物理化学电泳实验

物理化学电泳实验
物理化学电泳实验

Fe(OH)3胶体电泳实验

1 实验目的

(1)用电泳法测定氢氧化铁溶胶的ζ电势。

(2)掌握电泳法测定ζ电势的原理和技术。

(3)学习Fe(OH)3溶胶的制备和纯化。

(4)理解电泳是胶体中液相和固相在外电场作用下相对移动而产生的电性现象。

2 实验原理

溶胶是一个多相体系,其分散相胶粒的大小约在1nm~1μm之间.校核大多是分子或原子的聚集体,因选择性地吸附介质中的某种离子(或自身电离)而带电。介质中存在的与吸附离子电荷相反的离子称为反离子,反离子中有一部分因静电引力(或范德华力)的作用,与吸附离子一起紧密地吸附于胶核表面,形成紧密层。于是,胶核、吸附离子和部分反离子(即紧密层)构成了胶粒。反离子的另一部分由于热扩散分布于介质中,故称为扩散层,见图2-1。

紧密层与扩散层间交界处称为滑移面(或Stern面)。显然紧密层与介质内部之间存在电势差,称为ζ电势。此电势只有处于电场中才显示出来。在电场中胶粒会向异号电极移动,称为电泳。在特定的电场中,ζ电势的大小决定于胶粒的运动速度,故ζ电势又称电动电势。

图2-1双电层示意图

因为溶胶是高分散的多相的热力学不稳定体系。为了降低体系的表面能,它终将聚集而沉降,但它在一定条件下又能相对地稳定存在,主要原因之一是体系中胶

()(1) /=l U εu πηK ζ粒带的是同一种电荷,彼此相斥而不致聚集。胶粒带的电荷越多,ζ电势越大,胶体体系越稳定。因此ζ电势大小是衡量溶胶稳定性的重要参数。

利用电泳现象可测定ζ电势。电泳法又分宏观法和微观法,前者是将溶胶置于电场中,观察溶胶与另一不含溶胶的导电液(辅助液)间所形成的界面的移动速率;后者是直接观测单个胶粒在电场中的泳动速率。对高分散或过浓的溶胶采用宏观法;对颜色太浅或浓度过稀的溶胶采用微观法。

本实验是在一定的外加电场强度下,通过测定Fe(OH)3胶粒的电泳速度然后计算出ζ电位。

式中:η, ε是测量温度下介质的粘度(Pa·s)和介电常数,取文献值;u 为胶粒电泳的相对移动速率(m·s -1);(U/l)为电位梯度(V·m -1),U 为两极间电位差(V),l 为两极间距离(m);K 是与胶粒形状有关的常数,球形粒子为6,棒状粒子为4,对于Fe(OH)3 K 值为4。

本实验中,测定电泳测定管中胶体溶液界面在t(s)内移动的距离d(m),求得电泳速度u=d/t 。

Fe(OH)3溶胶用水凝聚法制备,制备过程中所涉及的化学反应如下:

①在沸水中加入FeCl 3溶液:FeCl 3+3H 2O=== Fe(OH)3+3HCl

② 溶胶表面的Fe(OH)3会再与HCl 反应:Fe(OH)3+HCl===FeOCl+2H 2O

③FeOCl 离解成FeO +,Cl -。胶团结构为:{[Fe(OH)3]m ·n FeO +·(n-x)Cl -}x +·xCl - 在制得的溶胶中常含有一些电解质,通常除了形成胶团所需要的电解质以外,过多的电解质存在反而会破坏溶胶的稳定性,因此必须将溶液净化。最常用的净化方法是渗析法。他利用半透膜具有能透过离子和某些分子,而不能透过胶粒的能力,将溶胶中过量的电解质和杂质分离出来,半透膜可由胶棉液制得。纯化时,将刚制备的溶胶,装在半透膜内,浸入蒸馏水中,由于电解质和杂质在膜内的浓度大于在膜外的浓度,因此,膜内的离子和其他能透过膜的分子向膜外迁移,这样就降低了膜内溶胶中电解质和杂质的浓度,多次更换蒸馏水,即可达纯化的目的。适当提高

温度,可加快纯化过程。

3 仪器和试剂

(1)仪器

WYJ-GA高压数显稳压电源(附铂电极2个);DYJ电泳实验装置一套;DDS-307型电导测定仪一台;温度计,秒表一只;滴管2支;漏斗1个;细线1条;直尺一把。

(2)药品

稀KCl溶液;Fe(OH)

晶体;火棉胶。

3

4 实验步骤

(1)Fe(OH)3溶胶的制备及纯化

①-a用水解法制备Fe(OH)3溶胶

将0.5g 无水FeCl3溶于20mL蒸馏水,在搅拌条件下将上述溶液慢慢滴入200 mL沸水中(控制在4~5min滴完),并不断搅拌,加毕继续保持沸腾1~2min,即可得到红棕色的Fe(OH)3溶胶。自然冷却至50℃左右,同时煮沸的水也同样冷却至50℃左右,渗析时用。此时在溶胶体系中存在过量的H+,Cl-等离子需要除去。

①-b半透膜的制备

在一个内壁洁净、干燥的250mL锥形瓶中,加入约20mL火棉胶液,小心转动锥形瓶,使火棉胶液粘附在锥形瓶内壁上形成均匀薄层,倾出多余的火棉胶。然后倒置锥形瓶,晾干,用手轻触火棉胶膜,若不粘手,小心用手分开膜与瓶壁之间的间隙。慢慢注水于夹层中,使膜脱离瓶壁,轻轻取出,在膜袋中注入水,观察是否有漏洞,制好的半透膜不使用时,要浸放在蒸馏水中。(若乙醚未蒸发完全,加水过早,半透膜会发白,则不合用。若放置时间过长,使膜变为干硬,易裂开,则加水浸泡10min)

②③用热渗析法纯化Fe(OH)3溶胶

将制得的Fe(OH)3溶胶,注入半透膜内,用线拴住袋口,置于1000mL的清洁烧

杯中,杯中加蒸馏水约300mL ,维持温度50℃左右,进行渗析。每10min 换一次蒸馏水,反复4次后取出1mL 渗析水,分别用1%AgNO 3及1%KCNS 溶液检查是否存在Cl -及Fe 3+,如果仍存在,应继续换水渗析,直到检查不出来为止,将纯化过的Fe(OH)3溶胶移入一清洁干燥的100mL 小烧杯中待用。

要保证每次制膜前锥形瓶都是洁净干燥的。书中叙述制膜时要用100mL 火棉胶,显然错误,只需在瓶壁上形成均匀薄层即可,故5~10mL 足矣。火棉胶涂均匀后,一定要保证内壁已不粘手才可取膜。可用手或镊子轻箍锥形瓶瓶口边缘,撕开一小缝,往里注水,待水润湿瓶壁与膜缝隙,再小心取出膜,不需要如书中所述用蒸馏水浸泡10min 。每组需要至少50mLFe(OH)3溶胶,故一起制200mL 。渗析时多换水,每换4~5次水后可更换一张膜,如此3次后,待溶胶冷却至室温后,在电导仪下测电导率,若低于0.2(记录电导率),则可进行下一步实验。

(2)盐酸辅助液的制备

调节恒温槽温度为(25±0.1℃),用电导仪测定Fe(OH)3溶胶在25℃时的电导率, 本实验中配制KCl 溶液作为辅助液,取一干净滴管逐滴向装有100mL 蒸馏水的小烧杯中滴入0.1 mol/L KCl ,不断搅拌,测其电导率直至与溶胶相同。电导仪使用前要用蒸馏水清洗其铂电极。

(3)仪器的安装

用蒸馏水洗净电泳管后,再用少量溶液润洗一次,将渗析

好的Fe(OH)3溶胶倒入电泳管中(见图1),使页面超过活塞②,

③。关闭这两个活塞,把电泳管倒置,将多余的溶液倒净,并

用蒸馏水洗净活塞②,③以上的管壁。打开活塞①,用HCl

溶液冲洗一次后,再加入该溶液,并超过活塞①少许,关闭活

塞①。插入铂电极按装置图连接好线路。

使用的电泳管与书中略有差异(如图4-1)。首先用蒸馏水洗净电泳管。关闭活塞①,用Fe(OH)3溶胶润洗右侧A 管,然后装入溶胶至A

管底部,再加溶胶上边球状囊中。关闭活塞①,用KCl 溶液润洗U 型管,加入适量KCl 溶液,缓缓开启活塞①,使溶胶缓慢上升,直至A 管与U 型管液面相平,可看到溶液与辅图1电泳管

助液之间的清晰界面。在U型管上插入电极,连接到稳压电源上。

(4)溶胶电泳的测定

如图4-1(左),缓缓开启活塞②,③(勿使溶胶液面搅动),可得到溶液与辅助液之间的清晰界面。然后接通稳压电源,迅速调节输出电压为50V。观察溶胶液面移动现象及电极表面现象。当界面上升至活塞②或③上少许时,开始计时,并准确记下溶胶在电泳管中液面位置,以后每隔5min记录一次时间及下降端液-液界面的位置及电压,连续电泳40min左右,断开电源,记下准确的通电时间t和溶胶面上升的距离d,从伏特计上读取电压U,并且量取两级之间的距离l。

如图4-1(右),开启电源,记下U型管左右的刻度,以后每隔3分钟记录一次两端的界面刻度,连续记10组。之后用细线量出两点极之间的距离,具体数据记录见五中。实验结束后,拆除线路,用蒸馏水洗电泳管多次,最后一次用蒸馏水注满,整理实验台。

数据记录与处理

5 实验数据记录及处理

(1)室温19.6℃溶胶电导率 0.1072 电极电压50V 两电极间距离22.70cm

表5-1溶胶界面高度随时间变化

t(min) 0 3 6 9 12 左刻度(cm) 5.00 4.60 4.20 3.80 3.50

右刻度(cm) 4.90 5.20 5.30 5.60 5.80 t(min) 15 18 21 24 27 左刻度(cm) 3.20 2.90 2.50 2.30 2.10

右刻度(cm) 6.10 6.30 6.40 6.50 6.50

(2)由上表数据作d~t关系图,求出斜率u(电泳速率)

左侧是正极下降较均匀,取其数据在origin中作d~t图,如下:

图2 左侧电极d~t 关系(左)及线性拟合数据(右)

由此可计算出u=B= -0.00181×10-2m/s= -1.81×10-5m/s

(3)由u 及U 的平均数据,计算胶体的ζ电势。

Fe(OH)3,胶粒形状常数K 值为3.6×1010 V 2?S 2?kg -1?m -1

室温为19.6℃,取水的绝对粘度η=1.002Pa·s

介电常数ε=80-0.4(T/K-293)=80.16,故

ζ=0.0581V=58.1mV

6 结果分析

. 一般稳定的Fe(OH)3胶体ζ电势在30~40mV 之间,此次测得的ζ电势较大,分析原因,因为溶液的电导率大,带电胶粒移动的速率也会加快,它们更倾向于移动到负极接受电子而聚沉,所以测得的u 偏大,导致最终求得电势偏大。

7 误差分析

实验误差来源主要存在以下几个方面:

(1) 溶胶配置过程中要不断搅拌,且保持沸腾。

(2) 测量电导率时未冷却至室温,导致配置的辅助液电导率偏大。

(3) 计算ζ 电位时,η、ε 值采用同温度下纯水的数据,会引入一定误差。

(4) 溶胶界面由于产生气泡导致界面模糊,读数不准确。

(5) 长时间通电会使溶胶及辅助液发热,接近电泳池管壁的溶胶或辅助液散热较

Linear Regression for DA TA1_B:

Y = A + B * X

Parameter Value Error

------------------------------------------

A 4.87455 0.05519

B -0.00181 5.74368E-5

------------------------------------------

R SD N P

-0.99599 0.09391 10 <0.0001

管中间部分的溶液快,管子中间部分的溶胶或辅助液就较管壁附近溶液具有较高的温度,溶液因密度差引起对流使界面不清晰。

8实验讨论

本实验在实验过程中需要注意以下几点:

(1)渗析后溶胶电导率应该小于20μs/cm,且需冷却至室温后再配置辅助液。(2)制Fe(OH)3溶胶时要保持水的沸腾,FeCl3溶液匀速滴加,同时要一直有适中的搅拌速度。

(3)制出的膜要检查是否有破损处,可装入少量蒸馏水来检测是否有漏洞。

(4)渗析时要勤换水,每5-10min可换一次水,换4-5次水后可以换一次半透膜。水温保持60-70℃为宜,太低则纯化速率较慢,太高则会加快聚沉速率。加热胶体,能量升高,胶粒运动加剧,它们之间碰撞机会增多,而使胶核对离子的吸附作用减弱,即减弱胶体的稳定因素,导致胶体凝聚。换膜时要保证新膜的干净,不要沾上灰尘,否则会影响纯化。

(5)如图1,松开活塞①时,一定要慢,若打开活塞过于突然,则溶胶上升过快,界面会十分混杂,难于观察,若界面不清晰可用滴管轻轻吸出相混界面的液体。在电导过程中,开始时是左降右升,后来可以明显观察到负极(右)有Fe(OH)3沉淀产生,同时稳压电源电流示数也一直在0.15mA左右,分析其原因,应为溶胶电导率过大,导致两边通电时有一定电流,在负极有电子中和胶粒所带正电荷,固有胶体聚沉,当聚沉速率超过移动速率时,就会有右面界面下降。

(6)查阅文献知当都采用国际单位制时,K应取3.6×1010 V2?S2?kg-1?m-1。

物理化学实验指导书

实验1 液相反应实验平衡常数的测定 一、 目的和要求 1、利用分光光度计测定低浓度下铁离子与硫氰酸根离子生成硫氰合铁离子液相反应的实验 平衡常数。 2、通过实验了解实验平衡常数的数值不因反应物初始浓度不同而变化。 二、 基本原理 铁离子与硫氰酸根离子在溶液中可生成一系列的络离子,并共存于同一的平衡体系中,但当铁离子与硫氰酸根离子的浓度很低时,只有如下的反应: 3+-2+Fe SCN FeSCN + 即反应被控制在仅仅生成最简单的FeSCN 2+络离子。其平衡常数表示为: 23FeSCN Fe SCN c c K c c ++- = 通过实验和计算可以看出,在同一温度下,改变铁离子(或硫氰酸根离子)浓度时,溶液的颜色改变,平衡发生移动,但平衡常数c K 保持不变。 根据朗伯—比尔定律可知吸光度与溶液浓度成正比。因此,可借助于分光光度计测定其吸光度,从而计算出平衡时硫氰合铁离子的浓度以及铁离子和硫氰酸根离子的浓度,进而求出该反应的平衡常数c K 。 三、 仪器和试剂 7220型分光光度计,50mL 烧杯4个;50mL 锥角瓶2个;10mL 移液管6支。 4410-?mol·L -1的NH 4SCN 溶液;1110-? mol·L -1、2 110-?mol·L -1的FeCl 3溶液。 四 、实验步骤 1、不同浓度试样的配制 取4个50mL 的烧杯,编成1、2、3、4号。用移液管向编号的烧杯中各注入

5mL 4 410-?mol ·L -1的NH 4SCN 溶液。另取四种各不相同的FeCl 3溶液各5mL 分别注入各编号的烧杯中。使体系中SCN -离子的初始浓度与Fe 3+离子的初始浓度达到下表所示的数值。 为此,可按以下步骤配制不同浓度的Fe 3+离子溶液: 在1号烧杯中直接注入5mL 1 110-?mol·L -1的Fe 3+离子溶液; 在2号烧杯中直接注入5mL 2110-?mol·L -1的Fe 3+离子溶液; 取50mL 锥形瓶1个,注入10mL 2 110-?mol·L -1的Fe 3+离子溶液,然后加纯水10mL 稀释,取出稀释液(Fe 3+离子浓度3 510-?mol·L -1)5mL 加到3号烧杯中。 另取稀释液(即Fe 3+离子浓度3510-?mol·L -1)10mL 加到另一个50mL 锥形瓶中,再加纯水10mL 。配制成浓度为3 2.510-?mol·L -1的Fe 3+离子溶液,取此溶液5mL 加到4号烧杯中。 2、分光光度计的调剂与溶液吸光度的测定 将7220型分光光度计调整好,并把波长调到475nm 处。然后分别测定上述4个编号烧杯中各溶液的吸光度。 五、 数据记录和处理 将测得的数据填于下表,并计算出平衡常数c K 值。 温度: 压力: 表中数据按下列方法计算: 1、当1号烧杯Fe 3+离子与SCN -离子反应达平衡时。可以认为SCN -全部消耗,此平衡时对硫氰合铁离子的浓度即为反应开始时硫氰酸根离子浓度。既有: 21 FeSCN ()SCN ()equ ini c c +-=

物化实验答案教材

物理化学实验 版一 实验一 燃烧热的的测定 1. 说明恒容燃烧热(V Q )和恒压燃烧热(P Q )的差别和相互联系。 区别:恒容燃烧热在数值上等于燃烧过程中系统内能的变化值,恒压燃烧热在数值上等于燃烧过程中系统地焓变 联系:对于理想气体 P v Q Q nRT =+? 2. 在这个实验中,那些是体系,那些是环境?实验过程中有无热损耗?这些热损耗实验结果有何影响? 答:内筒和氧弹作为体系,而外筒作为环境。实验过程中有热损耗。有少量热量从内筒传到外筒,使得内筒水温比理论值低,而使得燃烧焓偏低。 3. 加入内筒中水的温度为什么要选择比外筒水温低?低多少合适?为什么? 答:因为本实验中要尽量避免内外筒之间的热量交换,而内筒中由于发生反应,使得水温升高,所以内筒事先必须比外筒水温低,低的数值应尽量靠近化学反应使内筒水温升高的值,这样,反应完毕后,内外筒之间达到一致温度,而外筒温度在反应开始前和反应后数值相等,说明热量交换几乎为0,减小了实验误差。 4. 实验中,那些因素容易造成误差?如果要提高实验的准确度,应从哪几方面考虑? 答:内外筒开始反应前的温度差造成误差,我们应提高软件质量,使软件调试出的温度如(3)所述,有利于减小误差。又如点燃火丝的燃烧带来的一定的热量,造成误差,应寻求一种让反应自发进行的方法,或寻求一种更好的点火材料。 实验二 Pb-Sn 体系相图的绘制 1.是否可用加热曲线来做相图?为什么? 答:不能。加热过程中温度难以控制,不能保持准静态过程。 2.为什么要缓慢冷却合金做步冷曲线?

答:使温度变化均匀,接近平衡态。 3.为什么坩埚中严防混入杂质? 答:如果混入杂质,体系就变成了另一多元体系,使绘制的相图产生偏差。 实验三 化学平衡常数及分配系数的测定 1. 配1、2、3各溶液进行实验的目的何在?根据实验的结果能否判断反应已达到平衡? 答:实验1是为了计算I 2在CCl 4和H 2O 中的分配系数。实验2、3是为了计算和比较平衡常数K ,当2Kc ≈3Kc 时,可判断反应已达到平衡。 2. 测定四氯化碳中I 2的浓度时,应注意什么? 答:应加入5~10ml 水和少量KI 溶液,还要先加入淀粉,充分振荡,滴定后要回收。 实验四 液体饱和蒸气压的测定——静态压 1. 本实验方法能否用于测定溶液的蒸气压,为什么? 答:不能。因为克-克方程只适用于单组分液体,而溶液是多组分,因此不合适。 2. 温度愈高,测出的蒸气压误差愈大,为什么? 答:首先,因为本实验是假定?H m (平均摩尔汽化热)在一定范围内不变,但是当温度升得较高时,?H m 得真值与假设值之间存在较大偏差,所以会使得实验结果产生误差。 其次,(假定气体为理想气体),PV =n R T 。V 是定值,随着T 升高,n 会变大,即使n 不变,p 也将变大,即分子运动加快,难以平衡。 实验五 蔗糖水解 1. 旋光度t β与哪些因素有关?实验中入如何控制? 答:旋光度与溶液中蔗糖、葡萄糖、果糖等的浓度有关。实验中计时必须准确,操作必须迅速,因为这样才能准确求得一定时间内的旋光度变化。实验中通过将所取出的反应液放入事先在冰水中冷却的试管中,使反应速率迅速下降,然

物理化学实验总结与心得

物化实验总结与心得 闽江学院化学与化学工程系120101202242 朱家林 时间过的很快,一个学期的物化实验已经结束了。经过一个学期的物化实验的学习,学到了很多专业知识和实验基本操作,以及很多做人做事的技巧和态度。物化实验是有用的,也是有趣的,物理化学实验涉及到了化学热力学、化学动力学、电化学、表面化学。一下,简单的回顾一下本学期的十四个物化实验。 实验一、燃烧热的测定 用氧弹卡计测定萘的燃烧热;了解恒压燃烧热与恒容燃烧热的区别;了解卡计中主要部分的作用。掌握卡计的实验技术;学会用雷诺图解法校正温度变化。热是一个很难测定的物理量,热量的传递往往表现为温度的改变。而温度却很容易测量。如果有一种仪器,已知它每升高一度所需的热量,那么,我们就可在这种仪器中进行燃烧反应,只要观察到所升高的温度就可知燃烧放出的热量。根据这一热量我们便可求出物质的燃烧热。试验中要注意:压片时应将Cu-Ni合金丝压入片内;氧弹充完氧后一定要检查确信其不漏气,并用万用表检查两极间是否通路;将氧弹放入量热仪前,一定要先检查点火控制键是否位于“关”的位置。点火结束后,应立即将其关上。氧弹充氧的操作过程中,人应站在侧面,以免意外情况下弹盖或阀门向上冲出,发生危险。 实验二、液体饱和蒸汽压的测定 明确纯液体饱和蒸气压的定义和气液两相平衡的概念,深入了解纯液体饱和蒸气压和温度的关系棗克劳修斯-克拉贝龙方程式;用等压计测定不同温度下苯的饱和蒸气压。初步掌握真空实验技术;学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸点。测定前必须将平衡管a,b段的空气驱赶净。冷却速度不应太快,否则测得的温度将偏离平衡温度。如果实验过程中,空气倒灌,则实验必须重做。在停止实验时,应该缓慢地先将三通活塞打开,使系统通大气,再使抽气泵通大气(防止泵中油倒灌),然后切断电源,最后关闭冷却水,使装置复原

物理化学实验课后练习参考

物理化学实验课后练习参考 一、问答题 1.用最大气泡法测定溶液的表面张力的实验操作中,为什么要求读出最大压力差? [答] p(内)

物理化学实验(南京大学出版社)课后思考题总结

物理化学实验(南京大学出版社)课后思考题总结——网络收集仅供参考液体饱和蒸汽压的测定----静态法 课内思考题: 1答:分情况,测定过程中溶剂挥发溶液的浓度发生变化,则不能测;但是对于难溶物的饱和溶液或者恒沸物等可以使用本方法测定。 2答:蒸汽温度越高相对的测量器具温度同样会升高从而改变测量器具的物理特性使测量器具内部金属硬度降低延展性增加等等从而使 测量值改变 燃烧热的测定 1实验中哪些是体系?哪些是环境?实验过程中有无热损耗?这些热损耗对实验结果有无影响? 答:内桶和氧弹作为体系,而外桶作为环境。实验过程中有热损耗,有少量热量从内桶传到外桶,使得内桶水温比理论值低,而使得燃烧焓偏低。 2水桶中的水温为什么要选择比外筒水温低?低多少合适?为什么?答案:为了减少热损耗,因反应后体 系放热会使内筒的温度升高,使体系与环境的温度差保持较小程度,体系的热损耗也就最少。低1度左右合适,因这个质量的样品燃烧后,体系放热会使内筒的温度升高大概2度左右,这样反应前体系比环境低1 度,反应后体系比环境高1 度,使其温差最小,热损耗最小。 3找找总会有。(1)实验过程中搅拌太慢或太快;(2)引火丝和药片之间的距离; (3)药片没有干燥;(4)搅拌时有摩擦;(5)压片时或松或紧 应从以上方面考虑,实验过程中匀速搅拌,引火丝和药片之间的距离要小于5mm或接触,但不能碰到燃烧皿,记住药片一定要干燥,保证燃烧完全,搅拌式不能有摩擦,而且压片时,压力要适中等等。 T----X图 1蒸馏器中收集气相冷凝液的袋状部的大小对结果有何影响? 答:若冷凝管下方的凹形贮槽体积过大,则会贮存过多的气相冷凝液,其贮量超过了热相平衡原理所对应的气相量,其组成不再对应平衡的气相组成,因此必然对相图的绘制产生影响。 2该实验中,测定工作曲线时折射仪的恒温温度与测 定样品时折射仪的恒温温度是否需要保持一致?为 什么? 答:因溶液的折射率是温度的函数,温度不同,折射率不同,因此,二者的温度必须一致。 3过热现象对实验产生什么影响?如何在实验中尽可能避免? 答:如果产生过热现象,会使液相线上移,相区变窄;可通过 加入沸石的方法消除,加入时,应少量多次,防止沸石失效。 成。另外,气相和液相取样量较多,也影响溶液的组成。 4本实验的误差主要来源有哪些? 答:组成测量:(1)工作曲线;(2)过热现象、分馏效应;(3)取样量。 温度测量:(1)加热速度;(2)温度计校正。蔗糖水解速率常数的测定 1蔗糖的转化速率常数k 与哪些因素有关? 答:温度、催化剂浓度。 2在测量蔗糖转化速率常数的,选用长的旋光管好?还是短的旋光管好? 答:选用较长的旋光管好。根据公式〔α〕=α×1000/Lc,在其它条件不变情况下,L越长,α越大,则α的相对测量误差越小。 3如何根据蔗糖、葡萄糖和果糟的比旋光度计算α0和α∞? 答:α0=〔α蔗糖〕D t℃L[蔗糖]0/100 α∞=〔α葡萄糖〕D t℃L[葡萄糖]∞/100+〔α果糖〕D t℃L[果糖]∞/100 式中:[α蔗糖]D t℃,[α葡萄糖]D t℃,[α果糖]D t℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=×2×10/100×(52.2-91.9)=-3.94° 4、试分析本实验误差来源?怎样减少实验误差? 答:温度、光源波长须恒定、蔗糖溶液要现用现配。 1、实验中,为什么用蒸馏水来校正旋光仪的零点?在 蔗糖转化反应过程中,所测的旋光度αt 是否需要零 点校正?为什么? 答:(1)因水是溶剂且为非旋光性物质。 (2)不需,因作lg(αt-α∞)~t 图,不作零点校正,对计算反应速度常数无影响。 2、蔗糖溶液为什么可粗略配制? 答:因该反应为(准)一级反应,而一级反应的速率常数、半衰期与起始浓度无关,只需测得dC/dt 即可。 4、试分析本实验误差来源?怎样减少实验误差? 答:温度、光源波长须恒定、蔗糖溶液要现用现配。 BZ振荡 1.影响诱导期的主要因素有哪些? 答:影响诱导期的主要因素有反应温度、酸度和反应物的浓度。温度、酸度、催化剂、离子活性、各离子的浓度2.本实验记录的电势主要代表什么意思?与Nernst方程求得的电位有何不同? 答:本实验记录的电势是Pt丝电极与参比电极(本实验是甘汞电极)间的电势,而Nernst方程求得的电位是电极相对于标准电极的电势,它反映了非标准电极电势和标准电极电势的关系。 ()℃ 果糖 ℃ 葡萄糖 〕 α 〕 〔α 蔗糖 t D t D 0[ 100 ] L[ 2 1 + =

物理化学实验报告.

《大学化学基础实验2》实验报告 课程:物理化学实验 专业:环境科学 班级: 学号: 学生姓名:邓丁 指导教师:谭蕾 实验日期:5月24日

实验一、溶解焓的测定 一、实验名称:溶解焓的测定。 二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。 (2)掌握作图外推法求真实温差的方法。 三、基本原理: 盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。热平衡式: △sol H m=-[(m1C1+m2C2)+C]△TM/m2 式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值. 四、实验主要仪器名称: NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子 ;蒸馏水 天平1台;KCl;KNO 3 五、实验步骤: (1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 . n KCl : n水 = 1: 200 (2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温. (3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止. (4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计. KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.

《物理化学实验》练习题

《物理化学实验》练习题 ●本练习题供平时练习所用,对期末考试有指导作用,望同学们认真做答. ●此次练习题需要当做一次物理化学作业一样提交. 练习题 一、填空题(每空1分,共30): 1.写出物理化学实验中所使用的两种温度计:和。 2.氧气钢瓶外表油漆的颜色是色;氢气钢瓶外表油漆的颜色是色。 3.在静态法测定乙醇饱和蒸气压的实验中,直接测量的物理量是 和。 4.热分析法测定“步冷曲线”时,根据曲线上的或可以确定相变温度。 5.测定物质的磁化率所使用的磁天平有磁天平和磁天平两种。 6.测量物质的燃烧焓所需的测量仪器是,燃烧反应在内进行。 7.测量液体饱和蒸气压所依据的原理是方程,通过实验数据作直线可以求出。 8.在二组分气液平衡相图的实验中,直接测量的物理量是和。 9.物质的旋光度与和等因素有关。 10.诱导极化率(或变形极化率)由极化率和极化率两部分组成。 11.写出恒温槽构造中的两个部件:和。 12.用氧弹量热计测量得到的是恒容热Q V,则恒压热Q p= 。 13.在液体饱和蒸气压测量的实验中,若空气未被抽净,则所得蒸气压的数值偏。 14.测量电解质溶液的电导可采用电桥法,测量电池的电动势采用 法。

15.在最大泡压法测量液体表面张力的实验中,直接测量的物理量是 。 16.接触温度计是用作 ,而贝克曼温度计是用作 。 17.热分析法所测量的“步冷曲线”是以 为纵坐标,以 为横坐标所得的曲线。 18.惠斯登(wheatston )电桥法测量电解质溶液的电导时,需要 作电源和 作示零装置。 19.对消法测量电池电动势需要用到 电池和 电池。 20.在偶极矩测量实验中,介电常数是通过测量 而得的。 21.在蔗糖水解反应速率常数测定的实验中,C 0/C = 。 22.乙酸乙酯皂化反应体系的电导随时间逐渐 ,反应体系的pH 随时间逐渐 。 23.贝克曼温度计测量温度的范围为 ℃,最小分度为 ℃。 24.获得真空时所使用的仪器是 ;测量真空度的仪器是 。 25.在测量液体表面张力的实验中,从毛细管中逸出泡的半径越 ,则最大液柱差△h m 越 。 二、单项选择题:将所选择的答案号添入括号中(每题1分,共50分): 1. 下面四条曲线分别代表A 、B 、C 、D 四个恒温槽的灵敏度曲线,其中恒温效果最好的是( )。 控温灵敏度曲线 2. 在氧弹量热计中萘的燃烧反应为: C 10H 8(s)+12O 2(g)→10CO 2(g)+4H 2O(l) 在K 2.298时,测得反应的恒容热?-=kJ 5152v Q mol -1,则萘的燃烧焓= ?m c H

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

物理化学实验思考题答案(精心整理)

物理化学实验思考题答案(精心整理) 实验1 1.不能,因为溶液随着温度的上升溶剂会减少,溶液浓度下降,蒸气压随之改变。 2.温度越高,液体蒸发越快,蒸气压变化大,导致误差愈大。 实验3 实验5 T----X图 1蒸馏器中收集气相冷凝液的袋状部的大小对结果有何影响 答:若冷凝管下方的凹形贮槽体积过大,则会贮存过多的气相冷凝液,其贮量超过了热相平衡原理所对应的气相量,其组成不再对应平衡的气相组成,因此必然对相图的绘制产生影响。 2若蒸馏时仪器保温条件欠佳,在气相到达平衡气体收集小槽之前,沸点较高的组分会发生部分冷凝,则T—x图将怎么变化 答:若有冷凝,则气相部分中沸点较高的组分含量偏低,相对来说沸点较低的组分含量偏高了,则T不变,x的组成向左或向右移(视具体情况而定) 3在双液系的气-液平衡相图实验中,所用的蒸馏器尚有那些缺点如何改进 答:蒸馏器收集气相、液相的球大小没有设计好,应根据实验所用溶液量来设计球的规格;温度计与电热丝靠的太近,可以把装液相的球设计小一点,使温度计稍微短一点也能浸到液体中,增大与电热丝的距离;橡胶管与环境交换热量太快,可以在橡胶管外面包一圈泡沫,减少热量的散发。 4本实验的误差主要来源有哪些 答:组成测量:(1)工作曲线;(2)过热现象、分馏效应;(3)取样量。

温度测量:(1)加热速度;(2)温度计校正。 5.试推导沸点校正公式: 实验12蔗糖水解速率常数的测定 1蔗糖的转化速率常数k 与哪些因素有关 答:温度、催化剂浓度。 2在测量蔗糖转化速率常数的,选用长的旋光管好还是短的旋光管好 答:选用较长的旋光管好。根据公式〔α〕=α×1000/Lc ,在其它条件不变情况下,L 越长,α越大,则α的相对测量误差越小。 3如何根据蔗糖、葡萄糖和果糟的比旋光度计算α0和α∞ 答:α0=〔α蔗糖〕D t ℃L[蔗糖]0/100 α∞=〔α葡萄糖〕D t ℃L[葡萄糖]∞/100+〔α果糖〕D t ℃L[果糖]∞/100 式中:[α蔗糖]D t ℃,[α葡萄糖]D t ℃,[α果糖]D t ℃ 分别表示用钠黄光作光源在t ℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm 表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t =20℃ L=2 dm [蔗糖]0=10g/100mL 则: α0=×2×10/100=° α∞=×2×10/100×()=-° 4、试分析本实验误差来源怎样减少实验误差 答:温度、光源波长须恒定、蔗糖溶液要现用现配。 1、实验中,为什么用蒸馏水来校正旋光仪的零点在蔗糖转化反应过程中,所测的旋光度αt 是否需要零 点校正为什么 答:(1)因水是溶剂且为非旋光性物质。 (2)不需,因作lg(αt-α∞)~t 图,不作零点校正,对计算反应速度常数无影响。 2、蔗糖溶液为什么可粗略配制 答:因该反应为(准)一级反应,而一级反应的速率常数、半衰期与起始浓度无关,只需测得dC/dt 即可。 实验17电导的测定及应用 1、本实验为何要测水的电导率 () ℃果糖℃葡萄糖〕α〕〔α蔗糖t D t D 0[100]L[21+=

物理化学实验级补充教材

物理化学实验补充教材Ⅱ 实验十八:电导法测定乙酸乙酯皂化反应的速率常数 一、实验目的:(参照书) 二、实验原理:(参照书) 三、实验步聚: 1、仪器清单: DELTA326电导率仪 1台秒表 1只双管反应管 1支 平底试管 1支刻度移液管(25ml)2支胖肚移液管(20ml)1支 刻度移液管(10ml)1支烧杯 2只洗耳球 1只 移液管架 1只磁盘 1只抹布 1块 洗瓶 1只容量瓶(100ml) 1只软木塞(橡皮塞) 2只 滴管 1支滤纸若干 NaOH 0.02000mol·dm-3 CH3COOC2H5 0.02000mol·dm-3 KCl 0.1mol·dm-3 2、实验步骤: 1)、DELTA326电导率仪的使用: (1)仪器的校正: a、把电导探头悬空放置,按校正键,仪器进入第一点校正状态,待屏幕锁定。 b、马上把电导探头(连电极套筒)插入校准溶液(0.01mol·dm-3KCl溶液)中,按校正键,进行第二点校 正,待屏幕锁定。 c、按读数键进入测量状态。 d、取出电极,用蒸馏水冲洗传感器并用滤纸吸干电极。 (2)样品测试: a、按模式键,选择电导模式为μs。按住读数键并保持,显示屏左上角显示[— ∕A ]),即选择 ∕ ](不是[—手动终点确定模式。 b、将电极插入到盛有待测样品的小烧杯中,按读数键,小数点闪烁,电导值不断变化,显示屏左上角无标 记显示,按读数键,显示屏左上角出现稳定指示图形[— ∕ ],此时屏幕锁定,读数即为样品的瞬间电导值,再按读数键,小数点继续闪烁……。 c、数据测完后冲洗传感器。 2)、实验步骤: a、用移液管准确移取10ml的0.1000mol·dm-3KCl标准溶液到100ml的容量瓶中,用三重蒸馏水稀释至刻 度,配制0.0100mol·dm-3的KCl标准溶液,校正电导率仪。 b、小心移取0.0200mol·dm-3NaOH溶液20ml于B管(管中无玻璃支管);移取0.0200mol·dm-3 CH3COOC2H5 溶液20ml于A管(管中有支管),,注意不要混和 ..插上电极(即电极在盛 ....,A管塞上带空的塞子,B.管中 NaOH管中)。 c、用洗耳球从A管往B管不停地缓慢地吹、吸气,同时用秒表开始计时,每隔1min记录读数一次,10min 后吹吸停止,20min后读数改为2min一次,直至反应进行1小时后停止测试,得G t,取出电极洗涤干净。 d、在上述反应的同时,移取0.0200mol·dm-3NaOH溶液20ml于平底试管中,再移取20ml蒸馏水与其混和 得0.0100mol·dm-3NaOH,静置。 G。 e、G t测定后,将洗净的电极插入平底试管中测定0.0100mol·dm-3NaOH的电导值,取三次的平均值即得

南京大学物化上册主要公式及使用条件

第一章 气体的pVT 关系 1. 理想气体状态方程式 或 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = 体积分数 式中 为混合气体总的物质的量。表示在一定T ,p 下纯气体A 的摩 尔体积。为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 式中 为混合气体的总质量,为混合气体总的物质的量。 上述各式适用于任意的气体混合物。 (3) 式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p , 适用于任意气体。 适用于理想气体 4. 阿马加分体积定律 此式只适用于理想气体。 nRT RT M m pV ==)/(RT n V p pV ==)/(m m /V V n =∑A A B /n n /y B m,B B * =V ?∑*A V y A m ,A ∑A A n A m,* V ∑* A A m ,A V y ∑∑∑===B B B B B B B mix //n M n m M y M ∑=B B m m ∑=B B n n V V p p n n y ///B B B B * ===*B V ∑=B B p p V RT n p /B B =V RT n V /B B =*

物理化学试验-华南理工大学

物理化学实验Ⅰ 课程名称:物理化学实验Ⅰ 英文名称:Experiments in Physical Chemistry 课程代码:147012 学分:0.5 课程总学时:16 实验学时:16 (其中,上机学时:0) 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:?基础实验□专业基础实验□专业领域实验 含有综合性、设计性实验:?是□否 面向专业:高分子材料科学与工程、材料科学与工程(无机非金属材料科学与工程、材料化学) 先修课程:物理、物理化学、无机化学实验、有机化学实验、分析化学实验等课程。 大纲编制人:课程负责人张震实验室负责人刘仕文 一、教学信息 教学的目标与任务: 该课程是本专业的一门重要的基础课程,物理化学实验的特点是利用物理方法来研究化学系统变化规律,是从事本专业相关工作必须掌握的基本技术课程。其任务是通过本课程的学习,使学生达到以下三方面的训练: (1)通过实验加深学生对物理化学原理的认识,培养学生理论联系实际的能力; (2)使学生学会常用的物理化学实验方法和测试技术,提高学生的实验操作能力和独立工作能力; (3)培养学生查阅手册、处理实验数据和撰写实验报告的能力,使学生受到初步的物理性质研究方法的训练。 教学基本要求: 物理化学实验的特点是利用物理方法来研究化学系统变化规律,实验中常用多种物理测量仪器。因此在物理化学实验教学中,应注意基本测量技术的训练及初步培养学生选择和配套仪器进行实验研究工作的能力。 物理化学实验包括下列内容: (1)热力学部分量热、相平衡和化学平衡实验是这部分的基本内容。还可以选择稀溶液的依数性、溶液组分的活度系数或热分析等方面的实验。

物理化学实验课程大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 物理化学实验是化学教育专业的一门重要的必修基础课程,是独立设课、并与物理化学理论课程内容相配套的实验课程。物理化学实验教学内容综合了化学领域中各分支需要的基本研究工具和方法,在教学过程中引导学生利用物理化学及相关理论知识,解决化学过程的基本问题,培养学生的基本实验技能和科学研究能力,为学生今后从事专业研究打下坚实的基础,同时对于学生的知识、能力和综合素质的培养与提高也起着至关重要的作用。 2.设计思路: 本实验课程分两学期开设,要求学生完成不少于21个基础实验,初步掌握重要的物理化学实验方法,熟悉各种物理化学现象,了解和掌握各种大型仪器的原理和操作方法,并学会实验数据的归纳和分析方法。实验内容的选取,包括热力学、电化学、动力学、表面现象和胶体、物质结构等部分有代表性的实验,使学生了解物理化学的概貌;另一方面,根据现有仪器设备的条件,力求在实验方法和实验技术上得到较全面的训练。 3. 课程与其他课程的关系: 《物理化学实验》是继《无机化学实验》、《分析化学实验》和《有机化学实验》之后而独立开设的实验课程。通过本课程学习,掌握物理化学的基本实验技术和技能,系统学习物理化学实验的基本概念、基本原理和发展规律,并能在今后的科研及生产 - 1 -

实践中,运用这些规律去分析问题和解决问题。 二、课程目标 物理化学实验课程主要目标是使学生初步了解物理化学的研究方法,掌握物理化学的基本实验技术和技能,学会重要的物理化学性能测定,熟悉物理化学实验现象的观察和记录,实验条件的判断和选择,实验数据的测量和处理,实验结果的分析和归纳等一套严谨的实验方法,从而加深对物理化学基本理论的理解,增强解决实际化学问题的能力。 三、学习要求 完成本课程的学习任务,实现课程目标,具体学习要求: 1.学生按选课时间按时到课,不得随意调课、缺课; 2.实验课前学生认真做好预习,明确实验目的,实验原理,所用仪器构造和操作 规程,熟悉实验内容,明确要测量和记录的数据,书写预习报告。 3.实验过程中学生遵守实验室规则,按要求独立完成实验,做到认真观察、及时 记录、勤于思考。实验结束后实验记录由指导教师检查,并完成工作台和实验室整理及安全检查后方可离开。 4.实验结束后认真分析整理实验结果和数据,按要求书写完成实验报告并按时提 交。 5.爱护实验室的仪器设备和公用设施。 四、教学进度 - 1 -

材料物理化学实验赵

实验要求 1.班长按学号将每班分成八组; 2.一个班进行实验完毕后换另一个班; 3.班长与实验指导教师保持联系,按照要求规定的时间、地点 和班级进行实验; 4.预习所做的实验内容; 5.实验材料首页的“原始数据记录”要求每小组打印一份,手 写记录相关数据,实验做完经指导老师签字后方可离开; 6.实验报告按照“材料物理化学实验报告格式”模板进行书写 (要求打印模板、手写),要求贴上原始数据记录单,小组内成员可以复印本小组的“原始数据记录”进行粘贴; 7.听从指导老师安排,按要求操作设备; 8.注意实验安全,保持实验室卫生。

材料物理化学-原始数据记录 实验名称: 实验时间:;室温:; 同组学生:; 实验数据记录: 指导教师签名: 日期:年月日备注:1、上课时准备好本记录纸,实验中按要求记录,完成后指导教师进行签名。 2、本记录要求附在实验报告中,复印即可。

实验一凝聚态物质燃烧焓的测定 一、实验目的: 1、使用弹式量热计测定萘的燃烧焓。 2、了解量热计的原理和构造,掌握其使用方法。 二、实验原理: 在25℃,101 时,1 可燃物完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热,单位为(△φm)。在适当的条件下,许多有机物都能迅速地完全进行氧化反应,这就为准确测定它们的燃烧热创造了有利条件。通常测定物质的燃烧热,是用氧弹量热计。测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值ΔT就能计算出该样品的燃烧热(介质的比热容是已知的)。若使被测物质能迅速而完全地燃烧,就需要强有力的氧化剂。在实验中经常使用压力为1.5-2 的氧气作为氧化剂。用氧弹式量热计(见实验装置部分)进行试验时,氧弹放置在装有一定量水的金属水桶中,水桶外是空气隔热层,再外面是温度恒定的夹套。样品在体积固定的氧弹中燃烧放出的热、引火丝燃烧放出的热和由氧气中微量的氮气中微量氮气氧化成硝酸的生成热,大部分被水桶中的水吸收;另一部分则被氧弹、水桶、搅拌器及温度计等吸收。在假设量热计与环境没有热交换的情况下,可写出如下的热量平衡式: ×a - q×b + 5.98c = K△t (1)(近似平衡) —被测物质的定容热值,J·1; a —被测物质的质量,g; q —引火丝的热值,J·1(铁丝为-6.7 ·1); b —烧掉的引火丝的质量,g; 5.98 —硝酸生成热,当用0.100 ·1滴定生成的硝酸时,每1 碱相当于5.98J 热量; c —滴定生成硝酸时,耗用0.100 ·1的毫升数; K —量热计常数(水当量,14.55 );

南京大学物化实验系列BZ振荡反应

南京大学物化实验系列BZ振荡反应南京大学化学化工学院物理化学实验教案邱金恒 BZ振荡反应 一(实验目的及要求 1. 了解Belousov-Zhabotinsli反应的基本原理。 2. 初步理解自然界中普遍存在的非平衡非线性问题。 二(教学提问 1(什么是非平衡非线性原理,什么是耗散结构, 2(BZ体系由那些物种构成,振荡的控制物种是什么, 3(配制溶液过程中,要注意那些问题, 4(温度与诱导时间的关系如何, 二(实验原理 1(自催化反应 在给定条件下的反应体系,反应开始后逐渐形成并积累了某种产物或中间体,这些产物具有催化功能,使反应经过一段诱导期后出现大大加速的现象,这种作用称为自(动)催化作用。其特征之一是存在着初始的诱导期。 大多数自动氧化过程都存在自催化作用。油脂腐败,橡胶变质以及塑料制品的老化均属于包含链反应的自动氧化过程,反应开始进行很慢,但都被其所产生的自由基所加速。 2(化学振荡 有些自催化反应有可能使反应体系中某些物质的浓度随时间(或空间)发生周期性的变化,即发生化学振荡,而化学振荡反应的必要条件之一是该反应必须是自催化反应。化学振荡现象的发生必须满足如下几个条件:(1)反应必须是敞开体系且远

离平衡态,即?Grm为较负的值。(2)反应历程中应包含自催化的步骤。(3)体系中必须能有两个准定态存在。 曾经提出过不少模型来研究化学振荡的反应机理,下面介绍洛特卡(Lotka),沃尔特拉(Voltella)的自催化模型。 dA[]k1(1) A+X 2X r=,=k[A][X] ,,,11dt dX[]k2(2) X+Y 2Y r=,=k[X][Y] ,,,22dt dE[]k3(3) Y E r= = k[Y] ,,,33dt 其净反应是A E。对这一组微分方程求解得: ,,, k[X],kln[X]+ k[Y]+ k[A]ln[Y]=常数 2321 这一方程的具体解可用两种方法表示,一种是用[X]和[Y]对t作图,如图1,其浓度随时间呈周期性变化;另一种是以[X]对[Y],得反应轨迹曲线,如图2,为一封闭椭圆曲线。反应轨迹曲线为封闭曲线,则X和Y的浓度就能沿曲线稳定地周期变化,反应变呈振荡现象。 1 南京大学化学化工学院物理化学实验教案邱金恒 图1 [X]和[Y]随时间的周期性变化图2 反应轨迹曲线 中间产物X、Y(它们同时也是反应物)的浓度的周期性变化可解释为:反应开始时其速率可能并不快,但由于反应(1)生成了X,而X又能自催化反应(1),所以X

物理化学实验课后习题答案

1. 电位差计、标准电池、检流计及工作电池各有什么作用?如何保护及正确使用? 答:(1)电位差计是按照对消法测量原理设计的一种平衡式电学测量装置,能直接给出待测电池的电动势值,测定时电位差计按钮按下的时间应尽量短,以防止电流通过而改变电极表面的 平衡状态。 (2)标准电池是用来校准工作电流以标定补偿电阻上的电位降。 (3)检流计用来检验电动势是否对消,在测量过程中,若发现检流计受到冲击,应迅速按下短路按钮,以保护检流计。检流计在搬动过程中,将分流器旋钮置于“短路”。 (4)工作电池(稳压电源)电压调至与电位差计对电源的要求始终相一致。 3.电位差计、标准电池、检流计及工作电池各有什么作用? 答:电位差计:利用补偿法测定被测电极电动势; 标准电池:提供稳定的已知数值的电动势EN,以此电动势来计算未知电池电动势。 检流计:指示通过电路的电流是否为零; 工作电池:为整个电路提供电源,其值不应小于标准电池或待测电池的值。 4.测电动势为何要用盐桥?如何选用盐桥以适合不同的体系? 答:(1)对于双液电池电动势的测定需用盐桥消除液体接界电势。 (2)选择盐桥中电解质的要求是:①高浓度(通常是饱和溶液);②电解质正、负离子的迁移速率接近相等;③不与电池中的溶液发生反应。具体选择时应防止盐桥中离子与原电池溶液中的物质发生反应,如原电池溶液中含有能与Cl-作用而产生沉淀的Ag+、Hg 离子或含有能与K+离子作用的ClO-离子,则不可使用KCl盐桥,应选用KNO3或NH4NO3盐桥。 5.在测定电动势过程中,若检流计的指针总往一个方向偏转,可能是什么原因? 答:若调不到零点,可能的原因有: (1)电池(包括工作电池、标准电池和待测电池)的正负极接反了; (2)电路中的某处有断路; (3)标准电池或待测电池的电动势大于工作电池的电动势,超出了测量范围。 4.为何本实验要在恒温条件下进行,而且乙酸乙酯和氢氧化钠溶液在混合前还要预先恒温? 答:温度对反应速率常数k影响很大,故反应过程应在恒温条件下进行。 3、在凝固点降低法测定摩尔质量实验中,根据什么原则考虑加入溶质的量,太多太少影响如何? 答:根据溶液凝固点的下降值考虑加入溶质的量。太多就不是稀溶液,太少凝固点下降值太小,误差大。 3. 实验中为何用镀铂黑电极?使用时注意事项有哪些? 答:铂电极镀铂黑的目的在于减少电极极化,且增加电极的表面积,使测定电导时有较高灵敏 度。电导池不用时,应把两铂黑电极浸在蒸馏水中,以免干燥致使表面发生改变。 4. UJ34A型电位差计测定电动势过程中,有时检流计向一个方向偏转,分析原因。 原因:电极管中有气泡;电极的正负极接反;线路接触不良;工作电源电压与电位差计对电源的要求数据不一致等。 2.反应物起始浓度不相等,试问应怎样计算k值? 答:若CH3COOC2H5溶液浓度a>b(NaOH溶液浓度),则其反应速率方程的积分式为 a a κt+κ0 (—-1) - κ0— b c a ln????????? = κ(a—b)t + ln— ____ b b κt - κc — c C和κc分别为反应进行完全后体系中产物CH3COONa的浓度和电导率 若a>b时b =C,若a< b时a =C 3.如果NaOH和乙酸乙酯溶液为浓溶液时,能否用此法求k值,为什么? 答:不能。只有反应体系是很稀的水溶液,才可认为CH3COONa是全部电离的。反应前后Na+的浓度不变。随着反应的进行,导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小。可用电导率仪测量皂化反应进程中电导率随时间的变化,以跟踪反应 物浓度随时间变化。 1、把苯甲酸在压片机上压成圆片时,压得太紧,点火时不易全部燃烧;压得太松,样品容易脱落;要压得恰到好处。 挥发性双液图

相关文档
最新文档