选择振动测量加速度传感器的方法

选择振动测量加速度传感器的方法
选择振动测量加速度传感器的方法

工业级别振动测量加速度传感器实际应用是根据测量对象和与测量系统的组合。在类似情况下对测量对象进行实时监测即所谓在线监测其次需要定期对测量对象巡回检测。相对于其他的环境工业振动测量的周边环境相对都比较恶劣,在线监测的加速度传感器到数字采集系统一般都有需要在一定的距离,因此高阻抗的电荷信号就非常容易受干扰。除现场是高温测量外,工业振动在线监测用的传感器通常都选用带内置电路的电压输出型。而对巡回检测用传感器往往因为出于对成本的考虑大多使用电荷输出型压电加速度传感器。

工业操作振动的测量一般的灵敏度考虑在50mV/g, 100mV/g 和 200 mV/g 的加速度传感器,然而对传感器的频率范围则必须根据不同的测量对象进行选择。需要指出的是加速度传感器的安装形式和质量好坏以及不同的电缆配备都会直接影响到传感器的高频使用。这些影响频响的因素虽不能从传感器的技术指标上完全反映,但都是工业振动加速度传感器使用中常见的问题。一般情况下使用加速度传感器测量旋转冲击设备的振动速度是非常理想的,虽然有需要考虑温度对测量的结果有所影响,这个也是如今加速度测量的一个难题。

但是如果真正的考虑,主要问题然而也不是温度,而是量程和灵敏度。如果加速度传感器的偏置电压不稳定,这将直接影响测量信号。目前法国的传感器在这些方面的改进是最理想的,由于工业测量现场环境条件复杂多变,因此在电缆选择时首先要确保信号的质量,将外部噪声对信号的干扰降低到最小;可以直流电压供电,输出4-20mA的专业工业加速度传感器,其次是考虑电缆的寿命和使用方便程度。在法国加速度传感器也称加计,高低精度的加速度传感器、微加速度计、加表,不同响应频率,各种精度。

可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。微机械结构,微型尺寸,可以直接焊接在PCB版上。可以测量重力加速度,可以测量动态冲击加速度,也可以应用加速度传感器来集成倾角处理系统,测试速度和振动,目前在市场的同样是最为理想的测量振动速度的加速度传感器。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.360docs.net/doc/f67706800.html,/

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

三轴加速度传感器原理应用及前景分析

三轴加速度传感器原理及应用 2012年09月09日 12:42来源:本站整理作者:胡哥我要评论(0) 三轴加速度传感器原理 MEMS换能器(Transducer)可分为传感器(Sensor)和致动器(Actuator)两类。其中传感器会接受外界的传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息,如加速度传感器、陀螺仪、压力传感器等。其主要感应方式是对一些微小的物理量的变化进行测量,如电阻值、电容值、应力、形变、位移等,再通过电压信号来表示这些变化量。致动器则接受来自控制器的电子信号指令,做出其要求的反应动作,如光敏开关、MEMS显示器等。 目前的加速度传感器有多种实现方式,主要可分为压电式、电容式及热感应式三种,这三种技术各有其优缺点。以电容式3轴加速度计的技术原理为例。电容式加速度计能够感测不同方向的加速度或振动等运动状况。其主要为利用硅的机械性质设计出的可移动机构,机构中主要包括两组硅梳齿(Silicon Fingers),一组固定,另一组随即运动物体移动;前者相当于固定的电极,后者的功能则是可移动电极。当可移动的梳齿产生了位移,就会随之产生与位移成比例电容值的改变。 当运动物体出现变速运动而产生加速度时,其内部的电极位置发生变化,就会反映到电容值的变化(ΔC),该电容差值会传送给一颗接口芯片(InteRFace Chip)并由其输出电压值。因此3轴加速度传感器必然包含一个单纯的机械性MEMS传感器和一枚ASIC接口芯片两部分,前者内部有成群移动的电子,主要测量XY及Z轴的区域,后者则将电容值的变化转换为电压输出。 文中所述的传感器和ASIC接口芯片两部分都可以采用CMOS制程来生产,而在目前的实际生产制造中,由于二者实现技术上的差异,这两部分大都会通过不同的加工流程来生产,再最终封装整合到一起成为系统单封装芯片(SiP)。封装形式可采用堆叠(Stacked)或并排(Side-by-Side)。 手持设备设计的关键之一是尺寸的小巧。目前ST采用先进LGA封装的加速度传感器的尺寸仅有3 X 5 X 1mm,十分适合便携式移动设备的应用。但考虑到用户对尺寸可能提出的进一步需求,加速度传感器的设计要实现更小的尺寸、更高的性能和更低的成本;其检测与混合讯号单元也会朝向晶圆级封装(WLP)发展。 下一代产品的设计永远是ST关注的要点。就加速度传感器的发展而言,单芯片结构自然是

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

传感器原理与工程应用考试题库

传感器原理与工程应用习题 一、单项选择题 1、在整个测量过程中,如果影响和决定误差大小的全部因素(条件)始终保持不变,对同一 被测量进行多次重复测量,这样的测量称为( C ) A.组合测量 B.静态测量 C.等精度测量 D.零位式测量 1.1在直流电路中使用电流表和电压表测量负载功率的测量方法属于( B )。 A. 直接测量 B. 间接测量 C. 组合测量 D. 等精度测量 2、1属于传感器动态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.1不属于传感器静态特性指标的是( B ) A.重复性 B.固有频率 C.灵敏度 D.漂移 2.2 以下那一项不属于电路参量式传感器的基本形式的是( D )。 A.电阻式 B.电感式 C.电容式 D.电压式 2.2传感器的主要功能是( A )。 A. 检测和转换 B. 滤波和放大 C. 调制和解调 D. 传输和显示 3.电阻式传感器是将被测量的变化转换成( B )变化的传感器。 A.电子 B.电压 C.电感 D.电阻 3.1电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( D )。 A.直流平衡电桥 B.直流不平衡电桥 C.交流平衡电桥D.交流不平衡电桥 3.2电阻应变片的初始电阻数值有多种,其中用的最多的是( B )。 A、60Ω B、120Ω C、200Ω D、350Ω 3.3电阻应变片式传感器一般不能用来测量下列那些量( D ) A、位移B、压力C、加速度D、电流 3.4直流电桥的平衡条件为( B ) A.相邻桥臂阻值乘积相等 B.相对桥臂阻值乘积相等 C.相对桥臂阻值比值相等 D.相邻桥臂阻值之和相等 3.5全桥差动电路的电压灵敏度是单臂工作时的( C )。

三轴加速度传感器在跌倒检测中的应用

三轴加速度传感器在跌倒检测中的应用 前言 人们在跌倒后会面临双重危险。显而易见的是跌倒本身可能对人体产生伤害;另外,如果跌倒后不能得到及时的救助,可能会使结果更加恶化。例如,许多老年人由于其身体比较虚弱,自理能力和自我保护能力下降,常常会发生意外跌倒,如果得不到及时的救助,这种跌倒可能会导致非常严重的后果。有资料显示,很多严重的后果并不是由于跌倒直接造成的,而是由于跌倒后,未得到及时的处理和救护。当出现跌倒情况时,如果能够及时地通知到救助人员,将会大大地减轻由于跌倒而造成的危害。 不仅是对老人,在很多其他情况下,跌倒的报警也是非常有帮助的,尤其是从比较高的地方跌倒下来的时候。比如人们在登山,建筑,擦窗户,刷油漆和修理屋顶的时候。 这促使人们越来越热衷于对跌倒检测以及跌倒预报仪器的研制。近年来,随着iMEMS?加速度传感器技术的发展,使得设计基于三轴加速度传感器的跌倒检测器成为可能。这种跌倒检测器的基本原理是通过测量佩戴该仪器的个体在运动过程中的三个正交方向的加速度变化来感知其身体姿态的变化,并通过算法分析判断该个体是否发生跌倒情况。当个体发生跌倒时,仪器能够配合GPS模块以及无线发送模块对这一情况进行定位及报警,以便获得相应的救助。而跌倒检测器的核心部分就是判断跌倒情况是否发生的检测原理及算法。 ADXL3451是ADI公司的一款3轴、数字输出的加速度传感器。本文将在研究跌倒检测原理的基础上,提出一种基于ADXL345的新型跌倒检测解决方案。 iMEMS加速度传感器ADXL345

iMEMS 半导体技术把微型机械结构与电子电路集成在同一颗芯片上。iMEMS加速度传感器就是利用这种技术,实现对单轴、双轴甚至三轴加速度进行测量并产生模拟或数字输出的传感器。根据不同的应用,加速度传感器的测量范围从几g到几十g不等。数字输出的加速度传感器还会集成多种中断模式。这些特性可以为用户提供更加方便灵活的解决方案。 ADXL345是ADI公司最近推出的基于iMEMS技术的3轴、数字输出加速度传感器。ADXL345具有+/-2g,+/-4g,+/-8g,+/-16g可变的测量范围;最高13bit分辨率;固定的4mg/LSB灵敏度;3mm*5mm*1mm超小封装;40-145uA超低功耗;标准的I2C或SPI数字接口;32级FIFO存储;以及内部多种运动状态检测和灵活的中断方式等特性。所有这些特性,使得ADXL345有助于大大简化跌倒检测算法,使其成为一款非常适合用于跌倒检测器应用的加速度传感器。 本文给出的跌倒检测解决方案,完全基于ADXL345内部的运动状态检测功能和中断功能,甚至不需要对加速度的具体数值进行实时读取和复杂的计算操作,可以使算法的复杂度降至最低。 中断系统 图1给出了ADXL345的系统框图及管脚定义。

加速度传感器测振动位移

加速度传感器测振动速度与位移方案 1. 测量方法(基本原理) 设加速度传感器测量振动所得的加速度为:()a t (单位:m/s 2) 对加速度积分一次可得速率: 1 1()()[ ]2N i i i a a v t a t dt t -=+==?∑? (单位:m/s) 对速率信号积分一次可得位移:1 1 ()()[ ]2 N i i i v v s t v t dt t -=+==?∑? (单位:m) 其中: ()a t 为连续时域加速度波形 ()v t 为连续时域速率波形 ()s t 为连续位移波形 i a 为i 时刻的加速度采样值 i v 为i 时刻的速率值 0a =0;0v =0 t ?为两次采样之间的时间差 2. 主要误差分析 误差主要存在以下几个方面: 1)零点漂移所带来的积分误差 由于加速度传感器的输出存在固定的零点漂移。即当加速度为0g 时传感器输出并不一定为0,而是一个非零输出error A 。传感器的输出值为:()a t +error A 。对error A 二次积分会产生积分累计效应。 2)积分的初始值所带来的积分误差 0a 和0v 的值并不为零,同样会产生积分累计效应。 3)高频噪声信号所带来的误差 高频噪声信号会对瞬时位移值测量精度带来影响,但积分值能相互抵销而不会带来累计。 3. 解决办法 1)零点漂移和积分初始值不为零可以加高通滤波器的方法滤除。

2)高频噪声信号的影响并不大,为了达到更高的精度,可以加一个低通滤波器。 选择高通滤波器和低通滤波器合理的截至频率,可以得到较理想的结果。 (注:高通滤波即去除直流分量;低通滤波即平滑滤波算法)。 4. 仿真研究 4.1 问题的前提背景 1.本课题研究的对象是桥梁振动的加速度()a t ,速度()v t 和位移()s t ,可以认为桥梁的加速度,速度,位移的总和为0。 即:0()0a t dt ∞ =? 0()0v t dt ∞ =? ()0s t dt ∞ =? 其离散表达式为:00()N i i a N ===∞∑ 0()N i i v N ===∞∑ 0()N i i s N ===∞∑ 2.加速度传感器测量值存在误差,它主要是在零点漂移和测量噪声两个方面。 即测量值()()()measure error a t a t a t =+ 其中:()measure a t 为加速度传感器测量加速度值 ()a t 为桥梁振动的实际加速度值 ()error a t 为传感器测量误差 3.振动速度与振动位移取决于振动加速度与振动频率,可以证明,振动速度与振动加速度成正比,与振动频率成反比;振动位移与振动速度成正比,与振动频率成反比。 4.2 仿真 1.取一组仿真用振动加速度信号:()9.8sin(240)3measure a t t π=??+,如图1所示。 其中:()measure a t 代表加速度传感器测量值

完整版三轴数字加速度传感器ADXL345技术资料

概述: ADXL345是一款小而薄的超低功耗3轴加速度计,分辨率高(13位),测量范围达±16g。数字输出数据为16位二进制补码格式,可通过SPI(3线或4线)或I2C数字接口访问。ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲击导致的动态加速度。其高分辨率(3.9mg/LSB),能够测量不到1.0。的倾斜角度变化。该器件提供多种特殊检测功能。 活动和非活动检测功能通过比较任意轴上的加速度与用户设置的阈值来检测有无运动发生。敲击检测功能 可以检测任意方向的单振和双振动作。自由落体检测功能可以检测器件是否正在掉落。这些功能可以独立 映射到两个中断输岀引脚中的一个。正在申请专利的集成式存储器管理系统采用一个32级先进先岀(FIFO)缓冲器,可用于存储数据,从而将主机处理器负荷降至最低,并降低整体系统功耗。低功耗模式支持基于运动的智能电源管理,从而以极低的功耗进行阈值感测和运动加速度测量。ADXL345采用3 mm X 5 mm x 1 mm,14引脚小型超薄塑料封装。 对比常用的飞思卡尔的MMZ7260三轴加速度传感器,ADXL345,具有测量精度高、可以通过SPI或I2C 直接和单片机通讯等优点。 特性: 超低功耗:VS= 2.5 V 时(典型值),测量模式下低至23uA, 待机模式下为0.1 g A功耗随带宽自动按比例变化 用户可选的分辨率10位固定分辨率全分辨率,分辨率随g范围提高而提高, ±16g时高达13位(在所有g范围内保持4 mg/LSB的比例系数) 正在申请专利的嵌入式存储器管理系统采用FIFO技术,可将主机处理器负荷 降至最低。单振/双振检测,活动/非活动监控,自由落体检测 电源电压范围:2.0 V 至3.6 V I / O电压范围:1.7 V至VS SPI (3线和4线)和I2C数字接口 灵活的中断模式,可映射到任一中断引脚 通过串行命令可选测量范围 通过串行命令可选带宽 宽温度范围(-40°C至+85 °C) 抗冲击能力:10,000 g 无铅/符合RoHS标准 小而薄:3 mn X 5 mm x 1 mm,LGA 封装 模组尺寸:23*18*11mm (高度含插针高度 应用: 机器人控制、运动检测 过程控制,电池供电系统 硬盘驱动器(HDD)保护,单电源数据采集系统 手机,医疗仪器,游戏和定点设备,工业仪器仪表,个人导航设备

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案 第1章 传感与检测技术的理论基础(P26) 1—1:测量的定义? 答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。 所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。 1—2:什么是测量值的绝对误差、相对误差、引用误差? 1- 3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.11402 ≈?L δ 标称相对误差 %==41.1142 2≈?x δ 引用误差 %--=测量上限-测量下限= 1) 50(1502 ≈?γ 1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%

基于加速度传感器的电机振动测量解读

基于加速度传感器的电机振动测量 摘要 电机是现代生产中的重要电气设备,从大型的工业电机到小型的家用电器,电机都是随处可见的,电机的故障会对生产造成重大影响,因此需要监测电机的运行状态。 为监测电机的运行状态,本文通过加速度传感器来测量电机振动的大小,并通过微控制器对电机加速度信号进行采集,并将它传输给电脑;利用电脑软件对采集的加速度信号进行频域积分得到速度信号,再与电机振动判断标准进行对比分析,从而判断电机运行状态, 确定修复时机,为电机提供检修依据。 关键词:加速度;振动测量;信号处理;故障分析

Measure the vibration of motor based on the acceleration sensor Abstract The electric motor is one sort of the most important electric equipments in modem manufacturing.From large industrial motors to small appliances, electric motors are everywhere. Its failure would produce a significant impact on the motor,therefore, we need to monitor the operating status of the motor. In this paper, in order to monitor the motor running, size of the motor vibration is measured by the acceleration sensor, and uses the microcontroller to collect the motor acceleration signal and transfer it to the computer. The acceleration frequency-domain signal is integrated into the speed signal in the computer, and then the speed signal is compared with the motor vibration criteria, to provide the basis for the maintenance of motor. We can determine the timing of repair. Keywords:Acceleration sensor, Vibration Measurement, Signal Processing, Failure Analysis

传感器原理及工程应用概述

第二章传感器概述 1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 2、传感器是由敏感原件和转换原件组成 3、两种分类方法:一种是按被测参数分类,一种是按传感器工作原理分类 4、传感器的基本特性可分为静态特性和动态特性 5、静态特性是指被测量的值处于稳定状态时输入与输出的关系。主要指标有灵敏度、线性度、迟滞、重复性和漂移等。 6、灵敏度是输出量增量ΔY与引起输出量增量ΔY的相应输入量增量ΔX之比。用S表示即S=ΔY\ΔX。 7、线性度是指传感器的输入与输出之间数量关系的线性程度。也叫非线性误差用γL 表示即γL= 8、传感器在相同工作条件下输入量由小到大(正量程)及由大到小(反量程)变化期间输入输出特性曲线不重合的现象称为迟滞。迟滞误差用 9、重复性是指传感器在相同的工作条件下输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。最大重复差值 10、漂移是指输入量不变的情况下传感器输出量随着时间变化。产生漂移的原因有两个一是传感器自身结构参数一是周围环境。温度漂移的计算 第三章应变式传感器 1、电阻应变式传感器是以电阻应变片为转换原件的传感器。 2、工作原理是基于电阻应变效应,即导体在外界作用下产生机械变形(拉伸或压缩)是,其电阻值相应发生变化(应变效应)。 3、电阻应变片分为丝式电阻应变片和箔式电阻应变片。 4、电阻在外力作用下而改变原来尺寸或形状的现象称为变形,而去掉外力后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。具有弹性变形特性的物体称为弹性原件。 5、应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值即初始电阻值。 6、将直的电阻丝绕成敏感栅后,虽然长度不变,但应变状态不同,应变片敏感栅的电阻变化减小,因而其灵敏系数K较整长电阻丝的灵敏系数K0小,这种现象称为应变片的横向效应。为了减少横向效应产生的测量误差,现在一半多采用箔式应变片。 7、应变片温度误差:由于测量现场环境温度的改变而给测量带来的附加误差。产生的主要因素有以下两个方面:一是电阻温度系数的影响,一是试件材料和电阻丝材料的线膨胀系数的影响。 8、电阻应变片的温度补偿方法:1)线路补偿法2)应变片的自补法9***电阻应变片的测量电路10、压阻效应是指在一块半导体的某一轴向施加一定的压力时,其电阻值产生变化现象, 第四章电感式传感器 1、利用电磁感应原理将被测非电量如、位移、压力、流量、振动等转换成线圈自感系数L或互感系数M的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。 2、零点残余电压:传感器在零点位移时的输出电压。产生原因主要有以下两点一是由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。一是由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。为减小电感式传感器的零点残余电压,可以采取以下措施1)在设计和工艺上,力求做到磁路对称,铁芯材料均匀;要经过热处理以除去机械应力和改善磁性;两线圈毕恭毕敬绕制要均匀,力求几何尺寸与电气特性保持一致。2)在电路上进行补偿。 3、把被测的非电量变化转化为线圈互感变化的传感器称为互感式传感器。这种传感器

三轴加速度传感器MMA7260

MMA7260 三轴加速度传感器使用手册 一、MMA7260QT的简介 MMA7260QT低成本微型电容式加速度传感器,采用了信号调理、单极低通滤波器和温度补偿技术,并且提供4个量程可选,用户可在4个灵敏度中的选择。该器件带有低通滤波并已做零g补偿。本产品还提供休眠模式,因而是电池充电的手持设备产品的理想之选。 二、特性: (1) 可选灵敏度(1.5g/2g/4g/6g) (2) 低功耗:500 μA (3) 休眠模式: 3 μA (4) 低压运行:2.2 V - 3.6 V (5) 6mm x 6mm x 1.45 mm的无引线四方扁平 (QFN) 封装; (6) 高灵敏度(800 mV/g @ 1.5g) (7) 快速开启 (8) 低通滤波器具备内部信号调理 (9) 设计稳定、防震能力强 (10) 无铅焊接 (11) 环保封装 (12) 成本低 三、典型应用: 三轴加速度传感器是一种可以对物体运动过程中的加速度进行测量的电子设备,典型互动应用中的加速度传感器可以用来对物体的姿态或者运动方向进行检测,比 如其中WII和iPhone中的经典应用。Nokia最新推出的手机N95利用内置的加速度传感器,让用户可以通过机身的摆动进行各种操作,包括主菜单操 作、图片浏览、切歌操作甚至进行游戏的控制等,非常全面,甚至超越了苹果 iPhone的动作感应功能的应用范畴。 基于Freescale公司MMA7260的这个三轴加速度传感器,对于普通的互动应用来讲应该是一个不错的选择, 可以用于摩托车和汽车防盗报警器,遥控航模,游戏手柄,跌倒探测,硬盘冲击保护,倾斜角度测量,电梯安全监控等需要测试加速度的地方。

传感器原理与工程应用复习题参考答案1

《传感器原理及工程应用》习题答案 第1章 传感与检测技术的理论基础(P26) 1-3 用测量围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。 解: 已知: 真值L = 140kPa 测量值 x =142kPa 测量上限=150kPa 测量下限=-50kPa ∴ 绝对误差 Δ=x-L=142-140=2(kPa) 实际相对误差 %= =43.1140 2 ≈?L δ 标称相对误差 %= =41.1142 2 ≈?x δ引用误差 %--=测量上限-测量下限= 1)50(1502≈?γ

1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ): 120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40 试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。 解: 对测量数据列表如下: 当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。 则 2072.410.03270.0788()0.104d G mm v σ=?=<=-, 所以7d 为粗大误差数据,应当剔除。然后重新计算平均值和标准偏差。 当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。 则 20 2.370.01610.0382()d i G mm v σ=?=>,所以其他14个测量值中没有坏值。 计算算术平均值的标准偏差 20 0.0043()d mm σσ= = = 20 330.00430.013()d mm σ=?= 所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±= 1-14 交流电路的电抗数值方程为

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

《传感器原理与工程应用》第四版(郁有文)课后答案

第一章传感与检测技术的理论基础 1. 什么是测量值的绝对误差、相对误差、引用误 差? 答:某量值的测得值和真值之差称为绝对误差。 相对误差有实际相对误差和标称相对误差两种表示方法。实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。 引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。 2. 什么是测量误差?测量误差有几种表示方法? 它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。 测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与 绝对误差大小相等符号相反的值。在计算相对误差时 也必须知道绝对误差的大小才能计算。 采用绝对误差难以评定测量精度的高低,而采用相 对误差比较客观地反映测量精度。 引用误差是仪表中应用的一种相对误差,仪表的精 度是用引用误差表示的。 3. 用测量范围为-50?+150kPa 的压力传感器测量 140kPa 压力时,传感器测得示值为142kPa,求该示 值的绝对误差、实际相对误差、标称相对误差和引 用误差。 解:绝对误差 ,142-140 = 2 kPa 4. 什么是随机误差?随机误差产生的原因是什 么?如何减小随机误差对测量结果的影响? 答:在同一测量条件下,多次测量同一被测量时,其 绝对值和符号以不可预定方式变化着的误差称为随机 误差。 实际相对误差 标称相对误差 引用误差 142 -140 0 = ------------------- 140 100% =1.43% 142-140 100% =1.41% 142 142 -140 150 -( - 汉1 0 80 =1%

TR系列振动加速度传感器的说明

加速度传感器,通常需要在标准振动台上进行标定,给使用带来很多不便。TR系列固态加速度传感器采用先进的微电子加工技术和电容式测量原理,可获得优良的低频响应,用重力加速度g、通过改变传感器的放量方向就可对传感器进行校准。 振动和冲击 TR系列振动加速度传感器可以测量从直流到其截止频率范围内的振动量,以后的信号处理包括快速傅立叶变换,一次积分成速度,以及再积分成位移输出。例如测量壳体振动,输出量经过精确的滤波器及相应的积分器,再经有效值检波后可输出机壳的振动加速度、速度及位移,从而监测机组的运行状态。 倾斜角测量 当传感器倾斜放置时,传感器的输出为重力加速度在传感器测量轴上的分量,即输出与倾斜角存在反正弦的函数关系。当倾斜角较小时,近似为线性关系。 惯性测量 六自由度的惯性测量系统需要三个加速度传感器分别测量三个轴的加速度,三个陀螺仪测量三个轴的旋转。加速度经积分可获得速度,再次积分可获得位移或距离,此时加速度传感器的可重复性误差和温漂需要精确补偿,否则可能带来较大误差。

性能指标: 量程:±1g~±50g 分辨率:(5mg)0.1% 可承受最大冲击:1000g(6105) 非线性:0.2% 噪声:5000μg(Hz)2/1 (6105) 频响:6105最大到4kHz,6150最大到10kHz 工作温度:0℃~70℃ 重量:100g 形体尺寸:Φ32×6 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城。https://www.360docs.net/doc/f67706800.html,/

三轴加速度传感器的步态识别系统==

三轴加速度传感器的步态识别系统 近年来随着微机电系统的发展,加速度传感器已经广泛应用于各个领域并拥有良好的发展前景。例如在智能家居、手势识别、步态识别、跌倒检测等领域,都可以通过加速度传感器实时获得行为数据从而判断出用户的行为情况。 目前许多智能手机都内置多种传感器,通过预装软件就能够获得较精确的原始数据。本文提出一种基于三轴加速度传感器,用智能手机采集用户数据,对数据进行处理及特征提取获得特征矩阵并分类识别的方法,有效地识别了站立、走、跑、跳四种动作。 人体动作识别处理过程主要包含数据采集、预处理、特征提取和分类器识别数据采集数据采集和发送模块安装在用户端,另一个数据接收模块接在电脑终端上。 由于我们制作的采集模块很轻、很小,所以方便佩戴。当用户运动时,三轴加速度传感器会将据采集并通过无线方式发送给电脑接收模块,再通过电脑上的软件部分对采集到的数据进行分析处理,将结果输出,显示用户的实时状态。 本文使用的加速度传感器数据来自于共计60个样本。传感器统一佩戴于腰间。本文选取了其中一位采集者的数据用于主要分析研究,其余两位采集者的数据则用于验证由第一位采集者数据研究所得的结论,这样的做法既减小了数据处理的繁杂又能保证最终结果的准确性。预处理应用程序设置的采集时间间隔为0.1s,对每一个动作的采集时间为25s。考虑到用户在采集数据一开始与将要结束时的动作

不平稳可能对数据带来较大影响,前2s2s采集的数据将被舍弃不予分析。因原始加速度信号一般都含有噪声,为了提高数据分析结果的准确性,通常在原始加速度信号进行特征提取前对其进行去躁、归一化、加窗等预处理。通过加窗处理,不仅规整了加速度信号的长度,而且方便研究人员按照需要选择适宜的信号长度,这样有利于后续的特征提取。 许多研究人员使所示。研究人员采集的加速度传感器信号由于采集者的动作力度不同造成加速度信号的幅度差异较大,这会对之后的分类识别造成负面影响,归一化技术可以调整加速度信号的幅度,按照一定的归一化算法可以使加速度信号的幅度限定在某一数值范围内,文献[2]在识别跑、站立、跳和走路这四种动作时对四种动作的加速度信号进行了归一化;文献[3]在进行手势识别时对手势动作的加速度信号进行了归一化处理。特征提取特征提取和选择模块的作用在于从加速度信号中提取出那些表征人体行为的特征向量,处于预处理模块和分类器模块之间,是人体行为识别过程中的一个重要环节,直接影响分类识别的效果。特征的提取方法具有多样性,对于不同的识别目的,研究人员会提取不同的特征,例如为了识别分类站立和跑步,研究人员通常会选取方差和标准差这类能够反映加速度信号变化大小的特征,而为了识别分类走路和跑步,研究人员通常会选取能量和均值这类能够反映加速度信号大小的特征。使用不同的特征表征行为会对分类识别效果产生不同的影响,因此寻找更加有效的特征一直是研宄人员关注的一个课题。通过查阅大量的文献,大致可以把加速度信

风力发电机组的加速度振动传感器

再生能源 风力发电是一种成长中的干净的可再生能源。无论是单个机组还是组合机组的风力发电场,它们都是目前世界上发展很快的新能源。 风力发电机组原理是将风力机械能转化成电能。风力发电的规模可以从500千瓦到6兆瓦。最常用的风力发电机组是水平轴布置。有些是三桨叶,上风向并且带有偏航控制,有的则是二桨叶,下风向,自然随风旋转。偶尔你也会看到垂直布置的风力发电机组,它们也被称为Darrieus (打蛋形)风力发电机组,根据法国发明家而命名。但是这种打蛋形的设计不是很流行,逐渐被性能较好得水平布置的风力发电机组所代替。 风力发电机组和低速电机驱动的风扇,例如冷却塔,有很多相同之处。风力发电机组基本上是一个大型低速风扇,但是它不是电能驱动,没有将机械能通过减速箱驱动大型低速风扇,相反的,它提供机械能,通过加速箱驱动发电机产生电能。这个反向的过程带有很多会产生振动的旋转部件,长时间的损耗可能会导致最终失效。 ?维修费用非常高 ?不可能的工作高度 ?电能的损失很昂贵 带有加速度振动传感器的水平布置的 风力发电机组 低频加速度振动传感器 主要轴承和转轴的速度大约是30-60 rpm。这也是齿轮箱输入轴的旋转速度。旋转频率范围是 30 – 60 cpm (0.5 – 1.0 赫兹)的情况应采用低频加速度振动传感器。测量的范围包括主轴旋转频率,叶片通过频率,主轴承频率,齿轮箱输入轴轴承频率和齿轮啮合频率等等。这些低频加速度振动传感器通常可以提供500mV/g以及12-180000 cpm (0.2 – 3000 赫兹) 的频率范围。

低频加速度振动传感器 安装在主轴承水平轴上的 低频加速度振动传感器 通用型加速度振动传感器 齿轮箱的中间轴和输出轴都会有比较高的旋转速度,并且产生比轴承和齿轮啮合更高的扰动频率。事实上,输出轴的旋转频率在通常情况下比输入轴高50-60倍。测量其带动的齿轮箱和发电机组的高旋转速度需要使用通用型加速度振动传感器。通用型加速度振动 传感器可以提供100 mV/g 以及30 – 900000 cpm (0.5 – 15000赫兹)的频率范围。 齿轮箱的轴向和垂直方向上 螺栓安装的通用型加速度振动传感器 通用型加速度振动传感器 螺栓安装型的加速度振动传感器 风力发电机组通常在很高的塔上。其旋转组件很难接近,因此最好是使用螺栓来安装加 速度振动传感器。安装平面例如主轴承,齿

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

相关文档
最新文档