PET瓶吹塑设备及其加工工艺

PET瓶吹塑设备及其加工工艺
PET瓶吹塑设备及其加工工艺

PET瓶吹塑设备及加工工艺概述

吹塑瓶可分为两类,一类是有压瓶,如充装碳酸饮料的瓶;另一类为无压瓶,如充装水、茶、油等的瓶。茶饮料瓶是掺混了聚萘二甲酸乙二酯(PEN)的改性瓶或与热塑性聚芳酯的复合瓶,在分类上属热瓶,可耐热80℃以上;水瓶则属冷瓶,对耐热性无要求。在成型工艺上热瓶与冷瓶相似。笔者主要讨论冷瓶中的有压饮料瓶成型工艺

1 设备

随着科技的不断进步和生产的规模化,吹瓶机自动化程度越来越高,生产效率也越来越高。设备生产能力不断提高,由从前的每小时生产几千个瓶发展到现在每小时生产几万个瓶。操作也由过去的手动按钮式发展为现在的全电脑控制,大大降低了工艺操作上的难度,增加了工艺的稳定性。

目前,注拉吹设备的生产厂家主要有法国的SIDEL公司、德国的KRONES公司等。虽然生产厂家不同,但其设备原理相似,一般均包括供坯系统、加热系统、吹瓶系统、控制系统和辅机五大部分。

2 吹塑工艺

瓶吹塑工艺流程。影响瓶吹塑工艺的重要因素有瓶坯、加热、预吹、模具及环境等。

2.1 瓶坯

制备吹塑瓶时,首先将切片注射成型为瓶坯,它要求二次回收料比例不能过高(5%以下),回收次数不能超过两次,而且分子量及粘度不能过低(分子量31000-50000,特性粘度0.78-0.85cm3/g)。注塑成型的瓶坯需存放48h以上方能使用。加热后没用完的瓶坯,必须再存放48h以上方能重新加热使用。瓶坯的存放时间不能超过六个月。

瓶坯的优劣很大程度上取决于材料的优劣,应选择易吹胀、易定型的材料,并制定合理的瓶坯成型工艺。实验表明,同样粘度的PET材料成型的瓶坯,进口的原料要比国产料易吹塑成型;而同一批次的瓶坯,生产日期不同,吹塑工艺也可能有较大差别。瓶坯的优劣决定了吹塑工艺的难易,对瓶坯的要求是纯洁、透明、无杂质、无异色、注点长度及周围晕斑合适。

2.2 加热瓶坯的加热由加热烘箱来完成,其温度由人工设定,自动调节。烘箱中由远红外灯管发出远红外线对瓶坯辐射加热,由烘箱底部风机进行热循环,使烘箱内温度均匀。瓶坯在烘箱中向前运动的同时自转,使瓶坯壁受热均匀。

灯管的布置在烘箱中自上而下一般呈区字形,两头多,中间少。烘箱的热量由灯管开启数量、整体温度设定、烘箱功率及各段加热比共同控制。灯管的开启要结合预吹瓶进行调整。

要使烘箱更好地发挥作用,其高度、冷却板等的调整很重要,若调整不当,吹塑时易出现胀瓶口(瓶口变大)、硬头颈(颈部料拉不开)等缺陷。

PET注坯及吹瓶工艺要点

https://www.360docs.net/doc/f55096009.html,发布:2008-6-4 17:13:53来自:模具网浏览:218 次

PET在饮料包装领域的应用推动了饮料包装业的高速发展。与此同时,饮料包装业的发展也为PET的应用提供了发展空间。严格控制PET注坯及吹瓶工艺是保证PET瓶的外观与其经济性的关键。

PET的特性

PET是乙二醇和对苯二甲酸缩合的产物,是饱和的热塑性聚合物。PET分子有线性和半结晶状态。

生产PET最简单的过程,就是对苯二甲酸与乙二醇反应形成单体(酯化),然后缩聚成长链聚合物PET。聚合度随温度和压力而变化。

PET与很多塑料一样,加工过程中有三态变化,即玻璃态、高弹态、粘流态。其中涉及到三个温度转变:玻璃化温度Tg、结晶温度Tc、熔点Tf。

从无定型玻璃态到橡胶态的转变叫玻璃化转变,它表示长链段开始运动。外部加热可以增加分子(链节)自由度,在玻璃态凝固的分子现在可以移动了。玻璃态转变依赖于PET的形态。当特性粘度(IV)高时结晶较明显,分子链的自由度受到限制,同时Tg较高。

随着温度的升高逐步产生局部球晶,导致局部分子链因分子间力而重排,即结晶。对PET而言,最大结晶度约55%,该极限是由芳香环重排缓慢造成的,所以说该芳香环妨碍晶区的形成。

如果T<Tc,PET的粘度妨碍链段向有序运动(不许结晶);T>Tc,热作用妨碍无定形区的形成(趋向结晶)。

熔点Tf即所有晶体解体时的温度。

PET干燥

水解

固体PET极易从空气中吸湿。储存时,PET会吸湿直至与环境条件饱和。饱和值可高达0.6%重量份。通常,PET在供应商

处发货时,其含水率低于0.1%重量份。为了获得最好的产品性能,有必要把含水率降低到0.004%,最好熔化前是30ppm。

树脂中若含有水分,即使很低也会引起一系列的反应:

当温度高于PET熔点(约250℃)时,水会很快地引起聚合物降解(由于水的降解导致化学链被切断),这样就会降低分子量,降低表观粘度及相关的物理性能。事实上,水解在较低的温度下(如150℃)就开始发生,但是速度较低,其速度随温度升高而升高。在干燥和成型条件下,IV的降低不能大于0.02dl/g。粘度太大的下降,会导致结晶速度增加,对瓶坯的透明度不利,并导致瓶子的机械性能下降,承载强度和冲击强度下降。

热降解

温度对干燥PET的影响很复杂,它不仅影响水气的扩散速度,还对干燥时的化学过程有影响,所以最终会影响树脂的性能。考虑潜在的水解和热过程是非常必要的,如前所述,伴着IV的下降,水解的速度在150℃以上时加快,因为热转变过程比扩散过程快,干燥时温度过早提高是不利的。

同样,即使大部分水气可以抽走,但是过高的温度(如高过180℃)将导致热降解和热氧化(在空气干燥系统中),这样,聚合物链断裂,还释放出副产品物质,导致物理性能下降。

副产品中有AA成份,物理性能的改变会在瓶坯上表现出来,如雾状结晶、IV的下降、产品发黄等。

PET干燥机的干燥原理和基本性能

在带干燥剂床的干燥器中,空气先被吸收湿气的干燥剂吸湿,一个热空气鼓风机将干燥的热空气压至斗中。回风又通过干燥剂干燥循环,被加热后,干燥剂释放出水气,冷却后又吸收湿气。所以,必须将两条分离的气路最小化,并有干燥剂存在。

PET干燥机系统简图

在该闭环系统中,干燥机组件要用密封管连接至料斗。主料斗圆柱形的长径比约2:1,必须绝热,保证能量。干的热空气流过充压的料斗和分流芯(分流芯是保护料道和空气流道的),料斗的顶部关闭,有一根回风管通到干燥机的组件,在环路上的过滤器保证干燥剂不被污染。鼓风机将空气鼓至干燥剂床,在那里干燥,直接进入加热筒,最后进入料斗。同时,一只独立的风机和加热器对干燥剂进行再生。

当再生后的干燥剂冷却下来后,又被切换到干燥系统中去干燥空气流。

常见问题

有效的操作系统应该是干燥条件容易达到、故障最少,但下述区域必须控制:

1、空气过滤器

例行的过滤器清洁是必须的。过滤器保护干燥剂床不受灰尘污染。要十分小心,不要损伤过滤器,否则,干燥剂床的效率将受到影响,导致干燥器的效率下降。

2、冷水器故障

如果阻塞或机械不灵,冷水机失效,将限制干燥剂的再生能力,导致高露点,不干燥。

3、加热器失效

空气加热器失效将导致:不能达到正确的干燥温度或不能达到正确的干燥剂再生温度。

4、周围空气的进入

较干燥空气而言,周围空气很潮湿。如果让周围空气进入干燥器或切片处理系统,将影响露点和干燥效率。所以,如果干燥器的组件被拆下修理,必须小心地安装,有合适的密封圈,并检测是否泄漏。

5、干燥机的工艺控制

必须仔细控制两个关键参数:空气干燥温度和空气干燥露点。温度和露点检查必须有规律地进行。

可靠干燥过程中的关键条件

1. 正确的干燥温度:切片温度必须达到170~180℃,理想的是在干燥器出口处测量175℃。

2. 正确的除湿温度:不能超过190~200℃,在干燥器入口处测量。

3. 正确的除湿空气露点:露点不能高于-30℃,最好是低于-40℃,在干燥器出口处测量。

4. 合适的除湿空气流速:大部分干燥器的能力是约1立方英尺/小时/磅切片,这是最低需要。很明显,气流必须是在正确的温度和露点下。

5. 切片滞留时间(干燥时间):PET的绝对滞留时间推荐不小于4小时,最好是6~8小时。这是通过理论计算出来的。

6.特别注意:要遵守干燥器制造商的操作说明。

干燥机的计划维护

每日检查:

·干燥空气的露点控制器;

·合适干燥温度的检查;

·检查后冷却器前后的回风温度;

·检查料斗里的料位,即加载操作;

·清洁回风过滤器,其它过滤器。

每周检查:

·检查气流的露点;

·检查再生空气温度;

·清洁后冷却器的过滤器,确保有合适的水流到达冷却器;

·检查是否有泄漏;

·更换旧管、破损管。

注意:干燥是最重要的工艺步骤,不按正确标准满足工艺要求就不能解决以后过程中的问题。

成功干燥PET的关键是:

仔细留心,良好的维护,遵守干燥器制造商和树脂供应商的建议。

PET瓶坯的成型

瓶坯成型过程中,最好的条件是以尽可能低的温度、尽可能短的时间,快速均匀并完全熔融,最大限度保持IV少下降,尽可能少产生AA,尽可能透明。与之相关的工艺条件有:

温度

成型温度是指料筒、热流道的温度。成型过程中的热量只有30%是来自外部加热,70%是来自于内摩擦热,所以除了合适的加热外,还要用好剪切热。

注射和保压

注射是为克服流道中的阻力,将熔料填充到模具中。对瓶坯来说,最好有三段速度和压力,依次递减。

注射速度太慢,剪切不够,充满前就冷却了,造成产品不饱满或欠注;太快,模腔内排气不及,导致充不满,缩水,AA高。

保压有两个重要作用:防止熔料倒流和确保在压力下冷却(提高冷却效果)。太高会造成充填过量及胀模等,内应力会较高,还可能结晶。太低会造成缩水,瓶坯变形(冷却不够),浇口问题如针孔,气泡等,因为浇口处冷却速率下降。保压时间也要合适,太短也会造成针孔,拉丝等。

释压

释压是为了降低热流道内的压力,防止浇口堵塞,针阀动作不灵活等。但太过则会造成缩水、拉丝、针孔等。

背压

背压是在油马达带动螺杆旋转过程中液压系统通过螺杆施加给熔料的捏合力。作用:加强PET的塑化,消除气泡。刚开机时可以调到0,等瓶坯出齐后慢慢往上加,加到瓶坯中无气泡或疤点时的背压是合适的背压。过高剪切作用就太强,会出现成型不良、堵浇口、热解等问题。

缓冲区

缓冲区是每次注射完毕后螺杆头前面的余量,过少会造成成型不良,过多会造成PET分解。一般是从少往大慢慢调,到瓶坯不发雾或结晶时的量为合适。

冷却

PET不透明,而瓶坯之所以透明,靠的就是冷却。冷却不好将降低瓶坯的冷却速率,会导致缩水、瓶坯变形和影响循环时间,为避免此情况,要做好:水质处理,定期清理水道,检查水流量及水压,型芯及型腔的拆洗等。

PET瓶坯型常见问题与解决方案

吹瓶

吹瓶过程

吹塑过程是一个双向拉伸的过程,在此过程中,PET链呈双向延伸、取向和排列,从而增加了瓶壁的机械性能,提高了拉伸、抗张、抗冲强度,并有很好的气密性。虽然拉伸有助于提高强度,但也不能过分拉伸,要控制好拉伸吹胀比:径向不要超过3.5~4.2,轴向不要超过2.8~3.1。瓶坯的壁厚不要超过4.5mm。

吹瓶是在玻璃化温度和结晶温度之间进行的,一般控制在90~120度之间。在此区间PET表现为高弹态,快速吹塑、冷却定形后成为透明的瓶子。在一步法中,此温度是由注塑过程中的冷却时间长短决定的(如青木吹瓶机),所以要衔接好注—吹两工位的关系。

吹塑过程中有:拉伸—一次吹—二次吹,三个动作的时间很短,但一定要配合好,特别是前两步决定了料的总体分布,吹瓶质量的好坏。因此要调节好:拉伸起始时机、拉伸速度、预吹起始和结束时机,预吹气压力,预吹气流量等,如有可能,最好能控制瓶坯总体的温度分布,瓶坯内外壁的温度梯度。

在快速吹塑、冷却过程中,瓶壁内有诱导应力产生。对充气饮料瓶来说,它可抗内压,有好处,但对热灌装瓶来说就要保证在玻璃化温度以上让它充分释放。

常见问题与解决方案

1. 上厚下薄:延后预吹时间,或降低预吹压力,减少气流量。

2. 下厚上薄:与上述相反。

3. 瓶颈下有皱折:预吹太晚或预吹压力太低,或此处坯冷却不好。

4. 底发白:瓶坯太冷;过分拉伸;预吹太早或预吹压太高。

5. 瓶底有放大镜现象:瓶底料太多;预吹太迟,预吹压太低。

6. 瓶底里面有皱折:底部温度太高(浇口处冷却不好);预吹太晚预吹压力太低,流量太小。

7. 整个瓶混浊(不透明):冷却不够。

8. 局部发白:过度拉伸,此处温度过低,或预吹太早,或碰到拉伸杆了。

9. 瓶底偏心:与瓶坯温度、拉伸、预吹、高压吹等都可能有关系。降低瓶坯温度;加快拉伸速度;检查拉杆头与底模间的间隙;延后预吹,减小预吹压力;延后高压吹;检查瓶坯是否偏心。

塑料瓶新型短瓶颈结构显著降低生产成本

https://www.360docs.net/doc/f55096009.html,发布:2008-6-4 17:14:08来自:模具网浏览:77 次

对于塑料瓶而言,最大程度地节约材料,除了可针对瓶体本身之外,瓶颈和瓶盖的设计都是不可忽视的组成部分,但尤其重要的是不要忘记在改变瓶颈设计的同时保证或改进瓶型对现有生产线的适应性,必须考虑到与现有的预成型设备、吹塑设备和罐装设备最大程度的兼容。

短瓶颈技术

为了尽可能降低PET瓶的材料成本,众多公司陆续推出各自的短瓶颈技术。大量的技术让加工商常常无所适从:应该选择哪一种为我所用?但有一点是显而易见的:在选择瓶型时节约材料并不是唯一需要考虑的因素。

首先短瓶颈表面与现有的瓶颈结构最大的兼容非常重要,这将直接影响现有的预成型工具、吹塑模具以及罐装和封盖生产线。

瓶盖设计专家瑞士Eschlikon的Corvaglia 设计的短瓶颈是目前唯一保持了防盗环到顶端(tamper band)距离与改进前一致的短瓶颈。这意味着现有的夹紧装置可以直接应用于新瓶的罐装。而且,PCO Corvaglia 的高度也与三头螺纹的26.8mm“Alaska”瓶嘴一致。在同一条生产线上,从现有的Alaska瓶切换到PCO Corvaglia所需的工作非常简单。

瓶盖的密封性能也是不可忽视的一个重要方面。在热带国家,可能路面状况很差,对于填充了大量CO2的软饮料或矿泉水要求瓶盖具有优异的密封性能。PCO Corvaglia是唯一在短瓶颈上完成两圈以上螺纹的瓶型设计,其密封性能显然不是其他的瓶颈结构,如有的只有一圈螺纹所可以相提并论的。此外,PCO Corvaglia表面可以适应不同规格的瓶型以及不同形式的瓶盖。

对于加气饮料,打开瓶盖时内部压力的释放也应该是一个受控的过程,必须避免瓶盖飞出伤害消费者。在此,PCO Corvaglia 的744°单头螺纹又一次表现出其优越性。而其他的短瓶颈结构一般都少于两圈螺纹,而且采用两头或三头螺纹存在更大的喷出风险。

节约材料

与标准的PCO28相比,PCO Corvaglia短瓶颈每个瓶颈可以节约1.5gPET原料。另外,瓶盖可以节约0.7-1.2g的原料。Corvaglia 能够提供三种应用PCO Corvaglia瓶颈的瓶盖设计。最轻的一款只有1.8g,用于不加气的水或饮料;2g和2.3g的瓶盖用于加气饮料,其中2.3g用于加气较多的饮料。以当前的原材料价格计算,使用这一技术在瓶子和瓶盖上节约的原料量大约每1000个瓶子可以节约2.9-3.5欧元。

装盖设备可以全效生产

由于防盗环和螺纹的短距离设计,只有PCO Corvaglia可以使用PCO 28或PCO 19的瓶颈的防盗环设计。而其他的短瓶颈设计通常都会受到某些限制,例如,为了不影响封盖性能需要使用折叠的防盗环等。

本文版权由雅式持有,如欲转载,请注明出处:“

PET吹瓶

https://www.360docs.net/doc/f55096009.html,发布:2008-6-4 17:13:47来自:模具网浏览:117 次

PET吹瓶过程中的节能

Krones作为PET瓶全套解决方案的业界领先者之一,对于PET瓶加工不同环节的节能控制均有深刻的体会。

加热中节能

在拉伸吹塑工艺中,首先,最好间隔一定时间就更换灯;其次,需要检查灯与型坯的距离,从而可将加热用的能量费用减少。研究表明:旧灯(使用约11,000小时后)比新灯多耗费高达30%的能量,因此,对灯的经常性检查和及时更换是明智的。第二个节省费用的要素是灯与型坯间的距离。在Krones新提出的灯的案例中,灯是紧靠着型坯放置的。这种新的塑化炉标准,可以促使在加热过程中减少近10%的能量消耗。

将吹塑工艺成本消费减至最小

在吹塑过程中,减少死角空间体积也可减少相关消费成本。根据加工工程学,将500ml到250ml容器的阀区和吹塑喷嘴体积缩小不会产生任何缺陷,因为用于流动的横截面面积仍是相同的。这个区域的缩小是Contiform机械的一个标准特徵,而且对于已经安装的拉伸吹塑设备也可以进行更新。将必须充满压缩气体的容积缩小,气体消耗成本可节省7%以上(在500ml 容器时可高达25%),这一点取决于相关容器的尺寸。

空气再利用

在吹塑中另一个显著减少成本的做法是利用Air Wizard来再利用空气,这包括3或4个阶段。如果将最后吹塑的空气再用于预先吹胀中,能量成本可减少约9%。如果这一再利用不仅仅用于预先吹胀中,还用于拉伸的话,能源节省可达到22%。如果反覆利用的空气再回喂到操作空气网络中,能源节省可以达到30%。如果将再利用空气直接回喂到压缩机中,一年能量成本甚至可以减少40%。

操作Contiform机械的客户,从S系列开始,

都可以通过更新减少死角空间体积,明显地减少操作费用

PET瓶重量越来越轻

在PET瓶生产过程中,降低瓶子的重量不只意味着原料成本的降低,同时在加工过程中各种能源的消耗也可以显著降低。

一年前,PET Engineering公司生产出10克的单次服务瓶。今天,该公司为Brau Beviale又提供了一个更轻的解决方案:一个100ml的瓶子只有5g重。这个专为乳类和功能性饮料设计的新容器,是PET Engineering公司与合作伙伴,加拿大的赫斯基

注塑技术公司、美国的Invista公司和Sleever International联合设计的。这一工艺使得耗费的原材料明显减少,且某些产品需要的高性能抗氧化剂需求也得到优化。

该产品是一个高性能的瓶子,具有很好的视觉冲击力,且通过采用合适衬套就能很容易地实现定制化生产。这一单剂量瓶相对于现在巿场上的相似容器来说,重量轻了2g左右,从而降低了生产费用,并减少容器对环境的影响。

这个容器设计最关键的是瓶坯的设计,由Husky公司和PET Engineering公司联合进行,从而使重量减至最小,而维持优秀的技术性能。

这个新的单剂量瓶设计成两种版本:一种是用PET树脂,另一种用的是PolyShield PET树脂。

由于乳饮料单剂量瓶的优异性能和降低的生产成本,该瓶将有望取代巿场上广泛使用的HDPE瓶

塑料挤出吹塑冷却阶段温度场的有限元分析

https://www.360docs.net/doc/f55096009.html,发布:2008-6-4 17:13:20来自:模具网浏览:51 次

挤出吹塑过程可分为三个主要的步骤:型坯成型;夹持及吹胀型坯;冷却制品。对于厚度尺寸中等的制品,所需的冷却时间约占整个成型周期的60%,对于厚壁制品更是高达90%。冷却时间太长将降低生产效率;冷却时间太短,制品出模后与空气对流冷却的过程相对缓慢,导致制品各部分的收缩率有较大差异,最终制品的翘曲过大。不同的冷却速率会影响制品内部微观形态的演化以及最终残余应力的分布,从而影响制品的使用性能。对挤出吹塑冷却过程温度场进行数值模拟,可以分析制品不同部位温度随时间的变化以及制品壁厚分布,这对于合理设计冷却工艺,缩短开模时间,提高制品的合格率有着重要的意义。

本文采用有限元法对聚丙烯(PP)挤出吹塑冷却过程的温度场进行数值模拟,在有限元模型的基础上分析不同内冷方式、制品壁厚以及初始温度对制品温度场的影响。

1 数学模型

1.1基本方程

挤出吹塑的冷却过程热传递问题可用以下方程描述:

式中:ρ为密度;Cρ为比热容;为温度对时间的偏导,r为由于外界作用单位体积产生的热量;k为热导率;v为哈密顿运算子。

1.2边界条件

挤出吹塑的冷却方法可分为内冷却和外冷却。内冷却是指使用冷却介质(在本文中内冷却介质为空气)通过热对流冷却吹塑制品内壁,故内壁的边界条件可用对流项表示;外冷却是指在模具壁内开设冷却系统,制品的热量通过模具传导至冷却通道,然后由冷却通道内的冷却介质(在本文中外冷却介质为水)将热量带走。严格意义上来说,制品外壁的边界条件为热传导,但是热传导问题涉及到接触热阻间题,难以建模,考虑到外壁的热量多由冷却水带走,将模具材料的热传导率转化为等效传热系数。

内外壁的边界条件:

式中:x=0与x=L制品的内外表面;ho、hn为制品内壁与外壁的传热系数;T0 、Tn为冷却空气与冷却水的温度。

2 数学模型的求解

2.1初始条件

在热分析过程中不考虑密度的变化,取PP的密度为840 kg/m3。PP热导率随温度的变化,如图1所示。在本文研究的范围内热导率的变化不是很大,变化的范围为0.23 W/mk0.33 W/mk。但是当pp制品由粘流态转变成高弹态时,内能发生变化,内能的变化即为固化潜热。固化潜热在比热容图上表现出一峰值,由图2可以看出,PP的相变发生在90℃附近。

挤出吹塑冷却过程的微分方程在一般情况下都难以求出解析解,建立在有限元基础上的求解方法由于对边界条件的适应能力强,可以方便合理地描述模具形状,已成一种主要的数值解析方法。本文采用POLYFLOW有限元分析软件对上述数学模型进行求解。制品为100 ml轴对称的吹塑瓶,所以只需分析1/4部分即可。为了准确地求解厚度方向的温度场,将厚度方向的尺寸划为12等分,沿圆周方向的尺寸划为20等分,将1/4部分吹塑瓶划为6060个单元。外冷却水的温度(Tn)为20℃,内冷却空气温度(T0 )为25℃。外冷却传热系数为(hn)1175 Wm-2K-1。分析不同内冷方式、壁厚以及初始温度对吹塑瓶温度场的影响时,考虑三种内冷却方式:自然对流、强制对流和增强式对流(即通过增强冷却空气的流动速率以进一步提高传热系数),相对应的传热系数(h0)为10 W m-2K-1 、100 W m-2K-1、250W m-2K-1;吹塑瓶的初始温.度(Ti)180℃、200℃、220 ℃;壁厚δ分别为2mm、3mm、4mm。

2.2材料参数

3 结果与讨论

3.1轴向截面上的温度场

图3为吹塑瓶在吹塑模中冷却30s后截面上的温度场的等值线图,图4为转角处的等值线局部放大图。由于内冷却传热系数低于外冷却传热系数,因此,吹塑瓶内壁的温度明显高于外壁的温度。内壁温度约为86℃,壁厚中部约为71℃,外壁温度约为30℃。从吹塑瓶厚度中部到外壁,温度梯度较大,但是由内壁至厚度中部这段距离内,温度变化不大,温度梯度值小。在瓶身部分没有形成局部过热的现象,等值线均为直线。在瓶颈与瓶底转角处,等值线构成一环形等值曲线,在这些区域温度与其附近区域的温度相比高出4℃-8℃。

在轴向方向,瓶身部分温度的等值线均较为平直,温度分布比较有规律。可以通过研究瓶身上某一高度壁厚方向温度随时间的变化来考察温度场的演化。选取距离瓶底40 mm处,考察其30s内温度场随时间变化的过程。图5中每一条直线表明时间间隔为5s时厚度方向的温度分布。在冷却开始至5s,内外壁的温度下降都比较大,外壁温度由180℃降至54℃,内壁的温度也下降至145℃。在5s-15s的冷却时间内各曲线间的间距较大,表明温度下降得比较多;从15s开始后曲线间距较小,这说明冷却效率较低,温度下降较少。随着冷却时间的增加,最高温度对应的壁厚位置向内壁接近。

对于PP料,由图2可以看出,其相变发生在92℃左右,可以认为当吹塑瓶温度低于90℃时,吹塑瓶的大部分热量已经通过模具冷却水和冷却空气带走,在图3的条件下进行温度场的模拟,冷却30s后吹塑瓶温度低于92℃。所以在考察初始温度、壁厚及内壁传热系数.三个因子对吹塑瓶温度分布的影响时,通过模拟在不同条件下距吹塑瓶底部40 mm处冷却30s后沿厚度方向的温度分布,以评估各因子对其温.度分布的影响。

3.2内壁传热系数对制品温度分布的影响

内冷却传热系数对于PP吹塑瓶温度分布影响非常显著。由图6可以看出,当内冷却传热系数由100Wm-2K-1增至250Wm-2K-1时,冷却30s后内壁的温度由84℃降至57℃。若内壁采用自然冷却方式,对吹塑瓶的冷却不利,当外壁冷至接近模具温度时,内壁还处于110℃左右。冷却水的传热系数虽然远大于内冷却空气的传热系数,但是PP传导率较低,距离外壁较远的材料的热量很难在短时间内传导至外壁,所以增强内壁传热系数可以大大提高冷却速率。

3.3初始温度对制品温度分布的影响

从图7可以看出,在不同初始温度下,吹塑瓶冷却30s后沿壁厚方向温度值的差别很小。吹塑瓶外壁的温度值相差最小,瓶壁中部相差较大。这是因为虽然初始温度从180℃增加到220℃,但是内外壁与吹塑瓶之间的温度梯度也相应增大,加快了热量的传递,造成初始温度由180℃增至220℃时对吹塑瓶温度分布的影响不是很明显。

3.4壁厚对制品温度分布的影响

图8表明壁厚的变化对吹塑瓶温度分布的影响很大。吹塑瓶外壁由于冷却水的对流冷却,温度相差较小;沿外壁至内壁,温

注塑件生产加工工艺的生产技术

本技术公开了一种注塑件生产加工工艺,涉及电气产品注塑件的技术领域,按照制粒注塑成型表面处理表面喷涂的生产加工工艺配合专用模具对注塑件进行生产加工,其生产出的注塑件强度较高、成品率较高。 权利要求书 1.一种注塑件生产加工工艺,其特征在于,包括如下步骤: 步骤1)、制粒,所述原材料造粒包括以下工序: 工序11)、备料:按照质量分数计,按照PC塑料:碳纤维=1:1进行混合; 工序12)、搅拌:将混合后的PC塑料和碳纤维注入搅拌罐内搅拌均匀; 工序13)、制备:将搅拌均匀后的PC塑料和碳纤维注入与切粒机联用的双螺杆挤出机中,双螺杆挤出机其中螺杆转速为110r/min,且第一段温度为230℃,第二段温度为220℃,第一段温度为210℃,第一段温度为200℃,第一段温度为190℃; 工序14)、冷却:将经过双螺杆挤出机挤出的塑料原料进行冷却; 工序15)、切粒:冷却后的塑料原料通入切粒机中进行切粒,切粒机的切刀速度为60r/min;工序16)、转运:将切粒后形成的塑料颗粒收集至转运箱中,进入下一步骤; 步骤2)、注塑成型,将步骤1)中得到的塑料颗粒熔融并注射到双金属螺杆的注塑机中,成型得到注塑件; 步骤3)、表面处理,利用修剪到对成型的注塑件的边角进行修边,然后利用1000-1200目的

砂纸对修边处进行打磨。 步骤4)、表面喷涂,将经过步骤3)处理后的注塑件进行表面喷漆。 2.根据权利要求1所述的一种注塑件生产加工工艺,其特征在于:双螺杆挤出机中,第一段保压压力为50mpa且保压时间为2min。 3.根据权利要求1所述的一种注塑件生产加工工艺,其特征在于:所述步骤3)和步骤4)之间还包括清洗过程和干燥过程,将经过步骤3)处理的注塑件放入清洗液中进行清洗,清洗后放入烘干箱进进行烘干,烘干箱的温度为50℃-60℃。 4.根据权利要求1所述的一种注塑件生产加工工艺,其特征在于:所述步骤2)和步骤3)之间还包括筛选过程,剔除表面有拉白拉裂的注塑件,筛选出合格件进行步骤3)的处理。 技术说明书 一种注塑件生产加工工艺 技术领域 本技术涉及电气产品注塑件的技术领域,具体涉及一种注塑件生产加工工艺。 背景技术: 随着汽车工业的发展,以塑代钢的需求越来越高,对工艺的要求也越来越严格,大型塑料注塑零件在汽车上面的应用越来越多,并且出于降低成本的考虑,免喷涂注塑制件的应用范围越来越广。

简述注塑工艺流程

1)注射过程动作选择: 一般注塑机既可手动操作,也可以半自动和全自动操作。 手动操作是在一个生产周期中,每一个动作都是由操作者转换操作按钮开关而实现的。一般在试机调模时才选用。 半自动操作时机器可以自动完成一个工作周期的动作,但每一个生产周期完毕后操作者必须拉开安全门,取下工件,再关上安全门,机器方可以继续下一个周期的生产。 全自动操作时注塑机在完成一个工作周期的动作后,可自动进入下一个工作周期。在正常的连续工作过程中无须停机进行控制和调整。但须注意,如需要全自动工作,则(1)中途不要打开安全门,否则全自动操作中断;(2)要及时加料;(3)若选用电眼感应,应注意不要遮闭了电眼。 正常生产时,一般选用半自动或全自动操作。操作开始时,应根据生产需要选择操作方式(手动、半自动或全自动),并相应转换手动、半自动或全自动开关。 当一个周期中各个动作未调整妥当之前,应先选择手动操作,确认每个动作正常之后,再选择半自动或全自动操作。 (2)预塑动作选择 根据预塑加料前后注座是否后退,即喷嘴是否离开模具,注塑机一般设有三种选择。(1)固定加料:预塑前和预塑后喷嘴都始终贴进模具,注座也不移动。(2)前加料:喷嘴顶着模具进行预塑加料,预塑完毕,注座后退,喷嘴离开模具。选择这种方式的目的是:预塑时利用模具注射孔抵助喷嘴,避免熔料在背压较高时从喷嘴流出,预塑后可以避免喷嘴和模具长时间接触而产生热量传递,影响它们各自温度的相对稳定。(3)后加料:注射完成后,注座后退,喷嘴离开模具然后预塑,预塑完再注座前进。该动作适用于加工成型温度特别窄的塑料,由于喷嘴与模具接触时间短,避免了热量的流失,也避免了熔料在喷嘴孔内的凝固。 注射结束、冷却计时器计时完毕同时,预塑动作开始。当螺杆退到预定的位置时(此位置由行程开关或电子尺确定,控制螺杆后退的距离,实现定量加料),预塑停止,螺杆停止转动。紧接着是射退(也叫抽胶)动作,射退即螺杆作微量的轴向后退,此动作可使聚集在喷嘴处的熔料的压力得以解除,克服由于机筒内外压力的不平衡而引起的“流涎”现象。 一般生产多采用固定加料方式以节省注座进退操作时间,加快生产周期。 (3)注射压力选择 注塑机的注射压力由比例调压阀进行调节,在调定压力的情况下,通过高压和低压油路的转换,控制前后期注射压力的高低。 普通中型以上的注塑机设置有三种压力选择,即高压、低压和先高压后低压。为了满足不同塑料要求有不同的注射压力,也可以采用更换不同直径的螺杆或柱塞的方法,则既满足了注射压力,又充分发挥了机器的生产能力。在大型注塑机中往往具有多段注射压力和多级注射速度控制功能,这样更能保证制品的质量和精度。 (4)注射速度的选择 注塑机的注射速度由比例流量阀进行调节,有时在液压系统中设有一个大流量油泵和一个小流量泵同时运行供油。当油路接通大流量时,注塑机实现快速开合模、快速注射、快速储料等,当液压油路只提供小流量时,注塑机各种动作就缓慢进行。 (5)顶出形式的选择 注塑机顶出形式有机械顶出和液压顶出二种,有的还配有气动顶出系统,顶出次数设有单次和多次二种。顶出动作可以是手动,也可以是自动。 顶出动作是由开模停止限位开关(或电子尺)来启动的。操作者可根据需要,通过调节顶出行程开关(或电子尺的刻度距离)来实现的。顶出的速度和压力亦可通过电脑中的数字量的设定来实现,顶针运动的前后距离由行程开关(或电子尺的设定位置)确定。

注塑模具加工工艺及流程

注塑模具加工流程 开料:前模料、后模模料、镶件料、行位料、注塑工斜顶料; 开框:前模模框、后模模框; 注塑模具加工厂; 开粗:前模模腔开粗、后模模腔开粗、分模线开粗; 铜公:前模铜注塑模具材料公、后模铜公、分模线清角铜公; 线切割:镶件分模线、铜公、斜顶枕位; 电脑锣:注塑模具精锣分模线、精锣后模模芯; 电火花:前模粗、铜公、公模线清角、后模骨位、枕位注塑人才网; 钻孔、针孔、顶针; 行位、行位压极; 斜顶 复顶针、注塑模具加工厂配顶针; 其它:①唧咀、码模坑、垃圾钉(限位钉);②飞模;③水口、撑头、弹簧、注塑模 具成本分析运水; 省模、抛光、前模、后模骨位; 细水结构、拉杆螺丝拉钩、弹簧 注塑潍坊淬火、行位表面氮化; 修模刻字。 模具设计知识 一、设计依据 尺寸赫斯基注塑ehs精度与其相关尺寸地正确性。 根据塑胶制品地整个产品上地具体要和功能来确定其外面质量和具体注塑工艺流程尺 寸属于哪一种: 外观质量要求较高,尺寸精度要求较低地塑胶制品,如玩具;功能性塑胶制品, 尺寸要求严格; 外观与尺寸都要求很严地塑胶制品,如照相机。 天津注塑脱模斜度是否合理。 脱模斜度直接关系到塑胶制品地脱模和质量,即关系到注射过程中,注射是否能顺利 进行: 脱模斜度有足够; 斜度要与塑胶制品在成型地分模或低温注塑材料分模面相适应;是否会影响外观和壁 厚尺寸地精度; 是否会影响塑胶制品某部位地强度注塑产品伤痕修复机。 二、设计程序

对塑料制品图及实体(实样)地分析和消化: A、制品注塑技术地几何形状;&中国注塑nbsp; &n注塑工bsp; B、尺寸、公差及设计基准;&中国注塑网nbsp; &n苏州注塑公司bsp; C、技术要求;&注塑模具成本分析nbsp; D、塑料名称、牌号&nbs参观注塑车间p; 注塑上下料机器人E、表面要求 型腔数量和型腔排列: A、制品重量与注射机地注射量; B、制品地投影面积与注射机地锁模力; C、模具外形尺寸与注射机安装模具地有效面积,注塑成型机(或注射机拉杆内间距 ) D、制品精度、颜色;增强pa9t 注塑温度; 宝源注塑机械 E、制品有无侧轴芯及其处理方法; F、制品地生产批量;&nb什么是注塑sp; &nbs中国注塑人才网p; G、经济效益(每模地生产值) 型腔数量确定之后,便进行型腔地排列,即型注塑工艺腔位置地布置,型腔地排列涉 及模具尺寸,浇注系统地设计、浇注系统地平衡、抽芯(滑赫斯基注塑ehs块)机构地设 计、镶件及型芯地设计、热交换系统地设计,以上这些问题又与分型面及浇口位置地选双 色注塑择有关,所以具体设计过程中,要进行必要地调整,以达到比较完美地设计。 三、分注塑技术型面地确定 不影响外观; 有利于保证产品精度、模具加工,特别是型腔地加工;<精密注塑br>有利于浇注 系统、排气系统、冷却系统地设计; 有利于开模(分模、脱模)确保在开模氮气注塑产品宁波时,使制品留于动模一侧; 便于金属嵌块地安排。 四、浇注系统地设计 注塑模具材料浇注系统设计包括主流道地选择、分流道截面形状及尺寸地确定、浇口 地位置地选择、浇口形式及浇塑料注塑加工口截面尺寸地确定,当利用点浇口时,为了确 保分流道地脱落还应注意脱浇口装置地设计南通注塑模具厂、脱浇装置九章浇口机

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

注塑成型工艺流程图

注塑成型工艺流程图 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为:

1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分)温度控制。

尼龙注塑加工工艺其问题

尼龙注塑加工工艺及其问题 PA—聚酰胺、也称尼龙,是一大类酰胺型聚合物的统称。最常见的有 PA6 、 PA66 、 PA1010 。最近,随着 I T 业的发展,一种新型的聚酰胺—PA46 的使用量剧增,它用于代替 LCP (液晶聚合物)生产电脑上的插件。由于 PA 具有良好的机械性能,韧性好、抗冲击、耐磨、自润滑、阻燃、绝缘等特点,所以被广泛用于汽车、机械、电子、仪表、化工等多个领域,如齿轮、滑轮、轴承、叶轮、衬套、容器、刷子、拉链等。 PA6 、 PA66 、 PA46 都属脂肪族聚酰胺,是线性聚合物,其分子结构中有极强极性的酰胺基,所以具有高度的结晶能力。 PA 制品的性能依赖于其结晶形态及结晶度。而加工条件对结晶形态和结晶度有影响,加工条件不同, PA 制品的结晶变化可达 40% ,制品冷却慢,结晶度高,且形成较大尺寸的结晶形态。吸水性对其结晶度也有影响。另外, PA 在加工过程中由于流动、剪切作用会产生一定程度的取向,导致制品性能的各向异性,沿取向方向的强度优于非取向方向,取向也有利于结晶过程的进行,在模具设计时要考虑这个因素。 ? PA 的性能 ?物理性能

无※、无味、不霉烂、外观为半透明或透明,乳白色或淡黄色,密度 1.04-1.36 ,燃烧时放出特殊的蛋白味,火焰为蓝色上端呈黄色。 ?机械性能 刚韧性好,耐反复冲击震动,使用温度为– 40-100 ℃,耐摩擦、耐磨耗、自润滑,但抗蠕变性差,尺寸稳定性较差,可以通过加入玻璃纤维增强或与其他材料共混来克服此缺点。 ?耐化学品性能及耐候性 PA 的有机溶剂很少,乃化学性能良好, PA 的有机溶剂是甲酸、酚类化合物。不同浓度的无机酸、碱、盐均可导致 PA 溶胀、溶解或水解。在不受阳光照射的条件下,其耐老化性能良好,但在热作用、光照、辐射条件下老化快、制品变色、性能下降。 ?加工性能 ?易吸湿,成型前必须进行干燥。 ?熔点高,熔限窄,熔点分别为: PA6 : 215 ℃, PA66:255℃, PA46:290℃。 ? PA熔体粘度具有较高的温度敏感和剪切敏感,熔体粘度低,流动性好。

注塑成型工艺参数

注塑成型工艺参数 第一节注塑工艺参数 在制品和模具确定之后,注塑工艺参数的选择和调整对制品质量将产生直接影响。注塑工艺具体是指温度、压力、速度、时间等有关参数,实际成型中应综合考虑,在能保证制品质量(如外观、尺寸精度、机械强度等)和成型作业效率(如成型周期)的基础上来决定。尽管不同的注塑机调节方式各有所异,但是对工艺参数的设定和调整项目基本是相同的。注塑工艺参数与注塑机的设计参数是有关联的,但是在这里主要是从注塑工艺角度理解这些参数。 一、注塑参数 1.注射量:注射量是指注塑机螺杆(或柱塞)在注射时,向模具 内所注射的物料熔体量(g )。因此,注射量是由聚合物的物理性能及螺杆中料筒中的推进容积来确定的。 由此可见,选择注射量时,一方面必须充分地满足制品及其浇注系统的总用料量,另一方面必须小于注塑机的理论注射容积。如果选取用注射量过小则会因注射量不足而使制品产生各种缺陷,但过大又造成能源的浪费。 所以注塑料机不可用来加工小于注射量 10% 或超过注射量 70% 的制品,据统计世界上制品生产厂家大约有 1/3 的能源浪费在不合理地机型选择上。 2.计量行程(预塑行程):每次注射程序终止后,螺杆是处在料 筒的最前位置,当预塑程序到达时,螺杆开始旋转,物料被输送到螺杆头部,螺杆在物料的反压力作用下后退,直至碰到限位开关为止。这个过程称计量过程或预塑过程,螺杆后退的距离称计量容积,也正是注射容积,其计量行程也正是注射行程。因此制品所需的注射量是用计量行程工来调整的。 由此可知,注射量的大小与计量行程的精度有关,如果计量行程调节

太小会造成注射量不足,如果计量行程调整太大,使料筒前部每次注射后的余料太多,使熔体温度不均或过热分解,计量行程的重复精度的高低会影响注射量的波动.料温沿计量行程的分布是不均匀的,增加计量行程会加剧料温的不均匀性.螺杆转速、预塑背压和料筒的温度都将对熔体温度和温差有显着地影响. 在注射前处于螺杆头部计量室外中的熔体温度最高,虽然也有温差,但在这时较小,在注射后,螺杆槽中熔体的温度最低,停留一段时间之后熔体温度上升.这种温差可以采用调整螺杆转速轴向背压或使用新型螺杆等办法使其得到改善。 3.余料量:螺杆注射完了之后,并不希望把螺杆头部的熔料全部注射出去,还希望留存一些,形成一个余料量。这样,一方面可防止螺杆头部和喷射接触发生机械破损事故,另一方面,可通过此余料垫来控制注射量的重复精度达到稳定注塑制品质量的目的。如果余料垫过小,达不到缓冲目的,如果过大会使余料累积过多。近代注射塑机是通过螺杆注射终止时的极限位置来控制冲量的:如果位移传感器所检测的实际值超出缓冲垫的设定范围(一般 2-10mm )。 4.防延量:防延量是指螺杆计量(预塑)到位后,又直线地倒退一段距离,使计量室中熔体的比体积增加,内压下降,防止熔体从计量室外向外流出(通过喷嘴或间隙)。这个后退动作称防流延动作,防流延量可视聚合物沾度、相对密度和制品的情况进行设定,过大的防延量会使计量室中的熔料夹杂汽泡,严重影响制品质量。 5.螺杆转速:螺杆转速影响注塑物料在螺杆中输送;影响塑化能力、塑化质量和成型周期等因素的重要参数。随着转速提高塑化能力会增加。提高螺杆转速,流量加大,熔融温度的均匀性却有所改善。熔体温度和螺杆转速之间随着螺杆转速的提高,熔体温度也有所提高。 螺杆转速根据注塑条件用注塑机的额定螺杆转速,以额定量

注塑模具精加工工艺流程

注塑模具精加工工艺流程 一幅模具是由众多的零件组配而成,零件的质量直接影响着模具的质量,而零件的最终质量又是由精加工来完成保证的,因此说控制好精加工关系重大。在国内大多数的模具制造企业,精加工阶段采用的方法一般是磨削,电加工及钳工处理。在这个阶段要控制好零件变形,内应力,形状公差及尺寸精度等许多技术参数,在具体的生产实践中,操作困难较多,但仍有许多行之有效的经验方法值得借鉴。 模具零件的加工,根据零件的外观形状不同,大致可把零件分三类:板类、异形零件及轴类,其共同的工艺过程大致为:粗加工——热处理(淬火、调质)——精磨——电加工——钳工(表面处理)——组配加工。 1. 零件热处理 零件的热处理工序,在使零件获得要求的硬度的同时,还需对内应力进行控制,保证零件加工时尺寸的稳定性,不同的材质分别有不同的处理方式。随着近年来模具工业的发展,使用的材料种类增多了,除了Cr12、40Cr、Cr12MoV、硬质合金外,对一些工作强度大,受力苛刻的凸、凹模,可选用新材料粉末合金钢,如V10、ASP23等,此类材质具有较高的热稳定性和良好的组织状态。 针对以Cr12MoV为材质的零件,在粗加工后进行淬火处理,淬火后工件存在很大的存留应力,容易导致精加工或工作中开裂,零件淬火后应趁热回火,消除淬火应力。淬火温度控制在900-1020℃,然后冷却至200-220℃出炉空冷,随后迅速回炉220℃回火,这种方法称为一次硬化工艺,可以获得较高的强度及耐磨性,对于以磨损为主要失效形式的模具效果较好。生产中遇到一些拐角较多、形状复杂的工件,回火还不足以消除淬火应力,精加工前还需进行去应力退火或多次时效处理,充分释放应力。

聚丙烯(pp)的注塑加工工艺介绍

聚丙烯(P P)的注塑加工工艺 介绍 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

来源于:注塑财富网聚丙烯(PP )的注塑加工工艺介绍 PP通称聚丙烯,因其抗折断性能好,也称“百折胶”。PP是一种半透明、半晶体的热塑性塑料,具有高强度、绝缘性好、吸水率低、热就形温度高、密度小、结晶度高等特点。改性填充物通常有玻璃纤维、矿物填料、热塑性橡胶等。 不同用途的PP其流动性差异较大,一般使用的PP流动速率介于ABS与PC 之间。 1、塑料的处理。 纯PP是半透明的象牙白色,可以染成各种颜色。PP的染色在一般注塑机上只能用色母料。在华美达机上有加强混炼作用的独立塑化元件,也可以用色粉染色。户外使用的制品,一般使用UV稳定剂和碳黑填充。再生料的使用比例不要超过15%,否则会引起强度下降和分解变色。PP注塑加工前一般不需特别的干燥处理。 2、注塑机选用 对注塑机的选用没有特殊要求。由于PP具有高结晶性。需采用注射压力较高及可多段控制的电脑注塑机。锁模力一般按3800t/m2来确定,注射量20%-85%即可。 3、模具及浇口设计 模具温度50-90℃,对于尺寸要求较高的用高模温。型芯温度比型腔温度低5℃以上,流道直径4-7mm,针形浇口长度,直径可小至。边形浇口长度越短越好,约为,深度为壁厚的一半,宽度为壁厚的两倍,并随模腔内的熔流长度逐肯增加。模具必须有良好的排气性,排气孔深,厚,要避免收缩痕,就要用大而圆的注口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。均聚PP制造的产品,厚度不能超过3mm,否则会有气泡(厚壁制品只能用共聚PP)。 4、熔胶温度 PP的熔点为160-175℃,分解温度为350℃,但在注射加工时温度设定不能超过275℃。熔融段温度最好在240℃。 5、注射速度

PPS注塑加工工艺及应用

聚苯硫醚英文名称Poly phenylene sulfide,简称PPS,是一种新型的工程塑料,在美国于1973年才开始工业化生产,近年发展得很快,已成为继尼龙(PA)、聚碳酸酯(PC)、聚甲醛(POM)、热塑性聚酯(PET和PBT)及聚苯醚(PPO)之后的第六大工程塑料和第一大特种工程塑料。产品分为两类:一类是支链型热塑性聚合物,粘度较高。另一类是热固性聚合物,固化前具有线性分子结构,固化后加热充分也艰软化到一定程度。下面主要介绍热塑性PPS。 PPS是分子主链上具有苯硫基的高聚物,由于其结构为苯环与硫交替连接,分子链具有很大的刚性及规整性,因而PPS为结晶性聚合物,具有很多优异性能,如耐热性、刚性、阻燃性及电绝缘性。硫原子上的孤对电子使得PPS与玻璃纤维、无机填料及金属具有良好的亲和性,易于制成各种增强复合物及合金材料。 一、PPS的性能 1、物理力学性能 PPS是一种白色、结晶度高的聚合物,密度为1.34。其力学性能优良、拉伸强度和弯曲强度优于PA、PC、PBT等,具有极高的刚性和抗蠕变性,但其脆性较大,缺口冲击强度较低,低于PA、PC、PBT高于POM。加入玻璃纤维增强后其力学性能更优。PPS属惰性物质,无毒。 2、热性能 由于PPS为结晶性聚合物,最高结晶度可达65%,其结晶温度为127℃,熔点为286℃,热变形温度260℃,在空气中430-460℃以上才分解,热稳定性远超出PA、PBT、POM等工程塑料,长期使用温度在热塑性塑料最高,可达220-240℃。PPS还是具有良好的绝热性和阻燃性,其临界氧指数与PVC相当,可达47%,无需加入阻燃剂,PPS可达到UL94-V0级水平。 3、电性能 PPS的分子结构对称,无极性,吸水性低,故其电绝缘性十分优良,与其他工程塑料相比,其介电常数小,耐电弧性相当于热固性塑料,在高温、高湿、变频等条件下,PPS还能保持优良的电绝缘性。加入导电填料,可制得导电性PPS复合材料,用于防静电及电磁屏蔽。 4、耐化学性

(重点)注塑成型工艺流程及工艺参数

注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。 3.冷却阶段 在注塑成型模具中,冷却系统的设计非常重要。这是因为成型塑料制品只有冷却固化到一定刚性,脱模后才能避免塑料制品因受到外力而产生变形。由于冷却时间占整个成型周期约70%~80%,因此设计良好的冷却系统可以大幅缩短成型时间,提高注塑生产率,降低成本。设计不当的冷却系统会使成型时间拉长,增加成本;冷却不均匀更会进一步造成塑料制品的翘曲变形。 根据实验,由熔体进入模具的热量大体分两部分散发,一部分有5%经辐射、对流传递到大气中,其余95%从熔体传导到模具。塑料制品在模具中由于冷却水管的作用,热量由模腔中的塑料通过热传导经模架传至冷却水管,再通过热对流被冷却液带走。少数未被冷却水带走的热量则继续在模具中传导,至接触外

PC塑料的注塑加工工艺详细分析

PC塑料的注塑加工工艺详细分析 PC通称聚碳酸酯,由于其优良的机械性能,俗称防弹胶。PC具有机械强度高、使用温度范围广、电绝缘性能好(但防电弧性能不变)、尺寸稳定性好、透明等特点。在电工产品、电仪外壳、电子产品结构件上被广泛使用。PC的改性产品较多,通常有添加玻璃纤维、矿物质填料、化学阻燃剂、其它塑料等。PC的流动性较差,加工温度较高,因此其许多级别的改性材料的加工需要专门的塑化注射结构。 1、塑料的处理 PC的吸水率较大,加工前一定要预热干燥,纯PC干燥120℃,改性PC一般用110℃温度干燥4小时以上。干燥时间不能超过10小时。一般可用对空挤出法判断干燥是否足够。 再生料的使用比例可达20%。在某些情况下,可100%的使用再生料,实际份量要视制品的品质要求而定。再生料不能同时混合不同的色母粒,否则会严重损坏成品的性质。 2、注塑机的选用 现在的PC制品由于成本及其它方面的原因,多用改性材料,特别是电工产品,还须增加防火性能,在阻燃的PC和其它塑料合金产品成型时,对注塑机塑化系统的要求是混合好、耐腐蚀,常规的塑化螺杆难以做到,在选购时,一定要预先说明。华美达公司有专用的PC 螺杆供客户选用。 3、模具及浇口设计 常见模具温度为80-100℃,加玻纤为100-130℃,小型制品可用针形浇口,浇口深度应有最厚部位的70%,其它浇口有环形及长方形。 浇口越大越好,以减低塑料被过度剪切而造成缺陷。 排气孔的深度应小于0.03-0.06mm,流道尽量短而圆。 脱模斜度一般为30′-1左右。 4、熔胶温度 可用对空注射法来确定加工温度高低。一般PC加工温度为270-320℃,有些改性或低分子量PC为230-270℃。 5、注射速度 多见用偏快的注射速度成型,如打电器开关件。常见为慢速→快速成型。 6、背压 10bar左右的背压,在没有气纹和混色情况下可适当降低。 7、滞留时间 在高温下停留时间过长,物料会降质,放也CO2,变成黄色。勿用LDPE、POM、ABS 或PA清理机筒。应用PS清理。 8、注意事项 有的改性PC,由于回收次数太多(分子量降低)或各种成分混炼不均,易产生深褐色液体泡。

模具注塑加工工艺大全

模具注塑加工工艺大全 是指成型和制坯工具的加工,此外还包括剪切模和模切模具。通常情况下,模具有上模和下模两部分组成。将钢板放置在上下模之间,在压力机的作用下实现材料的成型,当压力机打开时,就会获得由模具形状所确定的工件或去除相应的废料。小至电子连接器,大至汽车仪表盘的工件都可以用模具成型。 级进模是指能自动的把加工工件从一个工位移动到另一个工位,并在最后一个工位得到成型零件的一套模具。模具加工工艺包括:裁模、冲坯模、复合模、挤压模、四滑轨模、级进模、冲压模、模切模具等。

模具种类 (1)金属冲压模具:连续模、单冲模、复合模、拉伸模(2)塑胶成型模:注塑模、挤塑模、吸塑模 (3)压铸模具 (4)锻造模具 (5)粉末冶金模具 (6)橡胶模具 模具价格流程 开料:前模料、后模模料、镶件料、行位料、斜顶料; 开框:前模模框、后模模框; 开粗:前模模腔开粗、后模模腔开粗、分模线开粗; 铜公:前模铜公、后模铜公、分模线清角铜公; 线切割:镶件分模线、铜公、斜顶枕位; 电脑锣:精锣分模线、精锣后模模芯; 电火花:前模粗、铜公、公模线清角、后模骨位、枕位; 钻孔、针孔、顶针;模具顶针孔水路孔加工行位、行位压极;

斜顶、复顶针、配顶针。 其他 (1)唧咀、码模坑、垃圾钉(限位钉); (2)飞模; (3)水口、撑头、弹簧、运水; (4)省模、抛光、前模、后模骨位; (5)细水结构、拉杆螺丝拉钩、弹簧 (6)重要部件热处理、淬火、行位表面氮化; 模具软件 UGNX、Pro/NC、CATIA、MasterCAM、SurfCAM、TopSolid CAM、SPACE-E、CAMWORKS、WorkNC、TEBIS、HyperMILL、Powermill、GibbsCAM、FEATURECAM等等。 基本特点 (1)加工精度要求高一副模具一般是由凹模、凸模和模架组成,有些还可能是多件拼合模块。于是上、下模的组合,镶块与型腔的组合,模块之间的拼合均要求有很高的加工精度。精密模具的尺寸精度往往达μm级。

简述PC塑料的注塑加工工艺过程

PC塑料通称聚碳酸酯,由于其优良的机械性能,俗称防弹胶。PC 塑料具有机械强度高、使用温度范围广、电绝缘性能好(但防电弧性能不变)、尺寸稳定性好、透明等特点。 在电工产品、电仪外壳、电子产品结构件上被广泛使用。PC的改性产品较多,通常有添加玻璃纤维、矿物质填料、化学阻燃剂、其它塑料等。PC塑料的流动性较差,加工温度较高,因此其许多级别的改性材料的加工需要专门的塑化注射结构。 1、塑料的处理 PC的吸水率较大,加工前一定要预热干燥,纯PC干燥120℃,改性PC一般用110℃温度干燥4小时以上。干燥时间不能超过10小时。一般可用对空挤出法判断干燥是否足够。 再生料的使用比例可达20%.在某些情况下,可100%的使用再生料,实际份量要视制品的品质要求而定。再生料不能同时混合不同的色母粒,否则会严重损坏成品的性质。 2、注塑机的选用 现在的PC制品由于成本及其它方面的原因,多用改性材料,特别是电工产品,还须增加防火性能,在阻燃的PC和其它塑料合金产品成型时,对注塑机塑化系统的要求是混合好、耐腐蚀,常规的塑化螺杆难以做到,在选购时,一定要预先说明。华美达公司有专用的PC螺杆供客户选用。 3、模具及浇口设计 常见模具温度为80-100℃,加玻纤为100-130℃,小型制品可用

针形浇口,浇口深度应有最厚部位的70%,其它浇口有环形及长方形。 浇口越大越好,以减低塑料被过度剪切而造成缺陷。排气孔的深度应小于0.03-0.06mm,流道尽量短而圆。脱模斜度一般为30′-1左右。 4、熔胶温度 可用对空注射法来确定加工温度高低。一般PC加工温度为270-320℃,有些改性或低分子量PC为230-270℃。 5、注射速度 多见用偏快的注射速度成型,如打电器开关件。常见为慢速→快速成型。 6、背压 10bar左右的背压,在没有气纹和混色情况下可适当降低。 7、滞留时间 在高温下停留时间过长,物料会降质,放也CO2,变成黄色。勿用LDPE、POM、ABS或PA清理机筒。应用PS清理。 8、注意事项 有的改性PC,由于回收次数太多(分子量降低)或各种成分混炼不均,易产生深褐色液体泡。

常用塑胶注塑加工工艺

常用塑胶注塑加工工艺 1PS的性能: PS为无定形聚合物,流动性好,吸水率低小于0.2%,是一种易于成型加工的透明塑料。其制品透光率达88-92%,着色力强,硬度高。但PS制品脆性大,易产生内应力开裂,耐热性较差60-80℃,无毒,比重1.04g/cm3左右稍大于水。 成型收缩率其值一般为0.004-0.007in/in,透明PS--这个名称仅表示树脂的透明度,而不是结晶度。化学和物理特性:大多数商业用的PS都是透明的、非晶体材料。PS具有 非常好的几何稳定性、热稳定性、光学透过特性、电绝缘特性以及很微小的吸湿倾向。它 能够抵抗水、稀释的无机酸,但能够被强氧化酸如浓硫酸所腐蚀,并且能够在一些有机溶 剂中膨胀变形。 2PS的工艺特点 PS熔点为166℃,加工温度一般在185-215℃为宜,熔化温度180-280℃,对于阻燃 型材料其上限为250℃,分解温度约为290℃,故其加工温度范围较宽。 模具温度40-50℃,注射压力:200-600bar,注射速度建议使用快速的注射速度,流 道和浇口可以使用所有常规类型的浇口。PS料在加工前,除非储存不当,通常不需要干燥处理。如果需要干燥,建议干燥条件为80℃、2-3小时。 因PS比热低,其制作一些模具散热即能很快冷凝固化,其冷却速度比一般原料要快,开模时间可早一些。其塑化时间和冷却时间都较短,成型周期时间会减少一些;PS制品的 光泽随模温增加而越好。 3典型应用范围 包装制品容器、罩盖、瓶类、一次性医药用品、玩具、杯、刀具、磁带轴、防风窗以 及许多发泡制品——鸡蛋箱。肉类和家禽包装盘、瓶子标签以及发泡PS缓冲材料,产品 包装,家庭用品餐具、托盘等,电气透明容器、光源散射器、绝缘薄膜等。 HIPS为PS的改性材料,分子中含有5-15%橡胶成份,其韧性比PS提高了四倍左右, 冲击强度大大提高,已有阻燃级、抗应力开裂级、高光泽度级、极高冲击强度级、玻璃纤 维增强级以及低残留挥发分级等。 标准HIPS的其它重要性能:弯曲强度13.8-55.1MPa;拉伸强度13.8-41.4MPa;断裂伸 长率为15-75%;密度1.035-1.04 g/ml;它具有PS具有成型加工、着色力强的优点。HIPS 制品为不透明性。HIPS吸水性低,加工时可不需预先干燥。 2HIPS的工艺特点

tpe注塑工艺你了解多少

TPE注塑工艺,你了解多少? TPE塑胶原料的注塑工艺是根据材料的特性和供料情况,一般在成型前应对材料的外观和工艺性能进行检测。供应的粒料往往含有不同程度的水分、熔剂及其它易挥发的低分子物,特别是具有吸湿倾向的TPE含水量总是超过加工所允许的限度。因此,在加工前必须进行干燥处理,并测定含水量。 在高温下TPE的水分含量要求在5%以下,甚至2%~3%,因此常用真空干燥箱在75℃~90℃干燥2小时。已经干燥的材料必须妥善密封保存,以防材料从空气中再吸湿而丧失干燥效果,为此采用干燥室料斗可连续地为注塑机提供干燥的热料,对简化作业、保持清洁、提高质量、增加注射速率均为有利。 一般说来,色母料的粘度应该比TPE的粘度低,这是因为TPE的熔融指数比色母料高,这将有利于分散过程,使得颜色分布更加均匀。干燥料斗的装料量一般取注塑机每小时用料量的2.5倍。 以SBC为基础的TPE在颜色上优于大多数其它TPE材料。所以,它们只需要较少量的色母料就可达到某种特定的颜色效果,而且所产生的颜色比其它TPE更为纯净。TPE塑料注塑成型时注意事项:1、彻底清洗料筒2、保证良好干燥3、

典型温度设置4、注塑速度设定5、保压压力设定6、二次注塑要求对于以较硬的SEBS为基础的TPE,推荐采用聚丙烯载色剂。 对于以较软的SEBS为基础的TPE,可采用低密度聚乙烯或乙烯醋酸乙烯共聚物。 对于较软的品种,不推荐采用PP载色剂,因为复合材料的硬度将受到影响。对于某些包胶注塑的应用,使用聚乙烯载色剂可能会对与基体的粘接力产生不利的影响。新购进的 注塑机初用之前,或者在生产中需要改变产品、更换TPE 原料、调换颜色或发现塑料中有分解现象时,都需要对注塑机机筒进行清洗或拆洗。清洗机筒一般采用加热机筒清洗法。清洗料一般用塑料原料。对于TPE材料,可用所加工的新料置换出过渡清洗料。在加工注塑过程中,温度的设定是否准确是制品外观和性能好坏的关键。微注塑整理,转载需注 明来源,未注来源将视为侵权。

常用塑料的注塑工艺

一、聚乙烯-PE 1.物理特性:一般常用聚乙烯为高密聚乙烯(HDPE)密度熔点130℃,低密聚乙烯(LDPE)密度熔点120℃。 2.工艺特性: ①结晶型聚合物,有明显的熔点,软化温度范围窄(3—5℃) ②注塑压力的变化对聚乙烯的流动性的影响比料筒温度的影响要明显,所以在注塑成型时先从注塑压力方面考虑。但过高的剪切速率会出现熔体破裂现象,在制品表面出现毛糙、斑纹等熔体破裂现象. ③乙烯吸水性低,含水小于℅,生产时可以不进行干燥处理.如储藏不当引起水分过量可在70-80℃温度下干燥1-2h。 ④收缩率大且方向性明显,制品易翘曲变形。HDPE收缩率℅,LDPE收缩率2-5℅,收缩率一般视制品壁厚而定,制品壁厚越大收缩率越大。 ⑤聚乙烯对注塑机无特殊要求,一般均可使用。 3.制品与模具 ①制品制品的壁厚与熔体的流动长度有关,而聚乙烯的流动性又随密度的不同有所不同,因此在选择制品厚度时需充分考虑流动比,低密聚乙烯的流长比为280:1,高密度聚乙烯的流长比为230:1。在选择制品的壁厚时,应考率收缩率的影响,从有利于熔体流动、减少制品收缩的角度出发,一般聚乙烯的壁厚应在之间。 ②模具的排气孔槽深度应控制在以下。 4.树脂准备 注塑用的聚乙烯为了保证制品有一定的机械强度,通常选用熔体指数稍底的品级,而对于强度要求不高、薄壁、长流程的制品,熔体指数相应选择大些,熔体指数(MI)是在温度为190℃,负荷为2160g下,10分钟内熔体通过孔径为,长度为8mm孔的克数。熔体指数值越小,树脂的分子量就越大,流动性就越差。 5.成型工艺 ①注塑温度注塑温度应根据注塑制品实际情况来确定,一般低密聚乙烯料筒温

相关主题
相关文档
最新文档