ATRP法可控合成甲基丙烯酸羟乙酯基聚合物的研究

ATRP法可控合成甲基丙烯酸羟乙酯基聚合物的研究
ATRP法可控合成甲基丙烯酸羟乙酯基聚合物的研究

1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述

(1)ATRP介绍

王锦山等[1]采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy) 的络合物作为催化剂,在130℃下引发苯乙烯(St) 的本体聚合,反应3h产率可达95%。理论分子量和实验值符合较好。为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。由此他们提出了原子转移自由基聚合(ATRP)。

ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。

聚合原理

引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R·及处于高氧化态的金属卤化物Mt n+1-X,自由基R·可引发单体聚合,形成链自由基R-M n·。R-M n·可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。增长阶段,R-M n-X与R-X一样(不总一样)可与Mt n发生促活反应生成相应的R-M n·和Mt n+1-X,R-M n·与R-M·性质相似均为活性种,同时R-M n·和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n,则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。

由此可见,ATRP 的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。

引发剂

ATRP聚合体系的引发剂主要是卤代烷RX(X= Br ,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。RX的主要作用是定量产生增长链。α-碳上具有诱导或共轭结构的RX,末端含有类似结构的大分子(大分子引发剂)也可以用来引发,形成相应的嵌段共聚物。另一方面,R的结构应尽量与增长链结构相似。卤素基团必须能快速且选择性地在增长链和转移金属之间交换。Br和Cl均可以采用,采用Br的聚合速率大于Cl[2]。

金属催化剂及配体

第一代ATRP催化剂为CuX(其中X为Br,Cl),此后有人采用了RuⅡ,RhⅡ,NiⅡ,FeⅡ,ReⅤ等过度金属卤化物。而最早采用的配位剂是联二吡啶(bpy),

后来有了dNbipy,PMDETA,BDE,BPMODA和Me6TREN等高活性的催化剂配体。它们一方面可以作为催化剂的载体,另一方面和金属形成络合物,增强金属催化剂在有机单体(或溶剂)中的溶解性。

现在ATRP最大的缺点就是反应产物中的金属催化剂及其配体不好清除。科学家们想了很多的办法,其中最简单的一种方法就是减少催化剂的使用量。这样一方面需要寻找更高活性的催化剂,另一方面也要利用一种新的技术来减少催化剂的使用量。Matyjaszewski等[5]采用了一种新的聚合方法—电子增强活性种的原子转移自由基聚合(ARGET ATRP)。该方法通过在聚合体系中加入少量的还原剂,就可以将催化剂的氧化态还原为还原态,从而使得金属催化剂从新参与催化,形成一个氧化—还原的循环过程,从而大大降低了催化剂的使用量。

单体

与其它活性聚合相比,ATRP可以进行本体、溶液、和非均相体系聚合,具有最宽的单体选择范围,这也许是ATRP最大的魅力所在。目前已经报道的可通过ATRP聚合的单体有二大类:

苯乙烯及取代苯乙烯:如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、间甲基苯乙烯、对三氯甲基苯乙烯、间三氯甲基苯乙烯、对叔丁基苯乙烯等。

(甲基)丙烯酸酯:如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二甲氨基

乙酯等、(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸缩水甘油酯、乙烯基丙烯酸酯。

至今为止,采用ATRP技术尚不能使烯烃类单体、二烯烃类单体、氯乙烯和醋酸乙烯等单体聚合。

(2)ATRP的应用

用ATRP 法可制备嵌段聚合物、星型聚合物、超支化聚合物、接枝与刷型聚合物,另外ATRP 的引发基团已被成功地固定在了多种无机粉体和黏土矿物材料的表面。Mandal等[6]通过室温下在Au纳米颗粒表面甲基丙烯酸甲酯的ATRP聚合形成了具有核壳结构的Au/PMMA复合微球。Kamata等[7]更进一步,通过在金纳

米微粒的表面包覆一层多孔二氧化硅,然后通过ATRP在二氧化硅的表面接枝甲基丙烯酸苯甲酯形成Au/SiO2/PbzMA的双层壳的核壳结构。然后通过用HF溶解二氧化硅壳层,就形成了具有特殊结构的中空的Au/PbzMA 核壳结构。由于甲基

丙烯酸羟乙酯基聚合物采用传统方法制备不易得到,因而本文将采用ATRP法可

控合成甲基丙烯酸羟乙酯基聚合物,以期得到高质量产品。

(3)ATRP的最新进展

尽管ATRP法可以合成分子量分布较窄的聚合物,但由于在这过程中采用了过渡金属催化剂且不好清除,因而污染比较严重,有待进一步改善。现在有关于原子转移自由基聚合( ATRP) 引发- 活化- 失活过程的最新研究进展, 包括RATRP 体系克服了常规ATRP 体系中低价态过渡金属催化剂容易氧化的问题, AGET ATRP体系显著降低了过渡金属化合物的用量, ARGET ATRP 体系中残存的过渡金属催化剂仅为( 1~ 50) ×10- 6, 很多情况下不需要进行后处理, 使其适合工业

化生产成为可能。同时介绍了ATRP在表面接枝上的应用, 表面引发ATRP反应能改善材料的表面特性, 同时具有接枝链分子量及分布可控和高接枝率的优点, 使其在很多方面都获得了广泛的应用, 包括使材料表面图案化、提高材料表面的生物相容性、制备梳型的聚合物刷以及在纳米磁铁矿和真丝表面引发的AT RP反应。

新型ATRP 引发体系

常规A TRP 反应需要大量的低价态过渡金属催化剂( (1000~ 10000) ×10- 6) , 不仅对聚合系统要求严格, 而且脱除催化剂的后处理工艺复杂, 因此限制了其推广使用。为克服此问题,采用三( 2-甲基胺基) 乙胺( Me6 TREN) 、五甲基二乙烯三胺( PMDETA )、4, 4,-二( 5-壬基) 2, 2,- 联吡啶( dN -bpy) 或三( 2-吡啶) 甲基胺( T PMA ) 等配位能力更强的多齿胺类配体代替传统的联吡啶配体, 使得A TRP 催化剂的活性提高了103~ 105倍, 然而催化剂的用量却不能相应减少, 否

则会对聚合反应失去控制。

后来人们致力研究ATRP 反应的引发- 活化- 失活过程,从而开发出一系列新型引发体系, 逐渐克服了上述问题,使之成为一种适合工业化大生产的活性聚合技术。

RATRP 引发体系

针对ATRP的缺点, Mat yjaszewski 等[6, 7]提出了新的引发体系——反向ATRP ( RAT RP)。RATRP用传统引发剂(如偶氮双异丁腈、AIBN) 代替卤化物, 用高价过渡金属络合物代替原来的催化体系, 从而避免了上述两个缺点。

RATRP 体系克服了常规ATRP 体系中低价态过渡金属催化剂容易氧化的问题,更适合工业化大生产的需要。后来人们又发现在RATRP 体系中使用碳碳类引发剂( 如2, 3-二氰基2, 3 -二苯基丁二酸二乙酯, 简称DCDPS ) 可产生浓度适中的有机自由基, 因此较偶氮类或过氧化物类引发剂更有利于对聚合反应的控制。目前,已经成功利用RA TRP 方法合成出多种聚合物[10, 11], 然而RAT RP 体系没有减少过渡金属催化剂的用量, 适用的聚合温度范围较窄, 而且高活性催化体系( 如CuBr2/ Me6TREN) 不适用这种体系, 无法合成嵌段类聚合物。

AGETATRP 体系

通过电子转移生成催化剂的原子转移自由基聚合( Activator generated by electron transfer ATRP,简称AGET ATRP) 的聚合体系可克服ATRP 和RATRP 聚合体系的缺陷[12], 因为这种聚合体系采用稳定的还原剂( 如维生素C( Vc) ) 与高价过渡金属的络合物作为催化体系[13, 14]。在该体系中不再需要添加其他有机配体, 可使甲基丙烯酸甲酯较快地发生聚合反应, 反应不但有良好的可控性而且还可在有氧环境中进行。还原剂是用来减少高氧化态过渡金属络合物的用量, 而不是用来引发新的增长链( 并非有机自由基) , 用AGET ATRP 制备嵌段共聚物时没有产生均聚物, 理论上很多还原剂都可以使用。从早期的报道中得知, 在正常的ATRP 聚合体系中加入适量的铜粉, CuⅡ通过与Cu0之间的电子转移再生为CuⅠ, 增加聚合的速率[15]。后来又陆续发现2-乙基己酸亚锡( Sn( EH) 2 )[13]、抗坏血酸[ 12]、三乙胺[16]等都可显著提高A TRP 反应速率, 反应原理与零价铜类似, 即CuⅡ与还原剂反应生成CuⅠ。AGET AT RP 体系显著降低过渡金属络合物的用量, 而且由于还原剂的存在, 微量的氧对反应不会造成影响, 因此这种方法特别适合在水相和微乳液体系中进行[ 17, 18]。

A GET ATRP体系显著降低了过渡金属化合物的用量,然而残留在聚合产物

中的金属离子含量仍然较高。Matyjaszewski 研究组设想: 如果在AT RP 体系中存在将高价态过渡金属不断转化为低价态的物质, 则初始加入的过渡金属化合

物的用量可大大减少。基于如上设想, Matyjaszew ski 于2006 年提出ARGET A TRP 这种新型引发体系[ 17]。

ARGET ATRP 体系

ARGET ATRP体系是在AGET ATRP的基础上发展而来的, 理论上适合AGETATRP的还原剂同样适用ARGET AT RP, 包括有机联氨的衍生物、酚、单糖、抗坏血酸以及无机的SnⅡ、Cu0等, 在条件理想的状态下, 一些含氮的配体也可作为还原剂, 近期这种还原剂是研究的热点[ 19, 20]。良好控制下, 丙烯酸酯聚合时需要50 ×10- 6的过渡金属络合物, 而苯乙烯聚合时仅需要10 ×10- 6[ 21, 22]。由于ARGETA TRP 体系中含有过量还原剂, 因此少量氧气的存在不会影响聚合反应的可控进行,这两点对于实现AT RP 方法的工业化生产尤其有利。A RGET ATRP体系用微量氧化态金属络合物和过量的还原剂迅速产生低价态的金属络合物, 一些能影响聚合物分子量和链末端功能的副反应也减少了[ 23]。然而, 过量的还原剂不会产生新的自由基, 使AGET A TRP 体系更适合制备嵌段共聚物, 且微量的氧对聚合反应不会产生影响, 使AT RP 体系的工业化成为可能, 成为活

性可控自由基聚合工业化的重要突破[ 24]。

(4)总结

传统的自由基聚合在聚合机理和工业应用两方面都比较成熟,其优点是可聚

合的单体多,聚合条件温和,可适用多种聚合方法。但是聚合物的微结构、聚合度和多分散性无法控制,其根本原因与慢引发、快增长、速终止的机理特征有关。相反,阴离子聚合的特点是快引发、慢增长、无终止和无转移。分子量随转化率呈线性增加,分子量分布较窄,聚合物的端基、组成、结构和分子量都可以控制。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。

Matyjaszewski指出在自由基聚合中存在可逆终止(可逆失活)反应,即增长链自由基可与其它物质(如外加的自由基)可逆结合成休眠的活性种,链增长反应可继续进行,这样的自由基聚合过程为“活性”自由基聚合。但是真正的活性自由基聚合并不能实现,因为在自由基体系中,增长自由基之间的双分子终止反应并不能完全避免,所以这里的活性加上双引号。在此基础上,当得到的聚合物分子量符合理论计算值,且分子量分布窄时,该聚合称为可控聚合。这两者常统称为可控/ “活性”自由基聚合。

可控/“活性”自由基聚合能将自由基聚合和阴离子聚合两者的优点结合起来,该方法既能进行自由基聚合,又能有活性聚合物结构和分子量可控的特征。

原子转移自由基聚(ATRP)是可控/“活性”自由基聚合的一种,原子转移自由基聚合法(ATRP)合成的嵌段共聚物具有分子量可人为控制、分子量分布窄、适用单体广泛、反应条件不十分苛刻、能够合成多种多样的模型聚合物和工业化潜力较大等优点, 因此是合成嵌段共聚物的有效方法。因而我选择用ATRP法可控合成结构确定、分子量分布窄的带有功能性官能团羟基的聚甲基丙烯酸羟乙酯基聚合物。

复合材料复习题

复合材料复习题 1、简述增强材料(增强体、功能体)在复合材料中所起的作用,并举例说明。 填充:廉价、颗粒状填料,降低成本。例:PVC中添加碳酸钙粉末。 增强:纤维状或片状增强体,提高复合材料的力学性能和热性能。效果取决于增强体本身的力学性能、形态等。例:TiC颗粒增强Si3N4复合材料、碳化钨/钴复合材料,切割工具;碳/碳复合材料,导弹、宇航工业的防热材料(抗烧蚀),端头帽、鼻锥、喷管的喉衬。 赋予功能:赋予复合材料特殊的物理、化学功能。作用取决于功能体的化学组成和结构。例:1-3型PZT棒/环氧树脂压电复合材料,换能器,用于人体组织探测。 2、复合材料为何具有可设计性?简述复合材料设计的意义。如何设计防腐蚀(碱性)玻璃纤维增强塑料? 组分的选择、各组分的含量及分布设计、复合方式和程度、工艺方法和工艺条件的控制等均影响复合材料的性能,赋予了复合材料性能的可设计性。 意义:①每种组分只贡献自己的优点,避开自己的缺点。②由一组分的优点补偿另一组分的缺点,做到性能互补。③使复合材料获得一种新的、优于各组分的性能(叠加效应)。优胜劣汰、性能互补、推陈出新。 耐碱玻璃纤维增强塑料的设计:使用无碱玻璃纤维和耐碱性树脂(胺固化环氧树脂)。在保证必要的力学性能的前提下,尽量减少玻璃纤维的体积比例,并使树脂基体尽量保护纤维不受介质的侵蚀。 3、简述复合材料制造过程中增强材料的损伤类型及产生原因。 力学损伤:属于机械损伤,与纤维的脆性有关。脆性纤维(如陶瓷纤维)对表面划伤十分敏感,手工操作、工具操作,纤维间相互接触、摆放、缠绕过程都可能发生。 化学损伤:主要为热损伤,表现为高温制造过程中,增强体与基体之间化学反应过量,增强体中某些元素参与反应,增强体氧化。化学损伤与复合工艺条件及复合方法有关。热损伤伴随着增强体与基体之间界面结构的改变,产生界面反应层,使界面脆性增大、界面传递载荷的能力下降。 4、简述复合材料增强体与基体之间形成良好界面的条件。 在复合过程中,基体对增强体润湿;增强体与基体之间不产生过量的化学反应;生成的界面相能承担传递载荷的功能。 复合材料的界面效应,取决于纤维或颗粒表面的物理和化学状态、基体本身的结构和性能、复合方式、复合工艺条件和环境条件。 5、什么是相乘效应?举例说明。 两种具有转换效应的材料复合在一起,产生了连锁反应,从而引出新的机能。可以用通式表示:X/Y·Y/Z=X/Z (式中X、Y、Z分别表示各种物理性能)。 压磁效应?磁阻效应=压敏电阻效应;闪烁效应?光导效应=辐射诱导导电。 例:磁电效应(对材料施加磁场产生电流)——传感器,电子回路元件中应用。 压电体BaTiO3与磁滞伸缩铁氧体NiFe2O4烧结而成的复合材料。对该材料施加磁场时会在铁氧体中产生压力,此压力传递到BaTiO3,就会在复合材料中产生电场。最大输出已达103 V·A。 单一成分的Cr2O3也有磁电效应,但最大输出只有约170 V·A。 6、推导单向板复合材料中纤维体积分数与纤维半径的关系(以正方形阵列为例)。 纤维体积:(4?1/4)πr2l=πr2l 复合材料体积:(2R)2l=4R2l 纤维体积分数:V f=πr2l/(4R2l)= πr2/(4R2) 纤维间距与纤维体积分数的关系: s=2R-2r=2[πr2/(4V f)]1/2-2r=2[(π/4V f)1/2-1]r 7、什么是材料复合的结构效果?试述其内涵。 结构效果是指在描述复合材料的性能时,必须考虑组分的几何形态、分布形态和尺度等可变因素。这类效果往往可以用数学关系描述。 结构效果包括:1、几何形态效果(形状效果):决定因素是组成中的连续相。对于1维分散质,当分散质的性质与基体有较大差异时,分散质的性能可能会对复合材料的性能起支配作用。2、分布形态效果(取向效果):又可分为几何形态分布(几何体的取向)和物理性能取向:导致复合材料性能的各向异性,对复合材料的性能有很大影响。3、尺度效果:影响材料表面物理化学性能(比表面积、表面自由能)、表面应力分布和界面状态,导致复合材料性能的变化。 8、简述单向复合材料的细观力学分析模型的基本假设的要点。 单元体:宏观均匀、无缺陷、增强体与基体性能恒定、线弹性。 增强体:匀质、各向同性、线弹性、定向排列、连续。

草铵膦的基本知识

农药中含量(纯度)很高的为原药:其中除少量杂质外几乎都是有效成分,一般含量至少在80%以上。母药则是指:含量较高有效成分溶解在一定的溶剂中得到的混合物,含量较原药低(主要是一些高纯度原药难以制备的农药品种,在制备过程中只能得到母药)。 原药及母药均用于农药制剂(农民直接使用的产品)的配制,故是农药制剂生产中的原料。 草铵膦 1.基本定义 中文通用名:草铵膦 别名:草胺磷铵盐;2-氨基-4-[羟基(甲基)膦酰基]丁酸铵 英文通用名:glufosinate-ammonium 化学名称:4-[羟基(甲基)膦酰基]-DL-高丙氨酸 分子式:C5H15N2O4P 分子量:198.16 2.历史 草铵膦---于上个世纪80年代由德国赫斯特公司开发生产,(几经合并后现归属拜耳公司),拜耳公司是草铵膦专利持有者。除了具有除草活性外,还具有杀虫杀菌活性,可以与杀虫剂等混配,达到同时防治的效果。该除草剂具有高效、低毒、易降解等特点,水为基剂,使用安全方便。 3.理化性质 白色结晶,有轻微气味,在水中溶解度为1370g/L (22℃),在一般有机溶剂中溶解度低,对光稳定。 4.毒性 低毒,雄大鼠急性经口LD 50为2000mg/kg,雌大鼠为1620mg/kg;雄小鼠急性经口LD 50431mg/kg,雌小鼠为 416mg/kg;狗急性经口LD 50200~400mg/kg。雄大鼠急性经皮LD 50>2000mg/kg,雌大鼠为4000mg/kg。 5.作用原理 属于膦酸类除草剂,部分内吸,非传导性触杀型除草剂 与草甘膦杀根不同,草铵膦先杀叶,通过植物蒸腾作用可以在植物木质部进行传导(水分从活的植物体表面(主要是叶子)以水蒸汽状态散失到大气中的过程) 木质部是维管植物的运输组织,负责将根吸收的水分及溶解于水里面的离子往上运输,以供其他器官组织使用,另外还具有支持植物体的作用。木质部由导管、管胞、木纤维和木薄壁组织细胞以及木射线组成。 抑制植物体内的谷氨酰胺合成酶活性,导致谷氨酰胺合成受阻、氮代谢紊乱、铵离子累积,从而破坏植物细胞膜,阻止植物光合作用而枯死。 6.防治对象: 用于果园、葡萄园、非耕地、马铃薯田等防治一年生和多年生双子叶及禾本科杂草。 双子叶植物是指植物种子体内有两片子叶。 合成路线: 国内的普通的合成路线也就是所谓的斯特累克尔反应(strecker 法) 1.草铵膦合成的关键是中间体甲基亚磷酸二乙酯的合成 2.以廉价易得的三氯化磷和亚磷酸三乙酯为原料制备氯代亚膦酸二乙酯,经格氏反应得到甲基亚膦酸二乙酯; 甲基亚膦酸二乙酯与二溴乙烷在自制催化剂催化下反应得到甲基(2-溴乙基)膦酸乙酯;然后与乙酰氨基丙二酸二乙酯负离子在甲苯中反应,经盐酸酸化,氨水铵化得到草铵膦铵盐 此外,草铵膦合成还有高压催化合成法、低温定向合成法、采用斯特累克尔反应和密切尔加成法等。

甲基丙烯酸羟丙酯

甲基丙烯酸羟丙酯 中文名称:甲基丙烯酸羟丙酯 英文名称:2-Hydroxypropyl methacrylate, mixture of isomers 中文别名: CAS RN.:27813-02-1 分子式:C7H12O3 物化性质: 密度 1.066 分子量: 144.17 沸点: 240℃(0.5 mmHg) 无色液体 沸点96℃(1.33kPa) ,57℃(66.7Pa) 相对密度1.066(25/16℃) 折光率1.4470 闪点96℃ 溶于一般有机溶剂,稍溶于水。 化工应用 主要用于制造有活性基团的羟基丙烯酸树脂。涂料工业与环氧树脂、二异氰酸酯、三聚氰胺甲醛树脂等配置,用于制造双组份涂料。油脂工业用作润滑油洗涤的添加剂。纺织工业用于制造织物的胶粘剂,分析化学中用作化学试剂。 甲基丙烯酸羟乙酯 甲基丙烯酸羟乙酯(HEMA) 甲基丙烯酸羟乙酯 一、产品介绍: 英文名称:2-Hydroxyethyl methacrylate 分子式(Formula):C6H10O3 分子量(Molecular Weight):130.14

CAS No.:868-77-9 二、质量指标(Specification) : 外观(Appearance):无色透明易流动液体 含量(Purity):99.50% 三、物化性质(Physical Properties) : 无色透明易流动液体。熔点-12℃,沸点95℃(1.333kPa),87℃(0.67kPa),71-73℃(0.267kPa),相对密度1.074(20/4℃),折射率1.4505,闪点(开杯)108℃。与水混溶,溶于普通有机溶剂。易聚合,一般商品含有阻聚剂,如100pp m对苯二酚或对苯二酚一甲醚。 四、用途(Useage) : 供制备热固性丙烯酸涂料丁苯橡胶乳液改性剂。丙烯酸改性聚氨酯涂料,水溶性电镀涂料粘合剂,纤维整理剂,纸品涂料,感光涂料及聚氯乙烯树脂改性剂等物质用的各种树脂,用途广泛。 五、保存条件: 阴凉处储存,集装箱避光存放与密闭容器,保持冷藏。商店低于4 ℃,避灯光。 六、应用领域: 塑料工业用于制造含活性羟基的丙烯酸树酯。涂料工业与环氧树脂、二异氰酸酯、三聚氰胺甲醛树脂等配置用于制取双组份涂料。油脂工业用作润滑油洗涤的添加剂。电子工业用作电子显微镜的脱水利。纺织工业用于制造织物的胶粘剂。分析化学中用作化学试剂。此外,还用于水混溶的包埋剂等。 七、市场现状: 日本三菱化学、台湾地区和中国大陆地区皆有生产。 】 丙烯酸羟乙酯 丙烯酸羟乙酯 2-Hydroxyethyl acrylate 分子式(Formula):C5H8O3 分子量(Molecular Weight):116.12 CAS No.:818-61-1 质量指标(Specification) 含量(Purity):优级 物化性质(Physical Properties) 密度 1.106 熔点-60°C 沸点210-215°C 折射率 1.449-1.451

复合材料有关习题

复合材料习题 第一章 一、判断题:判断以下各论点的正误。 1、复合材料是由两个组元以上的材料化合而成的。(?) 2、混杂复合总是指两种以上的纤维增强基体。(?) 3、层板复合材料主要是指由颗料增强的复合材料。(?) 4、最广泛应用的复合材料是金属基复合材料。(?) 5、复合材料具有可设计性。(?) 6、竹、麻、木、骨、皮肤是天然复合材料。(?) 7、分散相总是较基体强度和硬度高、刚度大。(?) 8、玻璃钢问世于二十世纪四十年代。(?) 二、选择题:从A、B、C、D中选择出正确的答案。 1、金属基复合材料通常(B、D) A、以重金属作基体。 B、延性比金属差。 C、弹性模量比基体低。 D、较基体具有更高的高温强度。 2、目前,大多数聚合物基复合材料的使用温度为(B) A、低于100℃。 B、低于200℃。 C、低于300℃。 D、低于400℃。 3、金属基复合材料的使用温度范围为(B) A、低于300℃。 B、在350-1100℃之间。 C、低于800℃。 D、高于1000℃。 4、混杂复合材料(B、D) A、仅指两种以上增强材料组成的复合材料。 B、是具有混杂纤维或颗粒增强的复合材料。 C、总被认为是两向编织的复合材料。 D、通常为多层复合材料。 5、玻璃钢是(B) A、玻璃纤维增强Al基复合材料。 B、玻璃纤维增强塑料。 C、碳纤维增强塑料。 D、氧化铝纤维增强塑料。 6、功能复合材料(A、C、D) A、是指由功能体和基体组成的复合材料。 B、包括各种力学性能的复合材料。 C、包括各种电学性能的复合材料。 D、包括各种声学性能的复合材料。 7、材料的比模量和比强度越高(A) A、制作同一零件时自重越小、刚度越大。 、制作同一零件时自重越大、刚度越大。B. C、制作同一零件时自重越小、刚度越小。 D、制作同一零件时自重越大、刚度越小。 三、简述增强材料(增强体、功能体)在复合材料中所起的作用,并举例说明。 填充:廉价、颗粒状填料,降低成本。例:PVC中添加碳酸钙粉末。 增强:纤维状或片状增强体,提高复合材料的力学性能和热性能。效果取决于增强体本身的力学性能、形态等。例:TiC颗粒增强SiN复合材料、碳化钨/钴复合材料,切割工具;碳/碳复合材

聚合物基复合材料试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

万吨级草铵膦中间体甲基亚磷酸二乙酯的工业装置

万吨级草铵膦中间体甲基亚磷酸二乙酯的工业装置 李强雷青菊 摘要:以三氯化磷为起始原料,生产氯基亚磷酸二乙酯,再与格式试剂发生烷基化反应后,粗品经固液分离,精馏后得到高纯度的甲基亚磷酸二乙酯。由于大生产装置的安全性、复杂性、环保要求等,致使国内化工装置普遍偏小、简陋、安全隐患突出。因此,有必要建设万吨级高度安全、自控、环保的大型装置。 Abstract::with phosphorus trichloride as raw materials, production of chlorine radical phosphorous acid e t hyl ester two, and alkylation reactionwith Grignard reagent, the crude product by the solid-liquid separation,rectified to obtain high purity methyl phosphorous acid ethyl ester two. The production device security, complexity, environmental requirements,resulting in the domestic chemical device generally small, simple, security risks outstanding. Therefore, it is necessary to build large device million ton high security, environmental protection, automatic control. 关键词:甲基氯化镁烷基化精馏甲基亚磷酸二乙酯装置生产 随着草甘膦与百草枯部分剂型产品的禁用,以及转基因技术的发展,灭生性除草剂草铵膦即将成为全球第一大除草剂。 With the disabled glyphosate and paraquat part product formulations, as well as the development of transgenic technology, herbicide glufosinatewill become the world's first major herbicide. 在国内,生产草铵膦所需的原料成本六成以上来自中间体甲基亚磷酸二乙酯。 In China, the production of glufosinate required raw materials cost sixmore than from the intermediate methyl phosphorous acid ethyl ester two. 为降低草铵膦的使用成本,迫使厂家不断优化生产工艺,启用新技术新装备,所以降低甲基亚磷酸二乙酯的生产成本尤为关键。 In order to reduce the use cost of glufosinate, forcing manufacturers toconstantly optimize the production process, the opening of the newtechnology and new equipment, so reducing the methyl phosphorous acid ethyl ester two production cost is crucial. 一、粗品的合成 (1)歧化装置。来自亚磷酸三乙酯贮罐的三乙酯,经计量后与一定量的溶剂、催化剂进入混合釜,搅拌降温一定时间后,转入歧

丙烯酸羟乙酯

丙烯酸羟乙酯 2-Hydroxyethyl acrylate 分子式(Formula):C5H8O3 分子量(Molecular Weight):116.12 CAS No.:818-61-1 质量指标(Specification) 含量(Purity):优级 物化性质(Physical Properties) 密度 1.106 熔点-60°C 沸点210-215°C 折射率 1.449-1.451 闪点99°C 水溶性soluble 用途(Useage) 用于辐射固化体系中的活性稀释剂和交联剂,亦可作为树脂交联剂,塑料、橡胶改性剂 甲基丙烯酸羟乙酯 2-Hydroxyethyl methacrylate 分子式(Formula):C6H10O3 分子量(Molecular Weight):130.14 CAS No.:868-77-9 质量指标(Specification) 外观(Appearance):无色透明易流动液体 含量(Purity):99.50% 物化性质(Physical Properties) 熔点-12℃沸点95℃相对密度 1.074 折射率1.4505 闪点108℃溶解性溶于普通有机溶剂。与水混溶 用途(Useage) 用于合成医用高分子材料、热固性涂料及粘合剂等 一、产品介绍: 英文名称:2-Hydroxyethyl methacrylate 分子式(Formula):C6H10O3 分子量(Molecular Weight):130.14 CAS No.:868-77-9 二、质量指标(Specification) : 外观(Appearance):无色透明易流动液体

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

草铵膦的合成研究进展_毛明珍

农 药 AGROCHEMICALS 第53卷第6期2014年6月Vol. 53, No. 6Jun. 2014 草铵膦的合成研究进展 毛明珍,何琦文,张晓光,苏天铎,魏 乐,张建功,王列平,薛 超,宁斌科 (西安近代化学研究所, 西安 710065) 摘要:草铵膦是一种高效、广谱、低毒的非选择性除草剂,是目前转基因抗性作物理想的除草剂,应用前景非常 广阔。 草铵膦具有2种对映异构体,但只有L -构型具有除草活性。 根据相关文献及专利报道,综述了草铵膦及L -草铵膦的合成研究进展。 关键词:草铵膦;制备方法;手性合成;综述中图分类号:TQ460.3 文献标志码:A 文章编号:1006-0413(2014)06-0391-03 Progress of the Research on Synthetic Methods of Glufosinate-ammonium MAO Ming-zhen, HE Qi-wen, ZHANG Xiao-guang, SU Tian-duo, WEI Le, ZHANG Jian-gong, WANG Lie-ping, XUE Chao, NING Bin-ke (Xi ′an Modern Chemistry Research Institute, Xi ′an 710065, China) Abstract: Glufosinate is a highly ef ? cient, broad-spectrum, low toxicity and non-selective herbicide, and is also a good herbicide for transgenic crops with resistance, which has a broad application prospect. Glufosinate consists of two isomers, but only the L-enantiomer has herbicidal activity. According to the relevant literatures and reported patents, the synthetic methods of glufosinate and L-glufosinate were introduced in this paper.Key words: glufosinate; synthetic methods; asymmetric synthesis; overview 草铵膦(glufosinate)是德国赫斯特(Hoechst)公司开发的一种高效、广谱、低毒的非选择性除草剂,有效成分为 phosphinothricin(简称PPT),化学式为C 5H 12NO 4P ,易溶于水,不易溶于有机溶剂,对光稳定;在pH=5~9的水溶液中易水解。 市售草铵膦是外消旋混合物,只有L -型具有除草活性,靶标酶是谷氨酰胺合成酶(GS),草铵膦能抑制GS 所有已知的形式,导致植物体内氮代谢紊乱、氨的过量积累、叶绿体解体,从而使光合作用受抑,最终导致植物死亡[1-3]。 草铵膦具有很强的除草活性,几乎能有效防除各种供试杂草,对农作物安全,活性高,杀草谱广,药害小,是目前转基因抗性作物理想的除草剂,应用前景非常广阔,因而受到科研人员的极大关注[3-4]。 关于草铵膦及L -草铵膦合 成报道很多,最近又有很多新颖的合成方法被开发出来,本文对其合成路线进行详细介绍。 1 草铵膦的合成方法 1.1 盖布瑞尔(Gabriel)–丙二酸二乙酯合成法 该路线[5-6]以甲基亚磷酸二乙酯为起始原料,反应条件比较温和,不需要苛刻的反应温度,但要用到1,2-二溴乙 烷、液溴等物质,成本较高,总收率较低(10%~15%),是一种早期合成草铵膦的方法[5]。 收稿日期:2014-03-20,修返日期:2014-05-06 作者简介:毛明珍(1984—),男,山西襄汾人,助理研究员,博士,主要从事新农药创制、农药原药及中间体的合成研究。 E-mail :maomingzhen0303@https://www.360docs.net/doc/f618156936.html, 。 杜春华等[6]对该路线进行了改进,将丙二酸二乙酯的钠盐改造为乙酰氨基丙二酸二乙酯的钠盐,反应步骤减 少, 总收率为25.8%(以甲基亚膦酸二乙酯计),但该路线每一步的反应时间都较长(10 h 以上),且温度较高(100 ℃以上),工艺比较繁琐。 1.2 阿布佐夫(Arbuzov)合成法 该路线[7]以甲基亚磷酸二乙酯和4-溴-2-三氟乙酰氨基-丁酸甲酯为原料合成,反应历程较为简洁,但4-溴-2-毛明珍, 何琦文, 张晓光, 等. 草铵膦的合成研究进展[J]. 农药, 2014, 53(6): 391-393.

100ta偕二亚膦酸二乙酯的合成工艺设计

《制药工程原理与设备》课程设计作业100t/a偕二亚膦酸二乙酯的合成工艺设计

目录 1前言 1.1偕二亚膦酸二乙酯结构简介 (1) 1.2偕二亚膦酸二乙酯药学和技术文献总结 (1) 2工艺设计 (6) 3物料衡算 (7) 3.1甘特图 (7) 3.2物料衡算 (7) 4物料平衡图 (12) 5设备选型 (13) 5.1反应釜选型 (13) 5.2减压蒸馏设备的选型 (15) 5.3降膜蒸发设备选型 (16) 5.4精馏设备选型 (17) 5.5设备一览表 (18) 6工艺流程图 (19) 7工艺流程简介 (19) 8三废排放与防止方案 (20) 9过程技术与GMP规范响应性描述 (24)

10设计小感 (26) 11附录--放大设计 (30) 12参考文献 (31) 13小组成员信息表 (32)

偕二亚膦酸二乙酯合成工艺设计说明书1前言 1.1偕二亚膦酸二乙酯的简介 中文名称:偕二亚膦酸二乙酯即亚甲基二膦酸四乙酯 英文名称:Tetraethyl methylenediphosphonate 分子式:C 9H 22 O 6 P 2 分子量:288.2149 密度:1.148g/cm3 沸点:168℃ 化学结构式: 1.2偕二亚膦酸二乙酯药学和技术文献 1.2.1偕二亚膦酸二乙酯药学文献 本篇文章主要是对100t/a维生素A的合成中间体偕二亚膦酸二乙酯的工艺合成路线的研究。维生素A又称视黄醇,是最早被发现的维生素,在结构上与胡萝卜素相关,是由P一白芷酮环和两分子的2一甲基丁二烯构成的不饱和一元醇。 维生素A的化学结构式为:

维生素A药理作用 维生素A是有机体内所必需的一种营养元素,对于人体的生长、代谢和发育起着非常重要的作用。其主要生理功能包括:(1)维持正常视觉;(2)促进机体的生长与发育;(3)维持上皮组织的完整与健全;(4)加强机体免疫力;(5)抑制癌细胞。另外,维生素A还有一定的抗氧化作用,可以中和有害的自由基。 偕二亚膦酸二乙酯药理作用 偕二亚膦酸二乙酯是稳定的,不会发生危险聚合反应,但要避免其与氧化剂反应。偕二亚膦酸二乙酯具有毒性和刺激性,接触材料后会产生哮喘样症状可能持续数月甚至数年。这可能是由于暴露于高浓度和高度刺激性化合物被称为反应性气道功能障碍综合征(RADS)。偕二亚膦酸二乙酯刺激眼睛,呼吸系统和皮肤,可引起呼吸道刺激等一系列身体的反应,并引起进一步的肺损伤。蒸气吸入可能引起困倦和眩晕,伴有嗜睡,警觉性降低,反射消失和缺乏协调。在较高温度下吸入会增加危险。高浓度气体/蒸气吸入肺部造成刺激与咳嗽和恶心,中枢神经抑郁症伴有头痛和头晕,反射,疲劳。

MSDS-HEMA-en,甲基丙烯酸羟乙酯

Revision date: 09/30/2011 SAFETY DATA SHEET 1.IDENTIFICATION OF THE SUBSTANCE OR MIXTURE AND OF THE SUPPLIER Product name: 2-Hydroxyethyl Methacrylate (stabilized with MEHQ) Product code: EMA- Company: CHANGZHOU HICKORY CHEMICALS CO., LTD. Address: No.2 Weihua Road, Changzhou 213127, J iangsu, China Responsible Department: Sales Department Telephone: +86-519-85195885 Fax: +86-519-85195885 e-mail: tm253@https://www.360docs.net/doc/f618156936.html, Revision number: 2 2. HAZARDS IDENTIFICATION Classification of the GHS PHYSICAL HAZARDS Not classified HEALTH HAZARDS Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 2A Skin sensitization Category 1 ENVIRONMENTAL HAZARDS Not classified GHS label elements Pictograms or hazard symbols Signal word Warning Hazard statement Causes skin irritation Causes serious eye irritation May cause an allergic skin reaction Precautionary statements [Prevention] Avoid breathing. Contaminated work clothing should not be allowed out of the workplace.Wash hands thoroughly after handling. Wear protective gloves/eye protection/face protection. [Response] IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.IF ON SKIN: Gently wash with plenty of soap and water.If skin irritation or rash occurs: Get medical advice/attention.Wash contaminated clothing before reuse. Other hazards which do not result in classification May cause polimerization. 3. COMPOSITION/INFORMATION ON INGREDIENTS Substance/mixture:Substance Synonyms: Ethylene Glycol Methacrylate (stabilized with MEHQ) , Methacrylic Acid 2-Hydroxyethyl Ester (stabilized with MEHQ) Compontent(s): 2-Hydroxyethyl Methacrylate (stabilized with MEHQ) Percent: >97.0%(GC) Revision number: 2 CAS Number: 868-77-9 Revision date: 09/30/2011 Page 1 of 4 2-Hydroxyethyl Methacrylate (stabilized with MEHQ)

甲基丙烯酸羟乙酯

化学品安全技术说明书 甲基丙烯酸羟乙酯化学品安全技术说明书目录 第一部分化学品及企业标识第九部分理化特性 第二部分危险性概述第十部分稳定性和反应性 第三部分成分/组成信息第十一部分毒理学信息 第四部分急救措施第十二部分生态学信息 第五部分消防措施第十三部分废弃处置 第六部分泄漏应急处理第十四部分运输信息 第七部分操作处置与储存第十五部分法规信息 第八部分接触控制和个体防护第十六部分其他信息 第一部分化学品及企业标识 化学品中文名称:甲基丙烯酸羟乙酯 化学品英文名称:Hydroxyethyl methacrylate 企业名称: 地址: 邮编: 电话: 电子邮件地址: 传真号码: 企业应急电话: 技术说明书编码: 用途:用作树脂及涂料改性等方面 第二部分危险性概述 危险性类别:第2类高度易燃液体和蒸气 CAS编号:868-77-9 侵入途径:吸入、食入、经皮肤吸收 健康危害:吸入、摄入或者经皮肤吸收后对身体有害,其蒸汽或烟对眼睛、粘膜、皮肤和上呼吸道有刺激症状

环境危害: 燃爆危险:可燃,建规火险分级:丙 第三部分成分/组成信息 纯品□混合物■ 化学品名称:甲基丙烯酸羟乙酯 有害物成分含量CAS No. 第四部分急救措施 皮肤接触:脱去污染的衣物,用大量流动清水冲洗,会引起迟发反应,确保医生了解该物质相关知识 眼睛接触:提起眼睑,用大量清水冲洗至少15min并就医 吸入:迅速脱离现场至空气新鲜处,保持呼吸道通畅,呼吸困难时输氧、就医。 食入:饮足量的温水,催吐、洗胃并及时就医 第五部分消防措施 危险特性:本品遇高热、明火、氧化剂,会引起燃烧的危险。遇高热能发生聚合反应,出现大量放热现象,引起容器破裂或爆炸事故。与氧 化剂、硫酸、硝酸、腐蚀类、脂肪胺类、异氰酸酯类不能配伍。 蒸气比空气重,宜在低处聚集。封闭区域内的蒸气遇高温热源爆 炸。 有害燃烧产物:CO、CO2 灭火方法及灭火剂:可用二氧化碳、抗溶性泡沫、干粉灭火器 灭火注意事项:如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户,卫生、消防等部门 第六部分泄漏应急处理 应急处理:疏散泄露污染区人员至安全区,禁止无关人员进入污染区,切断火源,建议应急处理人员佩戴好防毒面具,穿化学防护服。 消除方法:用水冲洗,经稀释后放入废水处理。也可以用砂土、干燥石灰或者苏打灰混合,收集到密闭容器中,运至废物处理中心。如有大 量泄漏,利用围堤收容,然后收集转移。

复合材料题库

一.填空题: 1.玻璃钢材料由(基材)与(增强材料)组成,其中(各类树脂)和(凝胶材料)为玻璃钢的常用基材。 2.常见可以拉制成纤维的玻璃种类主要分为(无碱玻璃)、(中碱玻璃)、(高碱玻璃)、(高强玻璃),其中(无碱玻璃纤维)是应用最多的玻纤。 3.连续玻璃纤维纺织制品就起产品形态而言可分为(纱线)(织物)两大类别。 4. 预浸料的制备方式可分为(湿法)(干法)及(粉末法)。 5. 结构胶粘剂一般以(热固性树脂)为基体,以(热塑性树脂)或(弹性体)为增韧剂,配以固化剂等组成。 6. 按照材料成分分类主要分为(环氧树脂胶粘剂)(聚酰亚胺胶粘剂)(酚醛树脂胶粘剂)(硅酮树脂胶粘剂)。 7. 玻璃钢制品的生产过程可大致分为(定型)(浸渍)(固化)三个要素。 8. 环氧树脂是分子中含有两个或两个以上(环氧基团)的一类高分子化合物。 9. 按适用于玻璃钢手糊成型的模具结构形式分为:(单模)及(敞口式对模)。 10. 叶片制造常用的基体树脂有(不饱和聚酯树脂),(环氧乙烯基树脂)及(环氧树脂)三类。 二.名词解释: 1.热固性树脂:这种树脂在催化剂及一定的温度、压力作用下发生不可逆的化学反应,是线性有机聚合物链相互交联后形成的三维结构体。 2.预浸料:将定向排列的纤维束或织物浸涂树脂基体,并通过一定的处理后贮存备用的中间材料。 3.不饱和聚酯树脂:是由饱和的或不饱和的(二元醇)与饱和的及不饱和的(二元酸或酸酐)缩聚而成的线性高分子化合物。 4.单位面积质量:一定大小平板状材料的质量和它的面积之比。 5. 含水率:在规定条件下测得的原丝或制品的含水量。即试样的湿态质量和干态质量的差数与湿态质量的比值,用百分率表示。 6. 拉伸断裂强度:在拉伸试验中,试样单位面积或线密度所承受的拉伸断裂强力。单丝以Pa 为单位,纱线以N/tex为单位。 7. 弹性模量:物体在弹性限度内,应力与其应变的比例数。有拉伸和压缩弹性模量(又称杨氏弹性模量)、剪切和弯曲弹性模量等,以Pa(帕斯卡)为单位。 8. 偶联剂:能在树脂基体与增强材料的界面间促进或建立更强结合的一种物质。

异氰酸酯法在聚氨酯表面接枝聚甲基丙烯酸羟乙酯

生物医学工程学杂志 J B i om ed Eng 1999 16(增刊) 92~93 异氰酸酯法在聚氨酯表面接枝 聚甲基丙烯酸羟乙酯 I mm obol i za ti on of PHE M A on Polyetherurethane by isocyana tes 王琴梅 潘仕荣 (中山医科大学附属第一医院人工心研究室,广州 510080) 摘要 通过异氰酸酯法在聚氨酯(PU)片表面引入聚甲基丙烯酸羟乙酯(PH E M A),以得到一种具有良好的机械性能和优良的血液相容性的高分子材料。用固-液接触角分析所得样品表面性质,并进行血小板粘附实验。结果表明:与PU相比,在PU表面接枝PH E M A后其表面亲水性增加,粘附的血小板数量减少,变形也小。 关键词 聚氨酯 聚甲基丙烯酸羟乙酯 血液相容性 1 实验方法 (1)制备PU—PH E M A膜。包括PH E M A 合成,PU表面活化反应PU—PH E M A接枝反应[1]; (2)各样品表面的接触角测定; (3)血小板粘附实验[2]。 2 结果与讨论 211 接枝过程 嵌段聚醚型聚氨酯Pallethane2263含有2(2 O2CO2N H2)2基团,其中的2N H2可和TD I中的2 N CO起反应,生成带有2N CO基团的PU2 N CO。化学滴定法分析表面2N CO的浓度是2119×10-6mo l c m2。PH E M A中的2OH再和PU2N CO上的2N CO起反应生成PU2PH E M A。称重法测定接枝率。接枝率定义为: %(接枝)=(W1-W0) W0×100% 其中:W0为初始膜的重量;W1为接枝聚合物的重量。 当PH E M A的分子量为4000(PH E M A1)和8000(PH E M A2)时,接枝率基本相同,分别是718%和715%;分子量为12000(PH E M A3)时,接枝率较低,是413%。可能是因为PH E M A 分子量变大,空间位阻效应增加,大分子之间反应更困难,故接枝率稍低。 212 接触角的测定 不同材料对应于不同溶剂的接触角有以及由接触角推算出来的临界表面张力和表面自由能及其色散力和极性力分量[3]。由表1、2可知,接枝了PH E M A后,材料表面的接触角都有所降低,Χc增加,Χd s基本不变,Χp s、Χs变大。这是由于接枝了PH E M A后,材料表面的2OH含量增加,材料的亲水性增加,极性增大。 表1 不同聚合物样品表面接触角测定结果样品 PU PU 2 PH E M A1 PU2 PH E M A2 PU2 PH E M A3参照液接触角(Η) 水80.0 75.273.472.7丙三醇70.0 67.565.563.8甲酰胺55.6 55.253.953.2乙二醇53.1 49.548.640.4乙二醇苯醚52.4 35.037.836.4磷酸三甲苯酯34.7 29.127.524.5液体石蜡30.8 22.821.614.4

相关文档
最新文档