这个意义上,统计力学又可称为统计热力学。 相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。同时模型本身也有近似性,所以由此得到的结论也有近似性。从历史的发展来看,最早是由玻兹曼(Boltzmann)以经典力学为基础建立的统计方法,称为经典统计热力学。1900 年普朗克(Planck)提出了量子论,麦克斯韦(Maxwell)将能量量子

配分函数

在统计物理中,系综(ensemble)代表一大群相类似的体系的集合。对一类相同性质的体系,其微观状态(比如每个粒子的位置和速度)仍然可以大不相同。(实际上,对于一个宏观体系,所有可能的微观状态数是天文数字。)统计物理的一个基本假设(各态历经假设)是:对于一个处于平衡的体系,物理量的时间平均,等于对对应系综里所有体系进行平均的结果。体系的平衡态的物理性质可以对不同的微观状态求和来得到。系综的概念是由约西亚·威拉德·吉布斯(J. Willard Gibbs)在1878年提出的。 常用的系综有: 微正则系综(microcanonical ensemble):系综里的每个体系具有相同的能量(通常每个体系的粒子数和体积也是相同的)。 正则系综(canonical ensemble):系综里的每个体系都可以和其他体系交换能量(每个体系的粒子数和体积仍然是固定且相同的),但是系综里所有体系的能量总和是固定的。系综内各体系有相同的温度。 巨正则系综(grand canonical ensemble):正则系综的推广,每个体系都可以和其他体系交换能量和粒子,但系综内各体系的能量总和以及粒子数总和都是固定的。(系综内各体系的体积相同。)系综内各个体系有相同的温度和化学势。 等温等压系综(isothermal-isobaric ensemble):正则系综的推广,体系间可交换能量和体积,但能量总和以及体积总和都是固定的。(系综内各体系有相同的粒子数。)正如它的名字,系综内各个体系有相同的温度和压强。 在系综中,物理量的变化范围(fluctuation)与其本身大小的比值会随着体系变大而减小。于是,对于一个宏观体系,从各种系综计算出的物理量的差异将趋向于零。

统计学常用分布及其分位数知识讲解

统计学常用分布及其 分位数

收集于网络,如有侵权请联系管理员删除 §1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的 分布,它们与正态分布一起,是试验统计中常用的分 布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时, Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~ 2χ (n),它的分布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的?? ? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ??? ??Γ21=π。2χ分布是非对称分布,具有可加性, 即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互 独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度 等于n 的t 分布,记作Z ~ t (n ),它的分布密度

收集于网络,如有侵权请联系管理员删除 P(z)=)()(221n n n ΓΓ+2121+-???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30 时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。 3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~ 2χ(m ), 则Z=m Y n X 的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=?????????>++-??? ??Γ??? ??Γ??? ??+Γ?。其他,00,2)(1222222z m n z n m n z m n m n m m n n 请注意:F 分布也是非对称分布,它的分布密度与自由度的次序有关,当Z ~F (n , m )时, Z 1~F (m ,n )。 4. t 分布与F 分布的关系 若X ~t(n ),则Y=X 2~F(1,n )。 证:X ~t(n ),X 的分布密度 p(x )=??? ??Γ?? ? ??+Γ221n n n π2121+-???? ??+n n x 。 Y=X 2的分布函数F Y (y ) =P{Y0时,F Y (y ) =P{-y

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

统计学常用分布及其分位数完整版

统计学常用分布及其分 位数 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

§ 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的 分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时, Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~ 2χ(n),它的分布密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的?? ? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ??? ??Γ21=π。2χ分布是非对称分布,具有可加性, 即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互 独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30 时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。

统计学常用分布及其分位数

统计学常用分布及其分 位数 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§ 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的 分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时, Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~ 2χ(n),它的分布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ??? ??Γ21=π。2χ分布是非对称分布,具有可加性, 即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互 独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且

等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)= )()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30 时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。 3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~ 2χ(m ), 则Z=m Y n X 的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=?????????>++-??? ??Γ??? ??Γ??? ??+Γ?。其他,00,2)(1222222z m n z n m n z m n m n m m n n 请注意:F 分布也是非对称分布,它的分布密度与自由度的次序有关,当Z ~F (n , m )时, Z 1~F (m ,n )。 4. t 分布与F 分布的关系 若X ~t(n ),则Y=X 2~F(1,n )。 证:X ~t(n ),X 的分布密度 p(x )=??? ??Γ?? ? ??+Γ221n n n π2121+-???? ??+n n x 。 Y=X 2的分布函数F Y (y ) =P{Y

第三章 统计热力学

第六章统计热力学 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) (A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2. 在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列 说法正确的是:( ) (A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。 3. 在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为 所研究的体系是:( ) (A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的; (C) 体系是孤立的,粒子是独立的; (D) 体系是封闭的,粒子是相依的。 4. 某种分子的许多可能级是εo、ε1、ε2,简并度为g0 = 1、g1 = 2、g2 = 1。5个可别粒子,按N0 = 2、N1 = 2、N2 = 1的分布方式分配在三个能级上,则该分布方式的样式为:( ) (A) 30 ;(B) 120 ;(C) 480 ;(D) 3 5. 假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3。四个这样的 分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) (A) 40 ;(B) 24 ;(C) 20 ;(D) 28 6. 对热力学性质(U、V、N)确定的体系,下面描述中不对的是:( ) (A) 体系中各能级的能量和简并度一定;(B) 体系的微观状态数一定; (C) 体系中粒子在各能级上的分布数一定;(D) 体系的吉布斯自由能一定。 7. 对于定位体系,N个粒子分布方式D所拥有微观状态数W D为:( ) (A) W D = N!πN i g i/N i!;(B) W D = N!πg i Ni/Ni!; (C) W D = N!πg i Ni/Ni;(D) W D = πg i Ni/Ni!。 8. 设一粒子体系由三个线性谐振子组成,体系的能量为(11/2) hν,三个谐振子分别在三 个固定点a、b、c上振动,体系总的微观状态数为:( ) (A) 12 ;(B) 15 ;(C) 9 ;(D) 6 9. 使用麦克斯韦- 玻尔兹曼分布定律,要求粒子数N很大,这是因为在推出该定律时:( ) (A) 假定粒子是可别的;(B) 应用了斯特令近似公式; (C) 忽略了粒子之间的相互作用;(D) 应用拉氏待定乘因子法。 10. 式子∑N i = N和∑N iεi = U的含义是:( ) (A) 表示在等概率假设条件下,密封的独立粒子平衡体系; (B) 表示在等概率假设条件下,密封的独立粒子非平衡体系; (C) 表示密闭的独立粒子平衡体系; (D) 表示密闭的非独立粒子平衡体系。 11. 下面关于排列组合和拉格朗日求极值问题的描述正确的是:( ) (A) 排列组合都是对可别粒子而言的,排列考虑顺序,组合不考虑顺序; (B) 排列是对可别粒子而言的,而组合是对不可别粒子而言的; (C) 拉格朗日未定因子法适用于自变量相互独立的多元函数的求极值问题; (D) 拉格朗日未定因子法适用于一定限制条件下的不连续多元函数的求极值问题。 12. 对于玻尔兹曼分布定律n i =(N/Q)·g n·exp(-εi/kT) 的说法:⑴n i是第i能级上的粒 子分布数;⑵随着能级升高,εi增大,n i总是减少的;⑶它只适用于可区分的独立粒子体系;⑷它适用于任何的大量粒子体系。其中正确的是:( ) (A) ⑴⑶;(B) ⑶⑷;(C) ⑴⑵;(D) ⑵⑷

统计学常用分布及其分位数

z2 n § 1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分 丫? 2 (n ), Z ? 2 (m ),贝U Y+Z ? 2 (n+m )。 证明:先令X 1、X 2、…、X n 、X n +1、X n+2、…、X n+m 相互独 立且都服从N(0,1),再根据 2 分布的定义以及上述随机变量 的相互独立性,令 即可得到 Y+Z ?2 (n +m )。 2. t 分布若X 与丫相互独立,且 X ?N(0,1), 丫?2 (n ),贝V Z = x 丫的分布称为自由度 / n 布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从 N(0,1)时,Z= 分布称为自由度等于 n 布密度 P (z )= 1 n 22 的 n 2 X X i 2 的 i 2 分布,记作Z ?2 (n),它的分 z 2 式中的 n u 2 n 2 0, 1 u e d u , 称为Gamma 函数,且 1 =1 , 1 -=n 2 2 分布是非对称分布,具有可加性,即当 丫与Z ? 7 m 2 n X + ? ? ? + 2 2 n X + di 2 n X z= 2 n X + ? Y+Z= X 2+x 2+…+x n +X 2 i +x 2 2 +…+x 2 等于n 的t 分布,记作 Z ?t (n ),它的分布密度 1

请注意:t 分布的分布密度也是偶函数,且当 n>30时,t 分布与标准正态分布 N(0,1)的密度曲线几乎重叠为一。 这时, t 分布的分布函数值查 N(0,1)的分布函数值表便可以得到。 3. F 分布 若X 与丫相互 独立,且 X ?2 (n ), 丫?2 (m ), 则Z= X Y 的分布称为第一自由度等于 n 、第二自由度等于 n / m m 的F 分布,记作Z ?F (n , m ),它的分布密度 n z2 请注意:F 分布也是非对称分布,它的分布密度与自由度 1 的次序有关,当 Z ?F (n ,m )时,Z ?F (m ,n )。 4. t 分布与F 分布的关系 2 若 X ?t(n ),则 Y=X ?F(1,n )o n 1 证:X ?t(n ), X 的分布密度 p(x )=——2 1 — n n nn - Y =X 2 的分布函数 F Y (y )=P{Y< y }=P{X 2 v y }。 当 y o 时,F Y (y)=o , P Y (y )=o ; 当 y >0 时,F Y (y ) =P{- y vXv y } P(z)= z 0 其 2 (m n z) 2 0,

统计学常用分布及分位数

§1、4 常用得分布及其分位数 1、卡平方分布 卡平方分布、t分布及F分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X1、X2、…、Xn相互独立且都服从N(0,1)时,Z=得分布称为自由度等于n得分布,记作Z~(n),它得分布密度p(z)= 式中得=,称为Gamma函数,且=1,=。分布就是非对称分布,具有可加性,即当Y与Z相互独立,且Y~(n),Z~(m),则Y+Z~(n+m)。 证明:先令X1、X2、…、X n、X n+1、X n+2、…、Xn+m 相互独立且都服从N(0,1),再根据分布得定义以及上述随机变量得相互独立性,令 Y=X+X+…+X,Z=X+X+…+X, Y+Z= X+X+…+X+X+X+…+X, 即可得到Y+Z~(n+m)。 2、t分布若X与Y相互独立,且 X~N(0,1),Y~(n),则Z =得分布称为自由度等于n得t分布,记作Z ~ t (n),它得分布密度 P(z)= 。 请注意:t分布得分布密度也就是偶函数,且当n>30时,t分布与标准正态分布N(0,1)得密度曲线几乎重叠为一。

这时, t分布得分布函数值查N(0,1)得分布函数值表便可以得到。 3、F分布若X与Y相互独立,且X~(n),Y~(m),则Z=得分布称为第一自由度等于n、第二自由度等于m 得F分布,记作Z~F (n, m),它得分布密度 p(z)= 请注意:F分布也就是非对称分布,它得分布密度与自由度得次序有关,当Z~F (n,m)时,~F (m ,n)。 4、t分布与F分布得关系 若X~t(n),则Y=X~F(1,n). 证:X~t(n),X得分布密度p(x)= 。 Y=X得分布函数F(y) =P{Y

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST 函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都 可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、 口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个 量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。 在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表 去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDISTX )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1正态分布及其应用 正态分布(normal distribution )又名高斯分布(Gaussian distribution),是一个在数学、 物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为卩、标准方差为 /的高斯分布,记为N(卩,/ )。则其概率密度函数为正态分布的期望值□决定了其位置,其标准差b决定了分布的幅度。因其曲线呈钟

相关文档
最新文档