土壤养分空间变异研究的内容及方法

土壤养分空间变异研究的内容及方法
土壤养分空间变异研究的内容及方法

土壤养分空间变异研究的内容及方法

摘要:从研究方法和内容上对土壤养分空间变异性的研究做了阐述,对研究方法进行了分析,探讨了土壤养分空间变异性的发展及不足。通过对土壤养分空间变异研究方法的分析,认为结合GIS的地统计学方法是现在应用最多的方法。从近年来报道的文献可以知道现在土壤养分的空间变异研究主要分为:第一,对土壤中各养分的变异度的研究;第二,对土壤养分变异原因的研究。

关键词:土壤养分;空间变异;研究方法

The Content and Research Methods for Spatial Variability of Soil

Nutrient

Huang Hai-lv Teacher:Fan Yan-min

Abstract : This paper introduced the study in spatial variability of soil nutrient about study methods and content , Research methods for analysis, explore the development of inadequate from the spatial variability of soil nutrients. Think the combination that GIS and Geostatistics method is the most widely used method, through analysis for study methods from the spatial variability of soil nutrient. Know from reported in recent years,the study in spatial variability of soil nutrient main divided into: First,the study to variability for each nutrient in soil; Second, the study to the cause of variability for soil nutrient.

Key words : soil nutrient; Spatial variability; Research Methods

土壤学家将土壤特性在不同空间位置上存在明显差异的属性称为土壤特性的空间变

异性。土壤特性的变异性普遍存在,并且情况比较复杂。成土母质、地形、人类活动等对土壤养分空间变异均有较大影响,但在特定区域内,由于气候条件等比较一致,经过长期比较一致的种植和管理后,土壤特性空间变异将趋于缓和,即由于母质差异等引起的空间变异逐渐减小[1]。土壤特性的空间变异是指的在一定区域内,同一时间,不同点的土壤特性存在着的明显差异性。土壤是一个生命连续体,土壤特性在空间分布上既表现出地质结构特性又表现出统计学的随机特性,因此,土壤属性是区域化变量。土壤养分与作物生产力、粮食安全、生态环境密切相关,是土壤质量变化最基本的表征和核心研究内容。土壤养分质量分数对植物的生长起关键作用,是植物生长的基础,土壤肥力直接影响植被生长发育。空间变异是土壤本身存在的一种自然特性,认识土壤空间变异对于评价和有效地利用土壤,开展精准农业实践都是十分重要的。

1研究方法

1.1传统的统计分析方法

以往人们在做田间试验时,常常沿用Fisher 创立的古典统计方法,即研究人员先在田间选择一块具有代表性的试验地,将之划分成若干小区,然后随机地布置各种不同处理的试验,每个试验至少要有三个重复,以减少随机因素对试验处理的影响。由于气候因素影响,一个试验通常需几个周期或几年,以便从中找出代表性年分的典型数据,然后进行常规统计分析,计算试验数据的均值、方差,以及进行显著性检验,从而得出试验的最终结果。这种方法可以在样本少、材料多样和环境多变情况下获取最多的信息,因此我国的大多数土壤工作者至今仍沿用这种方法开展田间试验研究。但其严重缺陷就是,实际中土

壤特性并非象Fisher 所假设的那样彼此独立且均匀分布,而是在某一特定的时空中彼此相关的[2]。

1.2地统计学方法

地统计学首先是由法国学者Matheron 于20世纪60年代建立起来的,他在克立格于1951 年提出的矿产品位和储量估值方法基础上,提出了区域变量理论,使传统的地学方法与统计学方法相结合,形成了完整的公式系统,又称地质统计学。地统计学是以区域化变量、随机函数和平稳性假设等概念为基础,以变异函数为核心,以克立格插值法为手段,分析研究自然现象的空间变异问题[2]。

1.3 GIS 技术的应用

GIS(地理信息系统) 萌发于20 世纪60 年代初,但作为一个专门的科学术语最早出现于1968 年,在我国常把GIS 称为资源与环境信息系统。GIS 是为了解决各种复杂的规划与管理问题而设计的,用于支持对空间相关数据进行采集、管理、操作、分析、模拟和显示的计算机硬件、软件系统和处理过程,分为用户界面、系统/ 数据库管理、数据输入和数据库产生、空间操作和分析、产品输出和显示五大功能部分,它可以根据设计产生各种地图、图表、文字等信息,其最大特点是可以产生新信息。GIS 也被认为是一种处理空间数据的工具箱。GIS 的各个子系统或模块都提供某种工具,如空间数据查询、拓扑分析、布尔运算等。GIS 的特定性质属于空间型,有别于其它统计型信息系统[2]。

2.研究进展

自20世纪70年代以来,人们越来越认识到揭示土壤的空间变异特征,对有效地进行耕作、施肥以及生态环境保护等都具有特殊重要的意义。Burgess 等将地统计学的方法引入土壤科学研究领域,克服了经典的fisher 统计理论在研究土壤性质空间变异性规律方面的不足[3]。20世纪90年代精准农业的兴起,更使得土壤养分的空间变异研究成为土壤科学研究的热点之一,如Morrison I K等(1994)报道了土壤有机质的积累主要受植物凋落物和细根的影响 [4];Megraw (1995)研究了明尼苏达河谷流域农田土壤磷、钾、锌的空间变异特征,认为传统的测土施肥方法忽视土壤养分空间变异特征,因而不再是经济的和有利于环境保护的方法[5]; Tsegaye (1998)等研究发现,精耕细作可在一定程度上消除土壤养分的空间变异性,但植物生长对养分的不等量吸收可导致土壤养分空间变异的加剧[6]。

我国在这方面的研究起步较晚,20 世纪80 年代初开始从事土壤空间变异性研究,目前在土壤养分空间变异性方面的研究非常活跃,近年来相关的报道逐渐增多。土壤养分分布是由结构性因素和随机因素共同作用的结果。结构性因素如气候、地形、土壤类型等,随机因素如施肥、耕作措施、种植制度等各种人为活动。而对于当前的研究主要有两个方向:

2.1研究土壤中各养分的变异度

刘阳等(2006)利用地统计学原理与GIS 技术相结合,以新疆生产建设兵团农一师16 团为例,对4 种土壤养分的空间变异分布特征,做比较详尽的研究。通过养分分布图来看,有机质和速效氮的相关性较大,含量属于中等偏低;速效磷和速效钾含量则较高[7]。赵彦锋(2006)等利用地统计学和GIS相结合的方法,研究了土壤全量和速效氮、磷、钾的空间变异特征,并对其影响因素进行了探讨。并认为土壤养分空间变异程度从大到小依次为:土壤全氮>土壤全磷>土壤速效磷>土壤速效氮>土壤速效钾>土壤全钾[8]。王芳(2004)等采用Kriging 空间插值方法为代表的空间插值技术进行了土壤养分的空间预测和土壤养分

空间变异评价的初步研究[9]。王宗明(2007)等结合常规统计方法与GIS 空间分析方法,

定量研究了东北平原典型农业县——吉林省德惠市土壤有机质、全氮、速效磷和速效钾空间分布的主要影响因素,结果表明以中部饮马河为分界线,饮马河以东土壤有机质、全氮、速效钾含量较西部为低,而速效磷空间分布的随机性较强[10]。杨玉玲(2002)等运用地统计学方法,初步研究了灌淤土壤0~ 20 cm 有机质和全量氮磷钾养分的空间变异特性及其与棉花生长关系[11]。李玉影(2004)等采用全球卫星定位系统,对黑龙江省双城市双城镇中兴村土壤进行网格取样,用土壤养分系统研究法对大、中、微量元素进行分析[12]。路鹏(2007)以红壤丘陵区桃源县的王家铛村为例,通过GIS定位共取得522个耕层土壤样品,运用地理信息系统和地统计学相结合的方法,分析了红壤丘陵区村级农田土壤养分的空间变异规律并进行了空间异质性的比较[13]。张玉铭(2004)等采用地统计方法,分别对栾城县和中国科学院栾城生态农业试验站示范区农田耕层土壤养分的空间变异特征进行了研究。结果表明,在2个不同采样间距下,各土壤养分含量均具有空间相关性,在同一采样间距下,土壤有机质、全氮、全磷、速效养分(N、P、K)含量的空间变异结构也各不相同,具有块金方差效应,半方差图分别遵从高斯和球函数模型[14]。

2.2研究土壤养分变异的原因

张伟(2006)等研究典型喀斯特峰丛洼地系统土壤养分的空间分异特征,并探讨了土地利用方式和地形因素对土壤养分的影响。得出的结论是土地利用方式是影响土壤有机碳、全氮、全磷、全钾、碱解氮、速效磷等养分含量的主要环境因子[15]。刘冬碧(2003)等对不同种植方式下土壤养分的特性及其变异性进行探讨,并得到土壤有效养分含量状况与其利用方式密切相关的结论[16]。秦松(2007)等主要探讨地形因子对土壤养分含量空间分布的影响。结果表明不同坡向、坡度及海拔高度具有不同的水热分配条件和物质移动堆积的特点,地貌差异对土壤养分元素的分布有明显的影响[17]。陈署晃(2006)等以乌鲁木齐县蔬菜主产区的三个乡为例,采用GIS与地统计学相结合的方法对其耕层土壤(0~20 cm) 的有机质、全氮、速效氮、速效磷、速效钾等5 种养分要素的空间变异特征进行分析[18]。王小利(2006)等研究了土地利用变化对土壤有机碳(SOC)和微生物量碳(SMBC)含量的影响[19]。刘杏梅等( 2003)利用第二次土壤普查的617个样点,对浙江平湖市540 km2面积土壤养分空间变异特征的分析表明,土壤全氮和速效磷块金系数小于25% ,认为它们主要受到母质、土壤类型等自然因素的影响,而速效钾块金系数为50% ,认为它主要受施肥等随机因素影响[20]。张庆利等(2003)采集42个土样研究了江苏金坛市967 km2面积上土壤肥力指标的空间分布,根据空间变量块金系数大小,认为速效磷空间变异受随机因素影响最大,其次为全氮、有机质、速效钾和CEC[21]。郭熙等( 2004)以江西泰和县苏溪镇苏溪村120 hm2耕地为研究区域,按照网格法采集421个样,对土壤养分空间变异进行研究,结果表明钾、磷、锰、有机质、硫块金系数大,认为它们主要受随机因素影响;而钙、镁、铁、硼块金系数小,认为自然因素对它们空间变异的影响大。比较可知,这些研究的结论并不完全一致,说明不同的研究区、不同的研究尺度,土壤肥力要素发生变异的因素可能存在较大差异[22]。

3 研究方法评述

传统的统计分析方法是通过试验数据的均值,方差以及显著性检验来对土壤养分进行研究的,它所得出的是一个个独立的断开的且均匀分布的区块,而事实上,土壤养分的变化是连续的,渐变的,是朝着均一的方向发展的。地统计学方法是现今土壤养分研究使用较多的方法,它与GIS相结合,可以绘出某个区域各养分的空间分布图,可以使数据结果一目了然,便于研究分析,且对精准农业的开展有直观的效果。但它也有一定的缺点:

(1)取样点多,样本庞大

试验中,在调查区取样时,一般都要取上百个样,而每个土样都要在以样点为圆心或中心,数十米为边长或半径的范围内随机取几次一定深度的土壤混合而成,所以取样点非常多,取样次数较多。

(2)研究范围较小,效率低

由于各种原因,调查范围一般在上百平方千米左右,在这小范围的空间中,进行土壤养分空间分布的研究,花费较多的人力物力,得到的数据只能对这一范围内的精准施肥起到指导作用,而对其他地方的指导作用很小,从而使精准农业在单位面积上的成本增加。

(3)精确度低

虽然此方法相对于传统的统计分析方法有很大的优势,能够将土壤养分的空间分布情况较准确的表达出来,但由于土壤养分的变化并不是均匀的变化,而是有很大的随机性,即有的地块土壤养分的变异坡度较缓,有的地块的变异坡度较陡.所以在土壤取样时错过了一些土壤养分高峰值或低峰值,就会使计算机生成土壤养分分布图与实际情况有很大的差别,也会使精准施肥的精确度下降。

(4)破坏环境

由于在样地取样时,一般是用土钻取地表20厘米或以下的土壤,这样不可避免的要破坏土壤表面的植被,如果土壤表面的植被恢复能力较好,那这种破坏的影响并不大,但如果植被的恢复能力非常差,或这一地区的植物群落处于濒危状态,那么,这小范围内的几百个样点无异于草原上的鼠洞。

4结论与展望

土壤养分空间变异的研究方法是从最初的经典统计学方法发展到现在的基于GIS的地统计学方法,而基于GIS的地统计学方法是现在比较适用的方法,这种方法可以很好的反映土壤养分空间变异情况,指导精准农业的开展实施。土壤养分空间变异的原因主要有结构性因素和随机因素。现在,虽然关于土壤养分的研究较多,但却只能作为定性研究,对精准农业的指导作用也仅局限在小范围、小尺度内。对土壤养分空间变异的研究主要有两个方面:第一研究土壤中各养分的变异度,以次来分析了解土壤中各养分的含量情况和变异程度。第二研究土壤养分变异的原因,由此来分析土壤养分的变异受什么因素的影响,那些是主要的影响因素。

由于现在的遥感技术不断的普遍应用,有望于将遥感技术引入土壤空间分布的研究中,这样就会出现遥感技术和GIS相结合的局面,通过遥感技术取得土壤养分空间分布的数据直接传入GIS作出养分的空间分布图并对某些数据进行分析,整合。这将从很大程度上减少人的体力劳动,减少对环境的破坏。

参考文献:

[1] 赵良菊,肖洪浪,郭天文等.甘肃省灌漠土土壤养分空间变异特征[J].干旱地区农业研究,2005,23(1):70-74.

[2] 李毅,刘建军.土壤空间变异性研究方法[J].石河子大学学报( 自然科学版),2000,4(4):331-337.

[3] Burgess TM ,Webster R. Optimal interpolation and isarithmic mapping of soil properties L The semivariogram and punctual Kriging[J].Soil Sci.1980.31:315-341.

[4] Morrison I K,Foster N W.Fifteen-year change in forest floor organic and element content and cycling at the Turkey lakes watershed[J].Ecosystems,2001,4:545-554.

[5] Megraw T. Fertility variability in theMinnesota river valleywatershedin 1993, as determined from grid testing result on 52000 acres incommercial fields [J]. Site - Specific Management for Agricultural Systems.ASA-CSSA-SSSA,1995:167-174.

[6] Tsegaye T, Hill R L. Intensive tillage effects on spatial variability of soil test, p lant growth, and nutrient up take measurement[J].Soil Sci1,1998,163(2):155-165.

[7] 刘阳,盛建东,蒋平安. 区域土壤养分空间变异研究——以新疆生产建设兵团农一师16团为例[J].新疆农业大学学报,2006,29(2):65-70.

[8] 赵彦锋,史学正,于东升等. 小尺度土壤养分的空间变异及其影响因素探讨—以江苏省无锡市典型城乡交错区为例[J]. 土壤通报,2006,37(2):214-219.

[9] 王芳,王逸飞,孟新伟等.新疆北疆土壤养分空间变异特性的初步研究[J]. 石河子大学学报(自然科学版),2004,22(1):39-42.

[10] 王宗明,张柏,宋开山等.东北平原典型农业县农田土壤养分空间分布影响因素分析[J]. 水土保持学报,2007,21(2):73-77.

[11] 杨玉玲,田长彦,盛建东等.灌淤土壤有机质、全量氮磷钾空间变异性初探[J].干旱地区农业研究,2002,20(3):26-30.

[12] 李玉影,刘双全,李桂仁等. 土壤养分变异与推荐施肥初探[J]. 黑龙江农业科学,2004,(2):5-7.

[13] 路鹏,苏以荣,牛铮等. 红壤丘陵区村级农田土壤养分的空间变异与制图[J]. 浙江大学学报(农业与生命科学版),2007,33(1):89-95.

[14] 张玉铭,毛任钊,胡春胜等. 华北太行山前平原农田土壤养分的空间变异性研究[J]. 应用生态学报,2004,15(11):2049-2054.

[15] 张伟,陈洪松,王克林等. 喀斯特峰丛洼地土壤养分空间分异特征及影响因子分析[J]. 中国农业科学,2006,39(9):1828-1835.

[16] 刘冬碧,熊桂云,胡时友等. 不同利用方式下土壤的养分特性及其变异性初探[J]. 湖北农业科学,2003,6:51-55.

[17] 秦松,樊燕,刘洪斌等.地形因子与土壤养分空间分布的相关性研究[J].水土保持研究,2007,14(4):275-279.

[18] 陈署晃,马兴旺,许咏梅等. 乌鲁木齐县蔬菜地土壤养分空间变异研究[J]. 新疆农业科学,2006 ,43 (1) :50 -52.

[19] 王小利,苏以荣,黄道友等. 土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J]. 中国农业科学,2006,39(4):750-757.

[20] 刘杏梅,徐建民,章明奎等.太湖流域土壤养分空间变异特征分析——以浙江省平湖市为例[J].浙江大学学报(农业与生命科学版),2003,29 (1):76-82.

[21] 张庆利,潘贤章,王洪杰等.中等尺度上土壤肥力质量的空间分布研究及定量评价[ J ]. 土壤通报,2003,34(6) : 493-497.

[22] 郭熙,郭晓敏,谭雪明等. 农田养分空间变异研究——以江西省泰和县苏溪镇为例[ J ]. 江西农业大学学报,2004,26(1) : 73-77.

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

肥料氮磷钾养分怎么检测,检测肥料需要什么设备

肥料氮磷钾有机质养分怎么检测,肥料检测需要什么设备 检测肥料我们首先需要一台准确高的肥料养分速测仪机器,比如SL-TFQ(仪器型号)它能同时检测出化肥、有机肥,复合肥(含叶面肥、水溶肥、喷施肥等)中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。 1,首先我们需要一个实验室,最好通风比较好的环境里面,(因为我们用的样品需要加热挥发,所产生的气体比较刺鼻)准备好样品,用万分之一天平秤出0.5g的样品,然后把它放到三角瓶中,(注意;样品不要撒到瓶壁口)加入少量的蒸馏水润湿,加入5ml镪流水摇晃均匀,在加入30滴有机肥消化加速剂,摇晃均匀放入电炉上加热,直到瓶内样品变成绿色或者浅白色关掉电炉冷却。 2,等样品冷却完后,就开始定笼,用滤纸叠成三角性状,放到容量瓶中开始过滤,直到把样品完全过滤完,开始定笼,加入蒸馏水到刻度线(切记不能多也不能少,到刻度线就好) 3,定笼完后我们需要开始准备9根试管(做实验之前都要用蒸馏水把容器清洗一遍,这样比较准确)吸取3ml的蒸馏水分别放

到三个试管中作为空白用(分别是NPK),然后再吸取3ml蒸馏水放到中间三个试管中作为标准(分别是NPK)最后三个试管瓶吸取样品3ml的样品分别放到三个试管中作为待测。 4,检测氮磷钾需要先检测钾,我们就把三个试管中分别加入钾1.2号各4滴摇匀,把试管中的空白倒入准备好的比色血中,放到检测仪中(检测仪要提前十分预热,这样效果更好)记录数据,拿出来在测试标准,记录数据,最后检测待测样品的时候要把比色血用蒸馏水冲洗一下在放入里面测试,等待三秒记录数据,等待打印结果。剩下的就开始测氮和磷,操作步骤一样,只是加入的试剂不一样。 欢迎各地朋友前来公司考察,现场试验检测结果,来前需自己拿样品(这样测试出来的结果你会更放心)有什么问题可以随时联系我们,我们的宗旨与时俱进,开拓创新,质量第一,服务用户至上,实力工厂,不容小觑,选择四兰,售后无忧。 5,最后我们就到最关键的时候了,高智能土壤肥料养分速测仪SL-TFQ(仪器型号)郑州四兰仪器仪表有限公司

泥土养分速测仪的使用方法

土壤养分速测仪的使用方法 1、土壤养分速测仪的简介概述: 土壤养分速测仪又称土壤养分分析仪,土壤养分化验仪,土壤养分快速测 试仪。土壤养分速测仪主要用于检测土壤中水分、盐分、ph值、全氮、铵态氮、碱解氮、有效磷、有效钾、钙镁、硼等及肥料中氮、磷、钾含量测试。极大缓 解了全国各地农民朋友测土配方施肥的需求,同时也为肥料生产企业实现专业化、系统化、信息化、数据化提供了可靠的依据,是农业部门测土配方施肥的 首选仪器。土壤养分速测仪广泛应用于各级农业检测中心、农业科研院校、肥 料生产、农资经营、农技服务、种植基地等领域。 二、土壤养分速测仪的使用方法: 我们平常所说的土壤养分测定值均是指常规方法的测试值。该方法是经过 几十年乃至上百年的实验和实践,具有普遍的实用性、可靠性、可比性和可重 复性,是土壤肥料和植物营养界的经典方法。但是常规方法需要一定的资金投入,即使不算上房屋的投入,试剂、玻璃仪器和分析仪器的投入也至少应在3 万元以上。这个条件对乡镇一级的农业技术推广部门和个体种植业主就较为困

难。速测方法因此应运而生。 速测方法是指利用一些简单的方法,包括简单的样品处理、简单的样品浸提、简单的仪器等等而进行的操作。优点是投资小,操作简单,不需要太高的技术支持。 (1)利用速测仪和所提供的分析方法进行操作; (2)利用常规分析方法进行操作。 通过试验对比发现:两种分析方法所得结果中:土壤有效磷具有一定的相关关系,有效钾没有相关关系,铵态氮有时没有相关性,速测仪器基本上不介绍硝态氮的测定方法。因此按照速测仪所介绍的方法只有土壤有效磷的数据能够与常规测试的值联系起来,而与施肥密切相关的氮和钾只能根据仪器说明书介绍的量进行施肥,无法与常规测试值相联系,因此其科学性和准确性值得怀疑。 另外,速测仪没有测定硝态氮也是指导施肥的一大缺陷(因为硝态氮的常规测试过程很麻烦,操作复杂,容易产生误差,所以该方法不容易速测化)。众所周知,铵态氮、硝态氮和亚硝态氮均是农作物容易吸收的三种状态。肥料施入土壤以后,铵态氮在土壤中不稳定,在硝化细菌的作用下,能很快地转化成硝态氮,亚硝态氮在土壤中含量虽很低,但不稳定,也能很快地转化为硝态氮,因此一般情况下土壤中的硝态氮含量高于铵态氮,亚硝态氮含量最低。 所以用于指导施肥的最佳指标是无机氮,其次为硝态氮,最差的指标是铵态氮。速测仪测定有效钾所使用的浸提剂不外乎硫酸钠、硝酸钠、氯化钙等,均没有采用常规分析中所推荐的醋酸铵(因为醋酸铵中的铵离子干扰四苯硼钠比浊法的测定),因此两者测定的数据没有任何相关关系就可以理解了。 如果按照速测仪说明书中所介绍的方法进行施肥,由于(1)没有进行大量的科学试验论证;(2)所推荐的方法本身就存在问题。所以说目前的速测技术是不准确的,甚至说存在宣传误导的嫌疑。如何将常规分析方法简单化,研究出一种测试方法,利用简单仪器就能测定土壤无机氮、有效磷和有效钾的含量,且所得数据与常规分析方法测定的数据具有相关性,从而指导施肥,这是土壤肥料工作者工作的主要内容之一。

土壤养分测定方法

我国为与国际接轨,1996年国家将配方施肥改称为平衡配套施肥。平衡配套施肥是在施用农家肥、秸秆还田培肥地力的基础上,根据目标产量需肥量,土壤供肥能力,肥料效益,科学地搭配N,P,K肥及微肥,提出合理的施用时期,方法,达到高产,同时提高土壤肥力,是农业部“九五”期末“沃土工程”的重要内容之一。普及平衡施肥技术的关键是解决快速测定出不同土壤的有机质、速效磷、速效钾等养分数据,掌握土壤供肥能力,以作为确定水稻施用肥料的种类、数量、施肥方法的重要依据。采用目前国内的土壤常规分析法测定土壤养分,尽管分析结果的可靠性、准确性、再现性,精密度都好。但是,一是需要精密的仪器设备和大量的化学试剂,投资大;二是全过程分析的技术性强,须具有一定专业文化水平且经专门培训后,才能独立掌握;三是分析程序烦琐、费时,不能解决快速测定大批土样的问题。因此进行了土壤速测法的筛选与应用。 1 土壤有机质、速效钾、酸碱度速测方法的筛选 有机质、速效钾、酸碱度3个项目都有两种以上速测法,究竟哪一方法适宜?有机质有重铬酸钾氧化比色法和铬合碱溶比色法。速测法选用了重铬酸钾氧化比色法,因为它具有操作简便,色阶色调变化明显,易于分辨,制作的标准色阶适用于各种土类的优点,而铬合碱溶比色法用EDTA浸提剂浸提不同土类时,腐殖的浸出量并不一致,而且浸出液的色调也有差别,因此不能用统一的标准色阶来速测不同土类的有机质含量。遵义市有5个土类,贵州省有8个土类,按每个土类制作标准色阶很麻烦,再说贵州是山区,耕地土壤分散、零碎、土壤类型交错分布,速测土壤有机质之前须划分和判别出土壤类型,花工费时。 速效钾有四苯硼钠比浊法和亚硝酸钴比浊法两种,选用前者。因为,一是四苯硼钠与待测液中的钾离子在pH8的碱性介质中,形成溶解度极低(1.8×10-5mol/L)的四苯硼钾白色微细颗粒,溶解度极低。微细颗粒在液体中就获稳定,即浑浊度稳定,比浊测定结果就获稳定;二是四苯硼钾通常不受室温变化的影响,在不同季节的常温下均可进行测定。而亚硝酸钴钠法速测生成的亚硝酸钴钠钾溶解度大(2×10-3mol/L),是四苯硼钾溶解度的1 00倍多,其测定受室温变化的影响也大。 酸碱度混合指标剂比色法中有pH4~8,pH7~9,pH4~11等几种指示剂,据土壤酸碱度等级划分标准,pH<4.5为强酸性土壤,pH>8.5为强碱性土壤,因此选用了pH4.5~8. 5的混合指示剂,同时色阶、色调变化明显。 2 土壤速测比色卡制作 采用土壤养分速测比色法,制作成“土壤速测比色卡”,比色卡小册子中测定项目有含水量、酸碱度、有机质、铵态氮、硝态氮、速效磷、速效钾7个,将各项目的测定方法、操作步骤、结果计算、比色法测定项目的比色色阶、养分分级标准等内容编入比色卡小册子中,使用和携带都方便。 土壤含水量测定,采用酒精燃烧法。

土壤中养分的测定

一、土壤速效钾得测定--火焰光度法 1、方法原理 此方法又叫1molL-1NH4Ac浸提法。具体操作方式就是,用中性得1molL-1NH4Ac溶液浸提土壤时,NH4+与土壤胶体表面得K+进行交换,连同水溶性K+一起进入溶液。浸出液中得K可直接用火焰光度法测定。火焰光度法得原理详见土壤全钾测定一节。 2、试剂得配制 (1)1molL-1NHAc(pH7、0)77、08gCH3COONH4(化学纯),溶于900ml水,用稀Hac或NH4OH调节至pH7、0,然后稀释至1升。调节pH值得具体方法如下:取出50ml 1molL-1 NH4Ac溶液,以1∶1NH4OH或1∶4 HAc调至pH7、0(用pH计测试)。根据50ml NH4Ac所用NH4OH或HAc得ml数,算出所配溶液得大概需要量,将全部溶液调至pH7、0。 (2)K标准溶液[2] 0、1907gKCl(分析纯,110℃烘干2h)溶于1molL-1NH4Ac 溶液中,并用此溶液定容至1升,其CK = 100mgL-1。 用时准确吸取100mgkg-1标准溶液0,1,2、5,5,10,20ml,分别放入50ml容量瓶中,用1molL-1 NH4Ac溶液定容,即得0,2,5,10,10,40mgL-1K标准系列溶液,贮于塑料瓶中保存。 3、操作步骤 称取风干土样(1mm)5、00g于150ml三角瓶中,加入50ml 1molL-1NH4Ac溶液,用塞塞紧,在往返式振荡机上振荡30min,用干得定性滤纸过滤,以小三角瓶或小烧杯收集滤液后,与K标准系列溶液一起在火焰光度计上测定,记录检流计读数。绘制校准曲线或计算直线回归方程。 4、结果计算 土壤速效钾,mgKg-1 = CK V/m 式中:CK――从校准曲线或回归方程求得得待测液钾浓度(mgL-1) V――浸提剂体积(ml) m――称样量(g) 如果浸出液中钾得浓度超过测定范围,应用1molL-1NH4Ac稀释后测定,其测定结果应乘以稀释倍数。 注释 (1)1molL-1NH4Ac法测定结果得评价标准就是: (mgkg-1K)< 30 30~60 100~160 > 160 供K水平极低中高极高 (2)含NH4Ac得K标准溶液及浸出液不宜久放,以免长霉,影响测定结果。 表

土壤养分速测仪的测定方法

土壤养分速测仪的测定方法 仪器介绍: 土壤养分速测仪能检测土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、有机质含量,植株中的全氮、全磷、全钾、有机质,土壤酸碱度及土壤含盐量。具有北京时间显示功能,自动将检测样品的时间记录与保存。储存1000组数据(检测样品时间、地点、各类养分结果)等相关信息存储下来,数据可随时调出查看。 仪器名称:土壤养分速测仪 仪器型号:TPY-6A 功能特点: 1.能检测土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、有机质含量,植株中的全氮、全磷、全钾、有机质,土壤酸碱度及土壤含盐量。 2.具有北京时间显示功能,自动将检测样品的时间记录与保存。 3.储存1000组数据(检测样品时间、地点、各类养分结果)等相关信息存储下来,数据可随时调出查看。 4.内含73种作物的配肥软件,可按当地情况设定作物品种、作物产量、肥料品种,并自动计算出施肥量,仪器内置微型打印机可现场打印结果。打印内容包括:检测日期、样品编号,检测项目、样品含量、作物品种、肥料品种、施肥数量等相关信息。 5.具部带有充电电池可带到野外现场检测。 6.带背光大屏幕中文液晶显示,全程指导操作。 7.喷塑钢板外壳,坚固、耐用。 8.配置:养分仪一台(内置打印机),PH电极一只,电导一只电极,手提箱一只,试剂一套。

技术参数: 1、养分测量技术参数: (1)稳定性:A值(吸光度)三分钟内飘移小于0.003 (2)重复性:A值(吸光度)小于0.005 (3)线性误差:小于3.0% (4)灵敏度:红光≥4.5×10-5;蓝光≥3.17×10-3 (5)波长范围:红光620±4nm;蓝光440±4nm;绿光520±4nm (6)抗震性:合格 2、PH值(酸碱度)测量技术参数: (1)测试范围:1~14 (2)误差:±0.1 3、盐量测量技术参数: (1)测试范围:0.01%~1.00% (2)相对误差:±5% 4、本仪器所用电源: (1)交流市电:180V~240V、50赫兹 (2)直流电:18V、5W(本仪器自带) 土壤养分速测仪技术参数 1、养分测量技术参数: (1)稳定性:A值(吸光度)三分钟内飘移小于0.003; (2)重复性:A值(吸光度)小于0.005; (3)线性误差:小于3.0%。 (4)波长范围:红光620±4nm;蓝光440±4nm (5)灵敏度:红光≥4.5×10-5;蓝光≥3.17×10-3。 2、PH值(酸碱度)测量技术参数: (1)测试范围:1~14; (2)误差:±0.1; 3、盐量测量技术参数: (1)范围:?0~19.00ms/cm (2)精度:?±2% 4、温湿度、露点测试技术参数: 湿度范围:0~100%RH 温度范围:-50~150℃ 露点范围:-50~150℃ 5、光合有效辐射技术参数 (1)辐射范围:0~2,700μmolm-2s-1(400-700nm) (2)辐射精度:±1μmolm-2s-1 (3)分辨率:1μmolm-2s-1 配置要求:主机1台、温湿度露点传感器1只、光合有效辐传感器1只、土壤盐分传感器1只、PH电极1只、土壤测试试剂1套。 土壤养分速测仪测定方法 样品采集处理 为了能使测定的样品代表田间的养分状况,要求必须多点混合取样,切忌在田边、路边、沟边、粪堆旁或放化肥的地方等地点取样。取样的方法可采用对角

土壤养分快速测试仪的检测项目

土壤养分快速测试仪的检测项目 虽然在现代农业生产中要讲究科学施肥,但还是存在着施用单一肥料的这种现象,这也是一直以来测土配方施肥技术难以实现的原因之一,其实在以前,即便就是购买了农业土壤养分测试的仪器,但是因为缺乏与之相配套的真正适宜于农民的施肥系统,进而使得无法使其发挥作用。而如今有了土壤养分快速测试仪,该仪器可谓是提高农业效率和效益的重要途径,并且通过近几年在农业中的实践应用,土壤养分快速测试仪的使用效果得到大家的一致肯定,是中国农业发展的迫切需要,其应用前景也是非常可观的。 那么,土壤养分快速测试仪可以检测哪些项目呢?具体如下: 土壤养分:铵态氮、速效磷、速效钾、有机质、水份、pH(试纸法)等项;可扩展检测钙、镁、硫、硼、氯、硅等中微量元素。 肥料养分:单质化肥中的氮、磷、钾;复(混)合肥及尿素中的氮、磷、钾;有机肥中速效氮、速效磷、速效钾、全氮、全磷、全钾、pH、有机质等以及钙、镁、硫、硼、氯、硅等中微量元素。 植株养分:植株中的氮素、磷素、钾素;硝酸盐、亚硝酸盐。 土壤养分快速测试仪对农业耕种施肥指导、科学增产、减肥增效等方面有着重要的作用。所以要提升作物的产量,需要了解掌握土壤的养分含量科学施肥,才能最大化的提升肥料的使用效果,获得更多的收益。托普云农研发生产的TPY-8A土壤养分快速测试仪采用大屏幕彩色触摸屏;可选配多种传感器一机多用,节约成本;8通道测量养分指标;WIFI或GPRS 传送数据。土壤养分快速测试仪的应用不仅缓解了各地农民朋友测土配方施肥的需求,同时也为肥料生产企业实现专业化、系统化、信息化、数据化提供了可靠的依据,是农业部门测土配方施肥的仪器。该仪器广泛应用于各级农业检测中心、农业科研院校、肥料生产、农资经营、农技服务、种植基地等领域。

土壤养分

西南林业大学 本科毕业(设计)论文 (2010届) 题目:澜沧江中游典型植被土壤养分特征研究教学院系环境科学与工程系 专业农业资源与环境2006级 学生姓名 指导教师(副教授) 评阅人

澜沧江中游典型植被土壤养分特征研究 (西南林业大学,昆明,650224) 摘要:土壤养分的分布特征,对于了解森林生态系统的土壤肥力和营养元素循环有重要意义。本文以澜沧江中游典型植被下的土壤为研究对象,通过采样、分析,对该区域4种不同森林类型(针叶林、针阔混交林、落叶阔叶林、常绿阔叶林)土壤养分状况进行了分析测定,研究4种典型的植被群落土壤养分含量的变化特征,采用因子分析方法对各林型土壤养分状况进行了比较。并对不同森林类型植被下土壤养分状况进行测定与分析,在获取大量土壤养分数据的基础上,系统地分析不同典型植被对土壤养分状况的影响。结果表明:四种不同植被类型下的土壤养分存在一定的差异,各种养分的变化规律也不一致;不同海拔同一种森林类型下的土壤养分也存在一定差异;同一海拔不同植被类型土壤差异明显;枯落物对土壤养分有一定的影响等。通过探讨植被类型、海拔、土壤类型等对土壤养分的影响,通过了解不同植被类型土壤养分的变化规律,为进一步改进不同植被类型的相应经营技术,提高林分的生产力提供依据,更为该地区森林资源的科学管理、土地资源的保护和持续利用及其森林生态系统的更新、恢复提供依据。关键词:植被;土壤养分;澜沧江 英文摘要

目录(目录字体太小) 目录 (3) 1前言 (4) 1.1 本研究的目的意义 (4) 1.2国内外研究现状及发展趋势 (4) 2 研究区概况与方法 (7) 2.1研究区概况 (7) 2.2 研究方法 (8) 2.2.1样品的采集 (8) 2.2.1测定项目和方法 (10) 3 结果分析 (12) 3.1不同植被类型土壤养分含量 (12) 3.2不同海拔常绿阔叶林的养分状况 (14) 3.3同一海拔不同植被类型的养分状况差异 (15) 3.4 不同植被类型枯落物与土壤养分的关系 (16) 4 结论 (18) 参考文献 (19) 致谢 (21) 指导教师简介................................................................................................. 错误!未定义书签。

土壤中养分的测定

一、土壤速效钾的测定--火焰光度法 1.方法原理 此方法又叫1molL-1NH4Ac浸提法。具体操作方式是,用中性的1molL-1NH4Ac溶液浸提土壤时,NH4+与土壤胶体表面的K+进行交换,连同水溶性K+一起进入溶液。浸出液中的K 可直接用火焰光度法测定。火焰光度法的原理详见土壤全钾测定一节。 2.试剂的配制 (1)1molL-1NHAc()(化学纯),溶于900ml水,用稀Hac或NH4OH调节至,然后稀释至1升。调节pH值的具体方法如下:取出50ml 1molL-1 NH4Ac溶液,以1∶1NH4OH或1∶4 HAc调至(用pH计测试)。根据50ml NH4Ac所用NH4OH或 HAc的ml数,算出所配溶液的大概需要量,将全部溶液调至。 (2)K标准溶液[2] (分析纯,110℃烘干2h)溶于1molL-1NH4Ac 溶液中,并用此溶液定容至1升,其CK = 100mgL-1。 用时准确吸取100mgkg-1标准溶液0,1,,5,10,20ml,分别放入50ml容量瓶中,用1molL-1 NH4Ac溶液定容,即得0,2,5,10,10,40mgL-1K标准系列溶液,贮于塑料瓶中保存。 3.操作步骤 称取风干土样(1mm)于150ml三角瓶中,加入50ml 1molL-1NH4Ac溶液,用塞塞紧,在往返式振荡机上振荡30min,用干的定性滤纸过滤,以小三角瓶或小烧杯收集滤液后,与K标准系列溶液一起在火焰光度计上测定,记录检流计读数。绘制校准曲线或计算直线回归方程。 4.结果计算 土壤速效钾,mgKg-1 = CK V/m 式中:CK――从校准曲线或回归方程求得的待测液钾浓度(mgL-1) V――浸提剂体积(ml) m――称样量(g) 如果浸出液中钾的浓度超过测定范围,应用1molL-1NH4Ac稀释后测定,其测定结果应乘以稀释倍数。 注释 (1)1molL-1NH4Ac法测定结果的评价标准是: (mgkg-1K) < 30 30~60 100~160 > 160 供K水平极低中高极高 (2)含NH4Ac的K标准溶液及浸出液不宜久放,以免长霉,影响测定结果。

土壤养分分级

土壤养分分级 土壤养分的重要指标主要包括土壤有机质、全氮、有效磷和速效钾,其含量的状况是土壤肥力的重要方面。上世纪八十年代进行的第二次土壤普查,对北京市土壤进行了大规模的养分调查测定工作,获取了大量的农化分析结果,涉及的样品约有13000多个,对全市土壤养分有了一个全面的了解掌握。但由于土壤速效养分具有易变的特性,其中氮素养分变化相对磷钾的变化要更大些,土壤氮素需要适时监控,进行养分的及时调控,磷钾养分一般采用衡量监控,指导养分管理,一般3-5年进行一次即可,因此土壤养分氮素状况的调查可更密集一些,磷钾的相对少些。 有机质是土壤肥力的标志性物质,其含有丰富的植物所需要的养分,调节土壤的理化性状,是衡量土壤养分的重要指标。它主要来源于有机肥和植物的根、茎、枝、叶的腐化变质及各种微生物等,基本成分主要为纤维素、木质素、淀粉、糖类、油脂和蛋白质等,为植物提供丰富的C、H、O、S及微量元素,可以直接被植物所吸收利用。按全国第二次土壤普查的分级标准将土壤养分划分为六级: 表1 全国第二次土壤普查分级标准 一级二级三级四级五级六级 很高高中等低很低极低 >44-33-22-11-0.6<0.6 据全国第二次土壤普查及有关标准,将养分含量分为以下级别(见下表)。 表2 土壤养分分级标准 项目有机质 %全氮 % 速效氮 PPM 速效磷 PPM(P2O5) 速效钾 K2O 级别含量 1>4>0.2>150>40>200 23~40.15~0.2120~15020~40150~200 32~30.1~0.1590~12010~20100~150 41~20.07~0.160~905~1050~100 50.6~10.05~.07530~603~530~50

土壤养分的测定方案讲解

一,土壤pH值的测定方法 (PH计测定法) 操作步骤:称土10克,放入50毫升烧杯中,加入蒸馏水25毫升用搅拌器搅拌1分钟,使土体充分散开,放置半小时然后用酸度计测定。具体操作 方法如下: 1.接通电源,开启电源开关,预热15分钟。 2.选择精确位数(0.01和0.001两档)中的0.01档和调节档的自动档。 3.按要求配置PH为 4.01和6.86的两种标准缓冲溶液,将电极依次放入进行标定,如此重复直到仪器显示相应的pH值较稳定为止 (读书相差不超过0.1 ) 。 4.将洗干净的电极放入待测液中,仪器即显示待测液的pH值,待显示数字较稳定时(5秒内PH变化不超过0.02)读数即可,此值为待测液的pH值。 5.取出电极,用水冲洗,用滤纸条吸干水后依次进行测定。 注意: 1.保护电极的缓冲溶液 1 摩尔每升的KCl 溶液:称取7.5 g KCl溶解定容到 100 ml蒸馏水中即可。 2.PH计测定时最好把温度调节到室温再去标定及测定,否则就开空调来测定。 二,土壤碱解氮的测定 (碱解扩散法) 试剂: ⑴ 1.0摩尔/升(mol/L)氢氧化钠溶液; 称取化学纯氢氧化钠40克,用水溶解后冷却定容到1升。 ⑵定氮混合指示剂;分别称取0.1克甲基红和0.5克溴甲酚绿指示剂, 放入玛瑙研钵,先加少量95%酒精研磨溶解,最后定容到100毫升95%酒精中。 ⑶ 20克/升硼酸-指示剂溶液; 称20克硼酸溶于1升水中,每升硼酸溶液加入甲基红-溴甲酚绿指示剂 20毫升。 ⑷ 0.01摩尔/升盐酸标准溶液:通过0.1摩尔/升的盐酸稀释10倍而得(0.1 为量取8.5毫升浓盐酸,在1升容量瓶内加水定容到1升) 标定方法:称取在250度干燥4小时的无水碳酸钠M(约0.22克)于250毫升锥形瓶中,加50毫升水溶解,加两滴甲基红指示剂,用0.1摩尔/升盐酸滴定,在出现红色后加热煮沸、冷却,反复直至红色不退去为止,记录 用量V(约为40 ml左右) C 约等于0.1000左右

土壤中养分的测定

一、土壤速效钾的测定--火焰光度法 1?方法原理 此方法又叫1molL-1NH4Ac浸提法。具体操作方式是,用中性的1molL-1NH4Ac溶液 浸提土壤时,NH4+与土壤胶体表面的K+进行交换,连同水溶性K+ 一起进入溶液。浸出液中的K 可直接用火焰光度法测定。火焰光度法的原理详见土壤全钾测定一节。 2试剂的配制 (1)1molL-1NHAc (pH7.0)77.08gCH3COONH4 (化学纯),溶于900ml 水,用稀Hac或NH4OH调节至pH7.0,然后稀释至1升。调节pH值的具体方法如下:取出50ml 1molL-1 NH4Ac 溶液,以1 : 1NH4OH 或1 : 4 HAc 调至pH7.0 (用pH 计测试)。根据50ml NH4Ac所用NH4OH或HAc的ml数,算出所配溶液的大概需要量,将全部溶液调至pH7.0。 (2)K标准溶液[2] 0.1907gKCI (分析纯,110 C烘干2h)溶于1molL-1NH4Ac 溶液中,并用此溶液定容至1升,其CK = 100mgL-1 。 用时准确吸取100mgkg-1标准溶液0, 1, 2.5, 5, 10, 20ml,分别放入50ml容量瓶中,用1molL-1 NH4Ac溶液定容,即得0, 2, 5 , 10 , 10, 40mgL-1K标准系列溶液,贮于塑料瓶中保存。 3?操作步骤 称取风干土样(1mm ) 5.00g于150ml三角瓶中,加入50ml 1molL-1NH4Ac 溶液,用塞塞紧,在往返式振荡机上振荡30min ,用干的定性滤纸过滤,以小三角瓶或小烧杯收集滤液后,与K 标准系列溶液一起在火焰光度计上测定,记录检流计读数。绘制校准曲线或计算直线回归方程。 4?结果计算 土壤速效钾,mgKg-1 = CK V/m 式中:CK――从校准曲线或回归方程求得的待测液钾浓度(mgL-1 ) V――浸提剂体积(ml) m ---- 称样量(g) 如果浸出液中钾的浓度超过测定围,应用1molL-1NH4Ac 稀释后测定,其测定结果应 乘以稀释倍数。 注释 (1)1molL-1NH4Ac法测定结果的评价标准是: (mgkg-1K )< 30 30 ?60 100 ?160 > 160 供K水平极低中高极高 (2)含NH4AC的K标准溶液及浸出液不宜久放,以免长霉,影响测定结果。

吉林省西部土壤养分速测与施肥指导

吉林省西部土壤养分速测与施肥指导 【摘要】本文重点介绍了通过土壤养分速测的方法,以玉米为目标作物,以通榆市为例,根据作物需要量和土壤供肥量之差计算实现计划产量的施肥量,利用养分平衡法计算吉林省西部土壤养分条件下测土配方的施肥量,并且探讨了测土配方施肥的效益。结果表明:测土配方施肥技术可应地制宜的调整氮、磷、钾肥的用量,提高玉米产量的同时减少浪费和污染,达到了玉米增产、节本、增效以及提高肥料的利用率的目的。 【关键词】土壤养分速测;施肥;吉林西部 吉林省是农业大省,由于不合理施肥,造成生产成本增加和环境污染等问题,限制了农村经济发展。目前,农村土地由农户长期承包经营,由于施肥、耕耘、管理条件不同,致使同一土类的不同地块,土壤肥力发生了很大的变化,有必要利用土壤速测方法开展一次测土施肥,通过对吉林省西部土壤养分状况进行测定,进而为合理施肥和精准施肥提供依据。同时,对吉林省土地的大致肥力水平有所评估,就如何合理施肥提高粮食产量提出合理化建议,,避免或减轻由于化肥不合理施用引发的环境污染[1]。 1 研究区选择 研究区选择吉林省西部通榆地区,随机设置20块玉米大田标准小区。土壤养分测定实验所用土样采自取0~20厘米耕作层典型的土壤样品,应用土壤元素速测法和常规方法对土壤的氮、磷、钾进行测定。每个小区面积200平方米,两等分为未施肥对照组和配方施肥诊断组。 2 材料与方法 2.1 土壤养分速测法 土壤养分速测法是多年来国内外应用较为广泛的一种分析土壤中氮、磷、钾含量方法。具体方法参照参考文献,土壤氮素速测[2],土壤速效磷速测[3],钾元素速测法[4]。常规方法参照吕英华的《测土与施肥》。 2.2 养分平衡法计算原理 根据公式得出: W=【(目标产量×植物单位产量养分吸收量)-土地面积×供应养分土层厚度×土壤容重×土壤速效养分测定值×校正系数】/(肥料养分含量*某元素肥料当季利用率) 3 结果分析

土壤养分速测仪技术参数

土壤养分速测仪技术参数 仪器型号:TPY-8A 简介概述: 土壤养分速测仪又称土壤肥料养分速测仪、土壤化肥速测仪。仪器主要用于检测土壤、植株、化学肥料、生物肥料等样品中的速效氮、有效磷、速效钾、有机质含量,土壤酸碱度及土壤含盐量,植株中的全氮、全磷、全钾。极大缓解了全国各地农民朋友测土配方施肥的需求,同时也为肥料生产企业实现专业化、系统化、信息化、数据化提供了可靠的依据,是农业部门测土配方施肥的首选仪器。广泛应用于各级农业检测中心、农业科研院校、肥料生产、农资经营、农技服务、种植基地等领域。 土壤养分速测仪功能特点: 1、检测功能包括土壤及化肥中的速效氮、速效磷、有效钾、有机质,PH、盐分(非玻璃电极的固态传感器,可直接埋入土壤中测试直接出结果)。 2、暗盒部分采用8通道固态化模块、8个光路与接收、可同时测量也可单独测量,比色暗箱体部分融为一体,无机械位移及磨损,保证测定结果精度。 3、不小于7寸彩色触摸液晶显示屏,Android系统操作简单,升级方便,内置GPS模块(无需外置天线),实时定位经度纬度,精度5米以内,具有中英文双语切换功能。 4、内置板式时钟芯片,屏幕可同步显示当前的年、月、日、小时、分钟。 5、GPS测试技术参数:内置GPS天线、具有卫星定位经度、维度、海拔功能。 6、内置数据存储器,测试数据自动存储,数据可无限存储,断电不丢失数据库 7、可在主机上对数据进行单条删除、全部删除、打印数据、打印环境参数、正反排序、按项目名排序,按日期筛选等功能 8、为防止误操作,主机内置客户管理系统,可设定用户名及密码。 9、内置微型热敏打印机(无需更换色带)。测试结果可在本机上存储和打印,存储和打印内容要包含:检测单位名称,检测日期,检测时间,检测项目,样品含量,作物品种,肥料品种,施肥数量,计量单位、经纬度、海拔、温湿度、辐射数据等相关信息 10、105种全国农业、果树、经济作物的目标产量计算推荐施肥量。 11、数据传输可通过WIFi或GPRS无线远程传输数据至计算机。 12、仪器一机多用,可接入多种传感器,测量CO2,土壤盐分,光合有效辐射及光照强度等参数(选配)。 13、仪器可以设置密码,不同用户选择自己的用户名以防已测数据丢失 14、配置内置大功率锂电池组,交直流两用,可实现野外流动测试。仪器具有低电压显示,可以断电后待机工作以防数据丢失。 土壤养分速测仪技术参数 1、养分测量技术参数: (1)稳定性:A值(吸光度)三分钟内飘移小于0.003; (2)重复性:A值(吸光度)小于0.005; (3)线性误差:小于3.0%。 (4)波长范围:红光620±4nm;蓝光440±4nm

第八章 土壤养分的生物有效性

第八章土壤养分的生物有效性“土壤有效养分”(soil available nutrient),原初的定义是指土壤中能为当季作物吸收利用的那一部分养分。定量化地研究土壤的有效养分及其影响因素,对于发展合理施肥与推荐施肥的技术,进而推动农业增产有着重要意义。 生物有效养分(bioavailable nutrient),系指存在于土壤的离子库中,在作物生长期内能够移动到位置紧挨植物根的一些矿质养分。”也可以说,土壤的生物有效养分具有两个基本要素:(1) 在养分形态上,是以离子态为主的矿质养分。 (2) 在养分的空间位置上,是处于植物根际或生长期内能迁移到根际的养分。 第一节土壤养分的化学有效性化学有效养分是指土壤中存在的矿质态养分。可以采用不同的化学方法从土壤样品中提取出来。化学有效养分主要包括可溶性的离子态与简单分子态养分;易分解态和交换吸附态养分以及某些气态养分。 一、化学浸提有效养分的方法及评价 1. 化学有效养分的提取 提取土壤有效养分的化学浸提剂种类很多,常因营养元素和土壤类型的不同而异。在提取原理上除纯化学法外,还有物理化学方法等。 由于阳离子形态的养分,主要存在于土壤溶液中或被吸附于土壤有机一无机复合体上,因此,用过量的阳离子浸提剂可将土壤样品中各种交换态和几乎全部的可溶态阳离子提取出来,然后,对提取液定量测定,将所得数值作为土壤有效养分的含量。 土壤中有效态阴离子的提取,以土壤有效磷为例,所选择的浸提剂要求其提取土壤中易分解的有机态磷,易溶解的无机态磷和部分的胶体吸附态磷。针对不同土壤上各种形态磷的组分与比例不同,以及磷酸盐的类型不同,可以有多种有效磷的浸提剂。石灰性土壤上常采用奥尔逊(Olsen)法,该法的提取剂是0. 5 mol NaHC03(pH8.5)。 近来,也有用电超滤法提取土壤有效养分的。此法是将土壤悬浊液置于电场下,通过改变电压和温度,分别提取出不同吸附态的养分。在低电压条件下,分离出的养分量少,其结果与土壤溶液中的养分浓度相关性较高;而在高电压时,提取出的养分量多,其结果就与土壤中吸附态养分相关性高。通过大量生物试验表明,用电超滤法提取的土壤有效钾比化学方法测定的交换钾能更好地反映出土壤有效钾的含量水平。 2 化学有效养分测定值的相对性 不同化学浸提方法所测出的“有效养分”数值是不相同的,在很大程度上取决于浸提剂的类型。对于同一种土壤采用不同的浸提剂所测出的“有效磷”的数值相差很大,最大的可相差

土壤养分分级等级标准

农业土壤养分分级标准 土壤养分分级标准主要是针对有机质、全氮、速效氮、速效磷和速效钾的含量进行分级, 每种级别对不同成分的含量不同。而实际工作中,我们可以参照这个标准进行测试分析,以 了解土壤的真实肥力情况。 而土壤养分是指存在于土壤中的植物必须的营养元素。包括碳(C)、氮(N)、氧(O)、 氢(H)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、铜(Cu)、锌 (Zn)、硼(B)、钼(Mo)、氯(Cl)等16种。在自然土壤中,除前三种外,土壤养分主要 来源于土壤矿物质和土壤有机质,其次是大气降水、破渗水和地下水。 有机质是土壤肥力的标志性物质,其含有丰富的植物所需要的养分,调节土壤的理化性 状,是衡量土壤养分的重要指标。它主要来源于有机肥和植物的根、茎、叶的腐化变质及各 种微生物等,基本成分主要为纤维素、木质素、淀粉、糖类、油脂和蛋白质等,为植物提供 丰富的C、H、O、S及微量元素,可以直接被植物所吸收利用。其中有机质的分级可作为土 壤养分分级,土壤养分分级等级标准共六级,且六级为最低,一级为最高。 表1 土壤pH值分级 注:按:1水土比例浸拌土壤,pH玻璃电极和甘汞电极(或复合电极)测定。 表2 有机质及大量元素养分含量分级 注:有机质测定为重铬酸钾氧化-容量法;碱解氮测定为碱解扩散法;速效磷测定为碳酸氢钠提取-钼锑抗比色法(Olsen法);速效钾测定为醋酸铵浸提-火焰光度计法。 表3 中量元素养分临界值(mg/kg)

注:有效钙和有效镁即交换性钙、镁,测定方法为醋酸铵提取-原子吸收分光光度计(或火焰光度计)测定;有效硫测定为磷酸盐-醋酸提取,硫酸钡比浊。 表4 有效微量元素含量分级(mg/kg) 注:铁、锰、铜、锌分析方法均为DTPA溶液浸取-原子吸收分光光度法;钼的分析方法为草酸-草酸铵浸提—极谱法;硼的分析方法为沸水浸提-姜黄素比色法。 表5 阳离子交换量分级(meq/100g土) 注:阳离子交换量测定方法为EDTA-铵盐浸提,蒸馏滴定法。 山西云大中天环境科技有限公司

土壤肥料养分速测仪

土壤肥料养分速测仪特点: ★测试速度更快!无需空白对照和标准校准,省却以往繁琐的操作步骤,一键式操作,直接读取数据,配套成套附件及成品药剂。 ★微电脑控制,程序化设计,5.1寸大屏幕中文汉字背光显示,交直流两用,内置锂电池,适应长期野外流动测试。 ★可检测土壤(22项)、肥料(25项)、作物(30项)、食品(7项)共84个测试项目。 ★触摸式按键,汉字引导操作,内置热敏打印机,可打印测试结果。 一、功能多、测试项目齐全: 土壤:铵态氮、有效磷、速效钾、有机质、碱解氮、硝态氮、全氮、全磷、全钾、有效钙、有效镁、有效硫、有效铁、有效锰、有效硼、有效锌、有效铜、有效氯、有效硅、有效钼、土壤硒、土壤铅、土壤砷、土壤镉、土壤铬、土壤汞、土壤镍、土壤铝、土壤钛、土壤氟、pH、含盐量、水分; 肥料:酸解氮、硝态氮、铵态氮、尿素氮、缩二脲、全氮、有效磷、水溶磷、全磷、腐植酸、有机质、全钾、有效钾、酸碱度、含水量、肥料钙、肥料镁、肥料硫、肥料铁、肥料锰、肥料硼、肥料锌、肥料铜、肥料氯、肥料硅、肥料钼、肥料铅、肥料砷、肥料镉、肥料铬、肥料汞; 作物:铵态氮、硝态氮、作物磷、作物钾、作物钙、作物镁、作物硫、作物铁、作物锰、作物硼、作物锌、作物铜、作物氯、作物硅、作物钼、全氮、全磷、全钾、全钙、全镁、全硫、全铁、全锰、全硼、全锌、全铜全氯、全硅、全钼、总糖量、还原糖、蛋白质; 食品:农药残留、铅、砷、镉、铬、汞、铜、镍、氟、铝、甲醛、二氧化硫、吊白块。 二、仪器技术指标: 1.电源:交流220±22V 直流7.5V(可选择仪器内置锂电池) 2.重复性误差:≤0.5%(0.005,重铬酸钾溶液) 3.线性误差:≤3%(0.03硫酸铜检测) 4.灵敏度:红光≥4.5 ×10-5 ,蓝光≥3.17×10-3 5.波长范围:红光:620±4nm,蓝光:440±4nm 6.土壤中速效N、P、K等多种养分一次性同时浸提测定。 7.肥料中氮(N)、磷(P)、钾(K)等多养分同时、快速、准确检测 8.仪器无需做空白和标准,样品直放直读,消除用户校准带来的误差,保证测试结果准确。 9.5.1寸大屏幕中文汉字背光显示,自动存储打印检测结果,可存储1000条以上检测结果,具备历史数据查询打印功能。 10.数据打印:内置热敏打印机,可打印出测试日期、测试时间、种类、测试项目、测试值等。 三、测试速度: 测一个土壤样品(N、P、K)≤15分钟,同时检测10个土壤样品(N、P、K)≤50分钟; 测试一个肥料样(N、P、K)≤40分钟,同时检测三个肥料样品(N、P、K)≤1小时。 四、产品仪器特点: 功能全:测试项目国内外较全(各类药剂均可选购)。

土壤养分测试

1—2 土壤水分的测定(吸湿水和田间持水量) 田间持水量是土壤排除重力水后,本身所保持的毛管悬着水的最大数量。它是研究土、水、植物的关系,研究土壤水分状况,土壤改良、合理灌溉不可缺少的水分常数。吸湿水是风干土样水分的含量,是各项分析结果计算的基础。 1—2.1 土壤吸湿水的测定 测定原理 风干土壤样品中的吸湿水在105±2℃的烘箱中可被烘干,从而可求出土壤失水重量占烘干后土重的百分数。在此温度下,自由水和吸湿水都被烘干,然而土壤有机质不能被分解。 测定步骤 1.取一干净又经烘干的有标号的铝盒(或称量瓶)在分析天平上称重为A。 2.然后加入风干土样5—10g(精确到0.0001g),并精确称出铝盒与土样的总重量B。 3.将铝盒盖斜盖在铝盒上面呈半开启状态,放入烘箱中,保持烘箱内温度105±2℃,烘6小时。 4.待烘箱内温度冷却到50℃时,将铝盒从烘箱中取出,并放入干燥器内冷却至室温称重,然后再启开铝盒盖烘2小时,冷却后称其恒重为C。前后两次称重之差不大于3mg。 结果计算 该土样吸湿水的含量(%) =[ (B-A)-(C-A)/(C-A)3100% =[ (湿土重-烘干土重)/烘干土重3100% 注意事项 (1)要控制好烘箱内的温度,使其保持在105±2℃,过高过低都将影响测定结果的准确性。 (2)干燥器内所放的干燥剂要在充分干燥的情况下方可放入烘干土样。否则干燥剂要重新烘干或更换后方可放入干燥器中。 主要仪器 铝盒、分析天平(0.0001g)、角匙、烘箱、坩埚钳、干燥器、瓷盘。 1—2.2 田间持水量的测定 测定方法(铁框法) 1.在田间选择具有代表性的地块,面积不少于0.5m2,仔细平整地面。 2.将铁框击入平整好的地块约6—7cm深,其中大框(50350cm2)在外,小框(25325cm2)在内,大小框之间为保护区,其之间距离要均匀一致。小框内为测定区。 3.在上述地块旁挖一剖面,测定各层容重及其自然含水量。从而计算出总孔隙度及自然含水量所占容积%,然后根据总孔隙度与现有自然含水量所占容积%之差,求出实验土层(一般为1m左右)全部孔隙都充满水时应灌水的数量,为保证土壤充分渗透,实际灌水量将为计算需水量的1.5倍。按下式计算测试区和保护区的灌水量: 灌水量(m3)=H(a-w)3d3s3h 式中:a—土壤饱和含水量(%); w—土壤自然含水量(%); d—土壤容重(g/cm3); s—测试区面积(m2); h—土层需灌水深度(m); H—使土壤达饱和含水量的保证系数。 H值大小与土壤质地、地下水位深度有关,通常为1.5—3,一般粘性土或地下水位浅的土壤选用1.5,反之,选用2或3。 4.灌水前在测试区和保护区各插厘米尺一根,灌水时,为防止土壤冲刷,应在灌水处铺上草或席子。 5.灌水时先往保护区灌水,灌到一定程度后,立即向测定区灌水,使内外均保持5cm厚的水层,一直到灌完为止。 6.灌水完毕,土表要用草或席子以及塑料布盖严,以防蒸发和雨淋。 7.取样时间,一般为砂土类、壤土类在灌水后24小时取样,粘土类必须在48小时或更长时间以后方可采样测定。

相关文档
最新文档