物理必修二学案

物理必修二学案
物理必修二学案

6.1行星的运动

【学习目标】

1.知道地心说和日心说的基本内容。 2.掌握开普勒三个定律的内容。

3.理解人们对行星运动的认识过程是漫长而复杂的,真理是来之不易的。

【学习重点】

会运用开普勒定律解决有关简单的航天问题 【课堂导学】

一、两种对立的学说:(见教材阅读材料) 地心说:__________是宇宙的中心,它是___________的,太阳、月亮及其他天体都绕______________做圆周运动。

日心说:__________是宇宙的中心,它是________________的,地球和所有的行星都绕______________做圆周运动。

二、开普勒行星运动定律 开普勒第一定律

所有行星绕太阳运动的轨道都是__________,太阳处在__________的一个______________。 开普勒第二定律 ______________和_____________的连线在相等的时间里扫过相等的______。 开普勒第三定律

所有行星轨道的______________的三次方跟______________的二次方的比值都相等。用公式表达

为:k T

R 23

,k 是一个与______________无关的量

开普勒定律的研究:

【典型例题】

例1 地球绕太阳转,地球本身绕地轴自转,形成了一年四季春夏秋冬,则下面说法正确的是( ) A .春分地球公转速率最小 B .夏至地球公转速率最小 C .秋分地球公转速率最小 D .冬至地球公转速率最小

(提示 : 由开普勒第二定律知,地球与太阳的连线在相等的时间内扫过相等的面积,在夏季,地球运动至远日点,离太阳最远,其速率最小。)

例2 若已知地球对它所有卫星的k 值都等于1.01×1013m 3/s 2

,试求出月球运动的轨道半径(月球绕地球运转的周期大约是27天,月球轨道为圆)(提示:m 8

108.3 )

【拓展思考】(阅读30P 页完成下列问题)

1、大多数行星的轨道与圆十分接近,故中学阶段的研究中能够按圆处理,__________处在圆心,对某一行星来说,它绕太阳做圆周运动的____________或(______________)不变,即行星做匀速圆周运动,所有行星轨道半径的___________方跟公转周期的______________方的比值相等。 (对所有绕地球运动的卫星讨论能否得到相同的结论呢?)

2、地球的公转轨道接近圆,但彗星的运动轨道则是一个非常扁的椭圆.天文学家哈雷曾经在1682年跟踪过一颗彗星,他算出这颗彗星的轨道半径长轴约等于地球公转半径的18倍(图3-1),并预言这颗彗星将每隔一定时间就会出现.哈雷的预言得到证实,该彗星被命名为哈雷彗星.哈雷彗星最近出现的时间是

1986年,请你根据开普勒行星运动第三定律(即32

r

T =k ,其中T 为行星绕太阳公转的周期,r 为轨道的半

长轴)估算,它下次飞近地球是哪一年?(提示:它下次飞近地球的时间是2062年)

地球

彗星

太阳

【课后练习】

编者:孟晓振

6.2 太阳与行星间的引力

【学习目标】

了解牛顿推导太阳与行星引力的思维方法

【学习重点】

知道牛顿在推导太阳与行星间引力时,涉及哪些知识点

【预习指导】

1.太阳对行星的引力

(1)行星绕太阳做近似匀速圆周运动时,需要的向心力由__________提供的。 (2)向心力的基本公式_______________。 (3)周期表示的向心力公式______________。

(4)代入开普勒第三定律后的表达式为____________________。

(5)太阳对行星的引力与__________成正比,与__________成反比;对任何行星都成立的关系式应为__________。 2.行星对太阳的引力

根据牛顿第三定律,可知太阳吸引行星的同时,行星也吸引太阳,由此可得行星吸引太阳的力的表达式应为__________。 3.太阳与行星间的吸引力

概括太阳与行星间的相互引力大小可知,太阳与行星间的引力的大小与__________、__________成正比,与__________成反比,即表达式为__________,相互引力的方向沿着__________。

【课堂导学】

知识点一、牛顿时代有哪些主要科学家研究行星绕太阳运动,提出了一些主要观点。

知识点二、牛顿的主要观点及推理:

知识点三、太阳对行星的引力的分析: ①模型建立

②推理

知识点四、行星对太阳的引力分析:

【拓展点】

1、太阳对行星的引力规律,即引力的大小与太阳的质量、行星的质量成正比,与两者距离的二次方成反比,F =G

2

r Mm

,式中G 是比例系数,F 方向沿二者连线,这个规律不但适用于行星与卫星间,而且适用于普通物体间的引力计算。

2、分析研究天体运动规律、天体的某些物理量需要用类比方法,也往往要将万有引力公式、开普勒运动定律、向心力、圆周运动规律综合起来应用,求解时准确应用各种关系是解决问题的关键。

【典型例题】

问题一 太阳与行星间的引力推导与规律

例1 、关于太阳对行星的引力,下列说法中正确的是( )

A.太阳对行星的引力提供行星做匀速圆周运动的向心力,因此有r

v m

F 2

=引,由此可知,太阳

对行星的引力F 引与太阳到行星的距离r 成反比

B.太阳对行星的引力提供行星绕太阳运动的向心力,因此有r

v m F 2

=引,由此可知,太阳对行星

的引力F 引与行星运动速度平方成正比

C.太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间的距离的二次方成反比

D.以上说法均不对

例2、下列关于行星对太阳的引力的说法中正确的是( ) A .行星对太阳的引力与太阳对行星的引力是同一性质的力 B .行星对太阳的引力与太阳的质量成正比,与行星的质量无关 C .太阳对行星的引力大于行星对太阳的引力

D .行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比

问题二 引力规律的应用

例题3、一颗小行星绕太阳做匀速圆周运动的轨道半径是地球公转半径的4倍,则这颗小行星运行速率是地球运行速率的

A 、4倍

B 、2倍

C 、0.5倍

D 、16倍

问题三 实际问题的拓展运用

例题4、已知太阳光从太阳射到地面需要500s 地球绕太阳的周期约为3.2×107

s ,地球的质量为6×1024

kg ,求太阳对地球的引力为多大?

【课后练习】

编者:孟晓振

6.3 万有引力定律

【学习目标】

1.理解万有引力定律的推导思路和过程,知道地球上的重物下落与天体运动的统一性。

2.理解并掌握万有引力定律及其适用范围

3.会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r的物理意义,了解引力常量G的测量在科学历史上的重大意义。

【学习重点】

1.关于“月—地检验”的基本思路

2.理解并掌握万有引力定律及其应用

3.了解引力常量的测定方法,知道引力常量的物理意义、数值和单位。

【预习指导】

1.牛顿在推导万有引力定律的过程中具体利用了前人的哪些研究成果?建立了什么样的理想模型?进行了什么样的大胆设想?

2.牛顿提出了他的假想:行星与太阳间的引力、地球吸引月球的力以及地球表面物体所受到的引力都是同一种性质的力,遵循同一个规律,即它们的大小都与距离的二次方成反比。为了检验结论的正确性,他进行的月—地检验的思路是什么?

3.万有引力定律的内容是什么?其数学表达式是___________________

4.卡文迪许扭秤实验有何重要意义?

【课堂导学】

知识点一对引力定律的检验(阅读教材36-37页)讨论下列问题

1.牛顿的猜想:

2.猜想的依据:

3.检验的思想:

4.检验的结果

小结:

“月—地检验”将月球的向心加速度与地面附近的重力加速度进行比较,证明了地球对它表面附近物体的引力与地球对月球的引力以及太阳和行星间的引力符合同样的规律,是同一种力。“月—地检验”的过程,应用了“猜想假设—实验(事实)验证”的科学思想方法。

知识点二 万有引力定律:

牛顿在前人的基础上,经一系列推理、类比、归纳,牛顿终于发现了万有引力,并经过严密的推算和实践的检验,于1687年在其出版的《自然哲学的数学原理》一书中,正式提出了万有引力定律: 1.内容以及公式:

2.意义:

万有引力定律的发现,证明了天体运动和地面上运动遵守共同的力学原理,实现了天地间力学的大综合,第一次揭示了自然界中的一种基本相互作用规律。这是人类认识历史上的一个重大飞跃。万有引力在天体运动中起着主要作用,在宇宙探索研究中有很重要的应用,对今天的航空航天仍起着重要作用。

3.适用条件:

知识点三 对万有引力定律的理解 1.万有引力的普遍性:

2.万有引力的相互性:

3.万有引力的客观性:

通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间它的作用才有宏观物理意义

4.万有引力的特殊性,两个物体间的万有引力只与它们本身的质量有关,与它们间的距离有关,而与所在空间的性质无关,也与周围有无其他物体无关.

讨论与交流

两个质量各为50 kg 的人相距1 m 时他们相互的引力是多少?

F =

G 221r m m =2

11150501067.6???-N=1.7×10-

7N , 这个引力相当于几百粒尘埃的重量. 知识点四 引力常量G (阅读教材37P 页)讨论下列问题

1.在牛顿发现万有引力定律100年后,1789年,英国物理学家__________________用____________实

验,较准确地测出了G 的数值。其标准值G=___________N ·m 2/kg 2

2.引力常量的测出,不仅用实验证明了万有引力定律的正确性,使得万有引力定律可以定量计算,同时也使万有引力定律具有更广泛的实用价值。

【知识拓展】(物体受重力、地球的万有引力、物体受地球自转的向心力,三者之间的关系)

1.地面上物体所受重力.在地球表面上的物体随地球的自转而做圆周运动,物体受到指向圆周圆心(圆心位于地球的自转轴上)的向心力作用,此向心力由地球对物体的万有引力在指向圆心方向的分力提供,而万有引力的另一分力,即物体所受的重力G=mg ,如图所示。

物体位于赤道时,向心力指向地心,三力同向,均指地心,满足

当物体在地球的南北两极时,向心力F 为零,即

当物体从赤道向两极移动时,根据2

F Mr ω=知,向心力减小,则重力增大,只有在南北两极时物体所受的万有引力才等于重力.从赤道向两极,重力加速度增大.而且重力的方向竖直向下,并不指向地心,只有在赤道和两极,重力的方向才指向地心。

2不考虑地球自转的情况下,物体在地球表面上所受的万有引力跟重力相同,若考虑

由于向心力很小,重力近似等于万有引力.即地球表面近似认为

3.地球的人造卫星.卫星所受的万有引力等于重力.由于万有引力提供向心力,所以卫 星向心加速度等于重力加速度,卫星处于完全失重状态,

由此可知,重力加速度随高度的增加而减小.

【典型例题】

一、对万有引力定律的理解

例题1、两艘万吨油轮,满载时质量分别是4.0×108 kg 和2×109 kg ,当它们相距0.1 km 时,计算其万有引力 (5340 N ) 例题2、对于万有引力定律的表述式F =G

2

2

1r

m m ,下面说法中正确的是( )

A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的

B.当r 趋近于零时,万有引力趋于无穷大

C. m 1与m 2受到的引力大小总是相等的,方向相反,是一对平衡力

D. m 1与m 2受到的引力总是大小相等的,而与m 1、m 2是否相等无关

二、万有引力定律公式的应用

例题3、如图所示,一个质量为M 的匀质实心球,半径为R ,如果从球上挖去一个直径为R 的球,放在距离为d 的地方。求下列两种情况下,两球之间的万有引力是多大?

(1)从球的正中心挖去(如图甲) (2)从与球相切处挖去(如图乙)

三、星体表面的加速度

例题4、已知月球的质量是地球质量的1/81,月球半径是地球半径的1/4,在离月球表面38m 处让质量为m =60Kg 的物体自由下落,求: (1) 月球表面的重力加速度;(任何星球表面的重力可近似认为等于万有引力,已知地球表面重力加

速度为9.8m/s 2)

(2) 物体下落到月球表面所用的时间;

(3) 物体在月球上的“质量”和“重力”与地球上的是否相同?

【课后小结】

【阅读材料】

卡文迪许扭秤

1798年,英国物理学家卡文迪许在实验室里利用“扭秤”,通过几个铅球之间万有引力的测量.比较准确地得出了引力常量G 的数值.

图中T 形框架的水平轻杆两端固定两个质量均为优的小球,竖直部分装有一个小平面镜,上端用一根石英细丝将这杆扭秤悬挂起来,每个质量为m 的小球附近各放

置一个质量均为M 的大球,用一束光射入平面镜.由于大、小球之间的引力作用,T 形框架将旋转,当引力力矩和金属丝的扭转力矩相平衡时,利用光源、平面镜、标尺测出扭转力矩,求得万有引力F ,再

测出m 、M 和球心的距离r ,即可求出引力常量?=Mm Fr G 2

卡文迪许的测量方法非常精巧,在以后的八、九十年间竞无人能赶超他的测量精度·卡

文迪许在实验室测出了引力常量,表明万有引力定律同样适用于地面的任意两个物体,用实 验方法进一步证明了万有引力定律的普适性.同时,引力常量的测出,使得包括计算星体质 量在内的关于万有引力的定量计算成为可能.

编者 孟晓振

6.4 万有引力理论的成就

【学习目标】

1. 了解万有引力定律在天文学上的重要应用。

2. 会用万有引力定律计算天体的质量。

3. 理解并运用万有引力定律处理天体问题的思路、方法。

【学习重点】

理解并运用万有引力定律处理天体问题的思路、方法。

【预习指导】

1.科学真是迷人

如果______________的影响,地面上质量为m 的物体受到重力等于__________,即

mg=______________,由此得地球的质量表达式为______________。已知g=10m/s 2

, R=6371km, G=6.67

×10-11N ·m 2/kg 2

,则地球的质量约为______________kg 。 2.计算天体的质量

(1)计算太阳的质量:将______________的运动近似看作匀速圆周运动,向心力由______________提供,其牛顿第二定律方程是______________,由此得太阳的质量为______________。 (2)测量天体质量的主要方法是______________。 3.发现未知天体

海王星是在______年____月____日发现的,发现过程是:发现________的实际运动轨道与______________的轨道总有一些偏差,根据观察到的偏差数据和万有引力定律计算出______________,并预测可能出现的时刻和位置;在预测的时间去观察预测的位置。

【课堂导学】

知识点1.科学真是迷人———计算天体质量

思考:满足什么条件时,地面上物体的重力等于地球对物体的万有引力? 用公式表示为:

问题:若已知地球表面处的重力加速度g=10m/s 2, R=6371km, G=6.67×10-11N ·m 2/kg 2

,则地球的质量约为______________kg 。(保留两位有效数字)

小结:卡文迪许用扭秤测量了铅球间得作用力大小,得到了引力常量G ,进而计算了地球的质量。从而使得万有引力定律进入定量计算领域,有了更实用的意义。因此,卡文迪许把他自己的实验说成是“扭秤称量地球质量”并不为过。马克吐温称卡文迪许的扭秤是一个科学奇迹。

知识拓展—天体表面的重力加速度

根据卡文迪许计算地球质量的思路,我们还可以计算天体表面的重力加速度,某行星表面物体受到行星的引力大小等于物体在该行星表面的重力2R Mm G

mg =,解得: 2

R

M

G g = 式中M 为行星质量,R 为行星半径

类比法:可求出地球、月球、火星等天体的表面的重力加速度 试一试:

问题:21世纪,我国某宇航员踏上一半径为R 的球状星体,宇航员在该星体上能否用常规方法测出该星球的质量?如果能,需要何种常规器材? 知识点2.计算中心天体的质量(或密度)。

行星绕太阳做匀速圆周运动的向心力是由它们之间的万有引力提供的,由此可以列出方程,从中解出太阳的质量。

写出计算太阳质量的方程:

①模型:

②大家讨论有没有其它方法呢?

问题:地球绕太阳公转的轨道半径

,公转周期

,万有引力恒量

,则计算太阳质量的表达式

,其数值约为 kg.(取

1位有效数字)

知识拓展

1.分析开普勒第三定律中的常数K

r T

m r Mm G 22

24π=

2.能否用于计算地球的质量:

问题:假如一个近地卫星(离地高度忽略,运动半径等于地球半径R )的运行周期是T 。解得地球质量为___________;由地球的体积公式3

3

4R V π=

可以计算地球的密度为:_____________。

知识点3:发现未知天体(阅读教材39P 页)

问题的发现:天文学家在用牛顿的引力理论分析天王星运动时,发现用万有引力定律计算出来的天王星的轨道与实际观测到的结果不相符,发生了偏离。

两种观点:一是万有引力定律不准确;二是万有引力定律没有问题,只是天王星轨道外有未知的行星吸引天王星,使其轨道发生偏离。

亚当斯和勒维耶的计算及预言:亚当斯和勒维耶相信未知行星的存在(即第二种假设)。他们根据天王星的观测资料,各自独立地利用万有引力定律计算出这颗“新”行星的轨道。

伽勒的发现:1846年,德国科学家伽勒在勒维耶预言的位置附近发现了海王星。和预言的位置只差1度。在理论指导下进行有目的的观察,用观察到的事实结果验证了万有引力定律的准确性。1930年,汤姆根据洛韦尔对海王星轨道异常的分析,发现了冥王星。未知天体的发现是根据已知天体的轨道偏离,由万有引力定律推测并计算未知天体的轨道并预言它的位置从而发现未知天体。

【典型例题】

例题1、太阳光到达地球需要的时间为500s ,地球绕太阳运行一周需要的时间为365天,试估算出太阳的质量(取一位有效数字)

例题2、两个行星的质量分别为 和

,绕太阳做圆周运动的半径分别为 和

,若他们只受太

阳的万有引力作用,则有: ( )

A .两个行星运动的周期之比为

B .两个行星的向心加速度之比为

C .两个行星的角速度之比是

D .两个行星的线速度之比是

例题3、关于天体运动中的双星问题

天体运动中,把两颗相距很近的恒星称为双星,这两颗星必须各自以一定的速率绕某一中心转动才不至于由于万有引力而吸在一起。已知两恒星的质量分别为M1和M2两恒星距离为L 。

求:(1)两恒星转动中心的位置;(2)转动的角速度。

例题4、宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时的初速度增大为原来的2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,引力常数为G ,求该星球的质量M 。

2

232Gt

LR

【方法总结】

万有引力定律应用图表

项目内容说明或提示

研究天体运动的应用公式

=

=r

m

r

Mm

G2

2

ω

=

=r

T

m

r

m

2

2

24π

υ

r

n

m2)

2(π

研究天体运动时,太阳系

中的八大行星及其卫星的运

动都可以看作匀速圆周运

动.它们做匀速圆周运动的向

心力就是它们受到的万有引

力.

测天体质量M 或天体密度ρ1.天体质量M=2

3

2

4

GT

r

π

2.天体密度:ρ=V

M

=3/

4

/

4

3

2

3

2

R

GT

r

π

π

=3

2

3

3

R

GT

若卫星在天体表面运行,则r=R,

而有:ρ=2

3

GT

π

把卫星的运动看成匀速

圆周运动.通过测出天体的卫

星的环绕周期、轨道半径,则

可推算出天体的质量及天体

的密度.特别是卫星在天体表

面环绕时,只要测出其环绕周

期,就可以测出天体的密度.

研究天体表面物体重力的应用公

mg=

2

R

Mm

G

例如对月球表面物体的“重力”:

mg月=

2

R

m

M

G,

这里忽略了地球对月球表面物体的

万有引力.其余天体上的物体的“重力”

照此类推.

①已知r月=60R地,可求

出:g月轨=2.7×10-3 m/s2.

②已知M月/M地=1/81,

R月/R地=1/3.8可求出:

g月=1.74 m/s2=g地/6

可见,地球在月球轨道处

产生的重力加速度远小于月

球对其表面物体产生的重力

加速度.所以在月球上,地球

对物体的万有引力可以忽略,

而只考虑月球对物体的万有

引力作用.

【课后小结】

编者季红平

6.5 宇宙航行(一)

【学习目标】

1.了解人造卫星的有关知识,知道其运动规律。

2.知道三个宇宙速度的含义,会推导第一宇宙速度。

3.搞清环绕速度与轨道半径的关系。

【学习重点】

1.会利用万有引力定律分析卫星的环绕速度与半径、周期与半径的关系

2.了解三个宇宙速度的有关知识

【预习指导】

1.地球对周围的物体有______________的作用,因而抛出的物体要___________。但是,抛出的初速度越大,物体就会飞得越______________。如果没有_____________,当速度足够大时,物体就永远不会落到地面上,将围绕地球转动,成为一颗绕地球运动的______________。

2.第一宇宙速度的表达式是______________或______________。

3.要使人造卫星绕地球运动,它进入地面附近的轨道速度必须等于或大于______________km/s,并且小于______________km/s;要使卫生脱离地球引力不再绕地球运动,成为人造卫星,必须使它的速度等于或大于______________km/s;要想使它飞到太阳系以外的地方去,它的速度必须等于或大于______________km/s。

【课堂导学】

P页,讨论下列问题)

知识点一宇宙速度(观察

40

1、思考:从高山上水平抛出物体速度不同时,轨迹如何变化,速度多大物体将不再落回地面,它将绕地球运动,成为人造地球卫星?

2、第一宇宙速度的推导

方法一:设地球质量为M,半径为R,绕地球做匀速圆周运动的飞行器的质量为m,飞行器的速度(第一宇宙速度)为v。(离地面的高度h远小于R)

方法二:物体在地球表面受到的引力可以近似认为等于重力,解得v=_____。

共同研究:飞行器绕地球做匀速圆周运动,飞行器运动的物理量与飞行器到地心的距离之间的关系,你能得出什么结论?

3.三个宇宙速度(阅读教材41页)

第一宇宙速度:第一宇宙速度是发射人造地球卫星所必须达到的最小速度,也是人造卫星绕地球表面做圆周运动的环绕速度。

另外第一宇宙速度是卫星相对于地心的线速度。地面上发射卫星时的发射速度,是卫星获得的相对地面的速度与地球自转速度的合速度。所以赤道上自西向东发射卫星可以节省一定的能量。

第二宇宙速度:

是飞行器克服地球的引力,离开地球束缚的速度,是在地球上发射绕太阳运行或飞到其他行星上去的飞行器的最小发射速度。其值为:________。

第三宇宙速度:

在地面附近发射一个飞行器,使它挣脱太阳引力的束缚,飞到太阳系外,必须达到的速度。其值是_________。

知识点二梦想成真

阅读教材,了解人类在探索宇宙方面所取得的重大成就(主要阶段)

P)

41

【知识拓展】—人造地球卫星

1.人造地球卫星的轨道特点:

提示:卫星地球做匀速圆周运动时,是地球的引力提供向心力

三类人造地球卫星轨道:①赤道轨道,卫星轨道在赤道平面,卫星始终处于赤道上方;②极地轨道,卫星轨道平面与赤道平面垂直,卫星通过两极上空;③一般轨道,卫星轨道和赤道成一定角度。

说明:其实不仅绕地球做圆周运动的卫星轨道平面过地心,绕地球做椭圆运动的卫星其轨道平面也必过地心

2.运行速度

对于卫星的速度要区分发射速度和运行速度,发射速度是指将卫星发射到空中的过程中,在地面上卫星必需获得的速度,等于第一宇宙速度,是卫星在地面附近绕地球做匀速圆周运动。

发射速度大于第一宇宙速度而小于第二宇宙速度时,卫星做以地球为焦点的椭圆轨道运动。

运行速度是指卫星在正常轨道上运动时的速度,如果卫星做圆周运动,根据万有引力提供向心力推导运行速度与半径的关系(设地球质量为M,卫星质量为m,轨道半径为r,运行速度为v,引力常量为G)

显然,第一宇宙速度也是所有绕地球作圆周运动的最大运行速度。

3.运行周期

问题:分析绕地球做圆周运动的人造卫星,其运行周期与轨道半径的关系(设地球质量为M,卫星质量为m,轨道半径为r,运行周期为T,引力常量为G。)

【典型例题】

例题1、人造地球卫星的第一宇宙速度为7.9 km/s,已知月球质量是地球质量的1/81,地球半径是月球半径的3.8倍,则在月球上发射“近月卫星”的环绕速度约为()

A.1.0 km/s B.1.7 km/s C.2.0 km/s D.1.5 km/s

例题2、金星的半径是地球的0.9倍,质量为地球的0.81倍,金星表面的自由落体加速度是多大?金星的第一宇宙速度是多大?

例题3、一颗人造卫星在离地面高度等于地球半径的圆形轨道上运行,已知卫星的第一宇宙速度是v1=7.9km/s,求:

(1)这颗卫星运行的线速度多大?

(2)它绕地球运动的向心加速度多大?

(3)质量为1kg的仪器放在卫星内的平台上,仪器的重力多大?它对平台的压力有多大?

例题4、如图所示,有A 、B 两个行星绕同一恒星O 做匀速圆周运动,运转方向相同,A 行星的周期为T A ,B 行星的周期为T B 在某一时刻两行星第一次相遇(即两行星的距离最近),则( )

A .经过时间t =TA T

B ,两行星第二次相遇

B .经过时间t =

,两行星第二次相遇

C .经过时间t =

,两行星第一次相距最远

D .经过时间t =

,两行星第一次相距最远

【知识小结】

1.卫星的环绕速度????

???????????+'=?+='+=?+=+)()()()

(2

22

h R g v h R v m g m h R GM v h R v m h R Mm G 当h =0时,第一宇宙速度??

???====

s km gR v s km R

GM

v /9.7/9.7

2.第二宇宙速度:v 2≥11.2km/s 又叫做地面附近的逃逸速度,即物体克服地球的引力,永远离开地球时的速度。

3.第三宇宙速度:v ≥16.7km/s,即物体挣脱太阳引力的束缚,飞到太阳系外的空间所必须具有的速度。

【课后小结】

编者 季红平

6.5 宇 宙 航 行(二)

【学习目标】

1.进一步了解人造卫星的有关知识。

2.了解有关同步卫星的知识。

3.了解有关卫星的发射和运行以及卫星的超重和失重。

【知识回顾】

1.卫星绕地球做圆周运动的向心力由万有引力提供,由此推出:卫星的绕行速度、角速度、周期与半径r 的关系。

①由r v m r

Mm G 22=得r GM v =,r 越大,v 越小。

②由2

2Mm G

m r r ω=得3

r GM =ω,r 越大,ω越小。 ③由22

24T mr r Mm G π=得GM

r T 3

24π=

,r 越大,T 越大。 式中r 是卫星运行轨道到地球球心的距离。

2.要将人造卫星发射到预定的轨道上,就需要给卫星一个发射速度。发射速度随着发射高1的增加而增大。最小的发射速度为s km gR R

GM

v /9.7===

,即第一宇宙速度,它是人造卫星在地面附近环绕地球做匀速圆周运动所必须具有的速度,也是卫星的最大绕行速度。

【课堂导学】

知识点一 同步卫星

同步卫星指在赤道平面内,以和地球自转角速度相同的角速度绕地球运动的卫星。同步卫星也叫地球静止卫星。

同步卫星有以下几个特点: 1、周期一定

2.角速度一定

3.轨道一定

4.运行速度一定

例题1、设地球的质量为M ,半径为R ,自转角速度为ω,引力常量为G ,则有关同步卫星的说法中正确的有( )

A .同步卫星的离地高度为3

2

ω

GM

h =; B .同步卫星的离地高度为R GM

h -=3

2

ω

C .同步卫星的角速度为ω,线速度大小为3ωGM

D .同步卫星的轨道与地球的赤道在同一平面内。

例题2、下面关于地球同步卫星即静止卫星的说法中正确的有( ) A. 同步卫星和地球自转同步,则卫星的高度和速率被确定。 B. 同步卫星的角速度虽已确定,但高度和速率可以选择。

C. 已知我国发射的第一颗人造地球卫星的周期是114分,可判断它离地面的高度比同步卫星低。

D. 同步卫星的速率比第一颗人造地球卫星的速率小。 知识点二 人造卫星的发射速度和运行速度

发射速度是指将人造卫星送入预定轨道运行所必须具有的速度。要发射一颗人造卫星,发射速度不能小于第一宇宙速度。因此,第一宇宙速度又是最小的发射速度,卫星离地面越高,卫星的发射速度越大,贴近地球表面的卫星(近地卫星)的发射速度最小,其运行速度即第一宇宙速度。

运行速度是指卫星在进入轨道后绕地球做匀速圆周运动的线速度,根据r

v GM

=可知,卫星越高,半径越大,卫星的运行速度就越小。

思考:由r

v GM

=

可知,卫星越高,半径越大,卫星的运行速度就越小,是否意味着发射速度就越小呢?

例题3、将卫星发射至近地圆轨道1(如图所示),然后再次点火,将卫星送入同步轨道3。轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:

A .卫星在轨道3上的速率大于轨道1上的速率。

B .卫星在轨道3上的角速度大于在轨道1上的角速度。

C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度。

D .卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点时的加速度。

知识点三 人造卫星的超重和失重

人造卫星在发射升空的过程中,火箭带着卫星产生向上的加速度,卫星以及其中的物体处于超重状态;卫星在轨道上运行,只受万有引力作用,卫星处于完全失重状态。

例题4、一地球卫星高度等于地球半径,用弹簧秤将一物体悬挂在卫星内.物体在地球表面受的重力为98 N ,则它在卫星中受地球的引力为________N ,物体的质量为________kg ,弹簧秤的读数为________N .

编者 季红平

P 1 2 3 ??Q

6.6 经典力学的局限性

【学习目标】

1.知道经典力学的正确性与局限性。

2.知道经典力学的适用范围。

3.了解相对论、量子力学的正确性。

4.掌握狭义相对论中物体质量与速度的关系。

【课堂导学】

1.从低速到高速

在经典力学中,物体的质量是_____________(填变化特点);在狭义相对论中,物体的质量是_____________(填变化特点),用公式表示为_____________;二者在_____________条件下是统一的。

2.时间与空间

(1)物体运动的特征就是它的位置随时间而发生变化,生活经验告诉我们:

①空间就像_____________;它给物体的运动提供一个_____________,它对物体的运动本身_____________。也就是说,空间是_____________而存在的。

②时间就像_____________;它计量着物体_____________,而任何物体_____________。也就是说,时间是____________而存在的。

(2)爱因斯坦所提出的时空观认为,在研究物体的_____________,即速度_____________时,物体的长度(即物体所占有的空间)以及物理过程、化学过程,甚至生命过程的持续时间,都_____________。

3.从宏观到微观

经典力学能够很精确地描述宏观物体的运动规律,但对微观粒子的波粒二象性无能为力,_____________能够正确地描述微观粒子运动的规律性。

以上事实说明,经典力学的适用范围:_____________。

4.从弱引力到强引力

相对论与量子力学都没有否定过去的科学,而只认为过去的科学是自己在一定条件下的_____________。

【典型例题】

例题地球以C=3×104m/s的速度绕太阳公转,它的质量是静止质量的多少倍?当一个物体以v =0.8C的速度运动时,它的质量是静止质量的多少倍?

【课堂小结】

1.以牛顿运动定律为基础的经典力学有其局限性,经典力学适用于低速运动的物体,不适用于高速运动的物体。

2.经典力学适用于宏观世界弱作用力问题,不适用于微观世界强作用力问题。

编者季红平

7.1 追寻守恒量

【学习目标】

1.理解动能、势能及能量的概念与意义;

2.能独立分析伽利略理想斜面实验的能量转换和守恒关系;

3.能列举不同形式的能量可以相互转化并守恒的实例。

【学习重点】

通过对具体事例的分析建立守恒的思想。

【课堂学习】

问题:在一个大热天,小强和小明呆在小强家里玩游戏,两人热得是满头大汗,可小强家里没有空调,怎么办呢?最后还是小明反应快,他对小强说:“你家不是有冰箱吗,咱们把冰箱的门开着,不就可以降温了吗!”于是,他们把门窗关好,把冰箱门开着,他们能达到预期的效果吗?

思考1、在伽利略的理想实验中,你发现有一种什么样的启发性的事实?这一事实说明了什么?

在伽利略的理想实验中,我们先分析小球的运动特点,小球沿斜面滑下时,高度降低、速度增大;而小球沿斜面滚上时,高度增加、速度减小。由此可知,小球凭借位置而具有的能量减少时,由于运动而具有的能量就增加,反之依然成立。这就体现出一个守恒量-----能量。

思考2、阅读教材51页第三至第五段,完成以下题目:

⑴势能:

注意:①两物体间有相互作用力,物体才会有势能

②势能是与两物体相对位置有关的能量

⑵动能:

⑶在伽利略的理想实验中,小球的和相互转化,但二者的总量是的。

思考3、举出生活中的一个例子,说明不同形式的能量之间可以相互转化。你的例子是否向我们提示,转化过程中能的总量保持不变?

思考4、如果不采用能量的概念,在伽利略的理想实验中能不能寻找到某个量是守恒的?(阅读教材51至52页内容)

编者李静

人教版高中物理必修2《平抛运动》导学案

第12讲 平抛运动 【重点知识梳理】 一、平抛运动的基本规律 1.性质 加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线. 2.基本规律 以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则: (1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12 gt 2. (3)合速度:v =v 2x +v 2y ,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt 2v 0 . 3.对规律的理解 (1)飞行时间:由t =2h g 知,时间取决于下落高度h ,与初速度v 0无关. (2)水平射程:x =v 0t =v 0 2h g ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. (4)速度改变量:因为平抛运动的加速度为重力加速度g ,所以做平抛运动 的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒 为竖直向下,如图所示. (5)两个重要推论 ①做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定 通过此时水平位移的中点,如图2中A 点和B 点所示.

②做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ. 二、斜面上的平抛运动问题 斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下: 方法 内容 斜面 总结 分解速度 水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y 分解速度,构建速度三角形 分解位移 水平:x =v 0t 竖直:y =12 gt 2 合位移:s =x 2+y 2 分解位移,构建位移三角形 1.受力特点 物体所受的合外力为恒力,且与初速度的方向垂直. 2.运动特点 在初速度v 0方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a =F 合m . 3.求解方法 (1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动.两分运动彼此独立,互不影响,且与合运动具有等时性. (2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解. 【高频考点突破】 考点一 对平抛运动的理解 例1.(多选)对于平抛运动,下列说法正确的是( )

人教版高中物理必修二:《曲线运动》学案(含答案)

第一节曲线运动 1.了解曲线的切线。 2.知道曲线运动速度的方向。 3.理解并掌握曲线运动的条件。 ★自主学习 1.曲线运动速度的方向:质点在某一点的速度,沿曲线在这一点的方向。 2.速度是矢量,它既有,又有。不管速度的大小是否改变,只要速度的发生变化,就表示速度矢量发生了变化。3.曲线运动的性质:曲线运动中速度的方向时刻(填“不变”、“改变”);也就是具有。所以,曲线运动是运动。 4.物体做匀速直线运动的条件:合力为,速度矢量(填“不变”、“改变”);当物体所受的方向与它的方向在上时,物体做直线运动;物体做曲线运动的条件:当物体所受的方向与它的方向不在同一直线上时,物体做曲线运动。 ★新知探究 一、曲线运动中速度方向的确定 1.曲线运动的几个实例 体育活动中的例子: 日常生活中的例子: 自然现象中的例子: 2.切线的理解 (1)数学上曲线的割线:过曲线上的A、B两点所作的这一条叫做曲线的割线。 (2)数学上曲线的切线:当曲线跟其割线的两个交点时,这条就叫这条曲线的切线。 (3)曲线运动质点速度的方向:沿曲线在这一点的。 (4)数学上曲线的切线与物理上曲线运动在某点的轨迹的切线方向的异同: 同:二者都是曲线上的两点之间所作的。 不同:前者是一条没有方向的直线,后者是一条有的。 二、曲线运动的性质

曲线运动中质点速度的方向时刻在,也就具有了,所以曲线运动是。 三、曲线运动的条件 1.规律发现 (1)演示实验: (2)观察结果: 2.规律内容 当物体受的的方向与它的方向上时,物体作曲线运动。 ★例题精析 【例题1】下列说法正确的是( ) A.只要速度大小不变,物体的运动就是匀速运动B.曲线运动的加速度一定不为零 C.曲线运动的速度方向,就是它的合力方向 D.曲线运动的速度方向为曲线上该点的切线方向 【训练1】关于曲线运动,下列说法正确的是( ) A.曲线运动一定是变速运动 B.变速运动不一定是曲线运动 C.曲线运动是变加速运动 D.加速度大小及速度大小都不变的运动一定不是曲线运动 【例题2】关于曲线运动,下列说法错误 ..的是( ) A.物体在恒力作用下可能做曲线运动 B.物体在变力作用下一定做曲线运动 C.做曲线运动的物体,其速度大小一定变化 D.做曲线运动的物体,其速度方向与合外力方向不在同一直线上 参考答案 ★自主学习 1.切线 2.大小方向方向 2. 3.改变加速度变速 3. 4.0 不变合力速度同一直线合力速度 ★新知探究 一、1.略 2.(1)直线 (2)非常非常接近割线(3)切线方向(4)非常非常接近割线方向线段 二、变化加速度变速运动 三、1.略2.合力速度不在同一直线 ★例题精析 例题1 BD 训练1 AB

第一章 学案2步步高高中物理必修二

学案2运动的合成与分解 [目标定位] 1.知道什么是运动的合成与分解,理解合运动与分运动等有关物理量之间的关系.2.会确定互成角度的两分运动的合运动的运动性质.3.会分析小船渡河问题. 一、位移和速度的合成与分解 [问题设计] 1.如图1所示,小明由码头A出发,准备送一批货物到河对岸的码头B.他驾船时始终保持船头指向与河岸垂直,但小明没有到达正对岸的码头B,而是到达下游的C处,此过程中小船参与了几个运动? 图1 答案小船参与了两个运动,即船垂直河岸的运动和船随水向下的漂流运动. 2.小船的实际位移、垂直河岸的位移、随水向下漂流的位移有什么关系? 答案如图所示,实际位移(合位移)和两分位移符合平行四边形定则. [要点提炼] 1.合运动和分运动 (1)合运动和分运动:一个物体同时参与两种运动时,这两种运动叫做分运动,而物体的实际运动叫做合运动. (2)合运动与分运动的关系 ①等时性:合运动与分运动经历的时间相等,即同时开始,同时进行,同时停止. ②独立性:一个物体同时参与了几个分运动,各分运动独立进行、互不影响,因此在研究某个分运动时,就可以不考虑其他分运动,就像其他分运动不存在一样. ③等效性:各分运动的相应参量叠加起来与合运动的参量相同.

2.运动的合成与分解 (1)已知分运动求合运动叫运动的合成;已知合运动求分运动叫运动的分解. (2)运动的合成和分解指的是位移、速度、加速度的合成和分解.位移、速度、加速度合成和分解时都遵循平行四边形定则. 3.合运动性质的判断 分析两个直线分运动的合运动的性质时,应先根据平行四边形定则,求出合运动的合初速度v 0和合加速度a ,然后进行判断. (1)判断是否做匀变速运动 ①若a =0时,物体沿合初速度v 0的方向做匀速直线运动. ②若a ≠0且a 恒定时,做匀变速运动. ③若a ≠0且a 变化时,做非匀变速运动. (2)判断轨迹的曲直 ①若a 与初速度共线,则做直线运动. ②若a 与初速度不共线,则做曲线运动. 二、小船渡河问题 1.最短时间问题:可根据运动等时性原理由船对静水的分运动时间来求解,由于河宽一定,当船对静水速度v 1垂直河岸时,如图2所示,垂直河岸方向的分速度最大,所以必有t min =d v 1 . 图2 2.最短位移问题:一般考察水流速度v 2小于船对静水速度v 1的情况较多,此种情况船的最短航程就等于河宽d ,此时船头指向应与上游河岸成θ角,如图3所示,且cos θ=v 2 v 1;若v 2> v 1,则最短航程s =v 2v 1d ,此时船头指向应与上游河岸成θ′角,且cos θ′=v 1 v 2 . 图3 三、关联速度的分解 绳、杆等连接的两个物体在运动过程中,其速度通常是不一样的,但两者的速度是有联系的(一般两个物体沿绳或杆方向的速度大小相等),我们称之为“关联”速度.解决此类问题的一般

(人教版)高中物理必修二(全册)精品分层同步练习汇总

(人教版)高中物理必修二(全册)精品同步练习汇总 分层训练·进阶冲关 A组基础练(建议用时20分钟) 1.(2018·泉州高一检测)关于运动的合成和分解,下列说法中正确的是 (C) A.合运动的速度大小等于分运动的速度大小之和 B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有等时性 D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动

2.(2018·汕头高一检测)质点在水平面内从P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,下列选项正确的是(D) 3.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不变,方向平行于河岸;小船相对于静水分别做匀加速、匀减速、匀速直线运动,船相对于静水的初速度大小均相同、方向垂直于河岸,且船在渡河过程中船头方向始终不变。由此可以确定 (D) A.船沿AD轨迹运动时,船相对于静水做匀加速直线运动 B.船沿三条不同路径渡河的时间相同 C.船沿AB轨迹渡河所用的时间最短 D.船沿AC轨迹到达对岸前瞬间的速度最大 4.如图所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v0,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的水平速度v x为(A)

A.小船做变速运动,v x= B.小船做变速运动,v x=v0cos α C.小船做匀速直线运动,v x= D.小船做匀速直线运动,v x=v0cosα B组提升练(建议用时20分钟) 5.(2018·汕头高一检测)质量为1 kg的物体在水平面内做曲线运动,已知该物体在互相垂直方向上两分运动的速度-时间图象分别如图所示,则下列说法正确的是(D) A.2 s末质点速度大小为7 m/s B.质点所受的合外力大小为3 N C.质点的初速度大小为5 m/s D.质点初速度的方向与合外力方向垂直 6.(多选)在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示。关于猴子的运动情况,下列说法中正确的是( B、D )

高一物理学案(必修二全册)

一、曲线运动 【要点导学】 1、物体做曲线运动的速度方向是时刻发生变化的,质点经过某一点(或某一时刻)时的速度方向沿曲线上该点的。 2、物体做曲线运动时,至少物体速度的在不断发生变化,所以物体一定具有,所以曲线运动是运动。 3、物体做曲线运动的条件:物体所受合外力的方向与它的速度方向。 4、力可以改变物体运动状态,如将物体受到的合外力沿着物体的运动方向和垂直于物体的运动方向进行分解,则沿着速度方向的分力改变物体速度的;垂直于速度方向的分力改变物体速度的。速度大小是增大还是减小取决于沿着速度方向的分力与速度方向相同还是相反。做曲线运动的物体,其所受合外力方向总指向轨迹侧。 匀变速直线运动只有沿着速度方向的力,没有垂直速度方向的力,故速度的改变而不变;如果没有沿着速度方向的力,只有垂直速度方向的力,则物体运动的速度不变而不断改变,这就是今后要学习的匀速圆周运动。 【范例精析】 例1、在砂轮上磨刀具时可以看到,刀具与砂轮接触处有火星沿砂轮的切线飞出,为什么由此推断出砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向? 解析火星是从刀具与砂轮接触处擦落的炽热微粒,由于惯性,它们以被擦落时具有的速度做直线运动,因此,火星飞出的方向就表示砂轮上跟刀具接触处的质点的速度方向。火星沿砂轮切线飞出说明砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向。 例2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,则质点() A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 解析:质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1时,质点受到的合力大小为F1,方向与F1相反,故A正确,C错误。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是:F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是:F1的方向和速度方向不在一条直线上)。故B、D的说法均是错误的。 拓展:不少同学往往错误认为撤去哪个力,合力就沿哪个力的方向。物体在三个不在同一直线上的力的作用下保持静止,处于受力平衡状态,合力为零,任

人教版高中物理必修二《曲线运动》教学设计

人教版高中物理必修二《曲线运动》教学 设计 人教版高中物理必修二《曲线运动》教学设计 一、教学目标 1.知识与技能 (1)知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上; (2)理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上. 2.方法与过程 (1)类比直线运动认识曲线运动、瞬时速度方向的判断和曲线运动的条件; (2)通过实验观察培养学生的实验能力和分析归纳的能力. 3.情感态度与价值观 激发学生学习兴趣,培养学生探究物理问题的习惯. 二、教学重难点 1.曲线运动中瞬时速度方向的判断 2.理解物体做曲线运动的条件 三、教学过程 1.新课导入,引入曲线运动

教师:在必修一里我们学习了直线运动,我们知道物体做直线运动时他的运动轨迹是直线,需要满足的条件是物体所受的合力与速度的方向在同一条直线上。但在现实生活中,很多物体做的并非是直线运动,比如玩过山车的游客的运动、火车在其轨道上的运动、风中摇曳着的枝条的运动、人造地球围绕地球的运动(图片)。 问题1:在这几幅图片中,物体的运动轨迹有什么特点? (运动的轨迹是一条曲线) 教师:我们把像这样运动轨迹是曲线的运动叫做曲线运动。 设计意图:通过复习直线运动引入生活中更为常见的曲线运动,并借助实例归纳出曲线运动的概念,帮助学生认识曲线运动。 2.曲线运动的方向 问题2:我们知道物体在做直线运动时,物体的速度方向始终是保持不变的,那么在做曲线运动时,物体的速度的方向又有什么特点呢? (方向时刻在改变) 问题3:那么,我们该如何确定物体做曲线运动时每时每刻所对应速度的方向呢? 教师:我们猜想一下,钢珠从弯曲的玻璃管中滚落出,

最新高中物理必修二第五章《机械能及其守恒定律》精品学案精品版

2020年高中物理必修二第五章《机械能及其守恒定律》精品学 案精品版

新人教版高中物理必修二第五章《机械能及其守恒定律》精 品学案 §5.1 追寻守恒量功功率 执笔人:齐河一中司 家奎 【学习目标】 ⒈正确理解能量守恒的思想以及功和功率的概念。 ⒉会利用功和功率的公式解释有关现象和进行计算。 【自主学习】 ⒈.在物理学中规定叫做力对物体做了功.功等于,它的计 算公式是,国际单位制单位是,用符号来表示. 2.在下列各种情况中,所做的功各是多少? (1)手用向前的力F推质量为m的小车,没有推动,手做功为 . (2)手托一个重为25 N的铅球,平移 3 m,手对铅球做的功为. (3)一只质量为m的苹果,从高为h的树上落下,重力做功为 . 3. 叫做功率.它是用来表示物体的物理量.功率的计算公式是,它的国 际单位制单位是,符号是 . 4.举重运动员在 5 s内将1500 N的杠铃匀速举高了 2 m,则可知他对杠铃做的功 为,功率是 . 5.两个体重相同的人甲和乙一起从一楼上到三楼,甲是跑步上楼,乙是慢步上楼.甲、 乙两人所做的功W甲W乙,他们的功率P甲P乙.(填“大于”“小于”或“等 于”) ⒍汽车以恒定功率起动,先做加速度越来越的加速运动,直到速度达到 最大值,最后做运动。 ⒎汽车匀加速起动,先做匀加速运动,直到,再做加速度越来 的加速运动,直到速度达到最大值,最后做运动。 【典型例题】 例题⒈关于摩擦力做功下列说法中正确的是﹝﹞ A 滑动摩擦力总是对物体做负功。 B滑动摩擦力可以对物体做正功。 仅供学习与交流,如有侵权请联系网站删除谢谢10

C静摩擦力对物体不做功。 D静摩擦力可以对物体做正功,也可以做负功。 例题⒉如图,质量相同的球先后沿光滑的倾角分别为θ=30°,60°斜面下滑,达到最低点时,重力的即时功率是否相等?(设初始高度相同) 例题 3、质量m=4.0×103kg的汽车,发动机的额定功率为P=40kW,汽车从静止以加速度a=0.5m/s2匀加速行驶,行驶时所受阻力恒为F=2.0×103N,则汽车匀加速行驶的最长时间为多少?汽车可能达到的最大速度为多少? 【针对训练】 ⒈下面的四个实例中,叙述错误的是 A.叉车举起货物,叉车做了功 B.燃烧的气体使火箭起飞,燃烧的气体做了功 仅供学习与交流,如有侵权请联系网站删除谢谢10

人教版高中物理必修二高一导学案.docx

高中物理学习材料 高一物理导学案 主备人:赵红梅 2015年4月16日 学生姓名:班级: 第六章万有引力与航天测试题 一、单项选择题 1.在物理学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是( ) A.开普勒进行了“月—地检验”,得出天上和地下的物体都遵从万有引力定律的结论 B.哥白尼提出“日心说”,发现了太阳系中行星沿椭圆轨道运动的规律 C.第谷通过对天体运动的长期观察,发现了行星运动三定律 D.牛顿发现了万有引力定律 2. 不可回收的航天器在使用后,将成为太空垃圾.如图1所示是漂浮在地球附近的太空垃圾示意图, 对此有如下说法,正确的是( ) A.离地越低的太空垃圾运行周期越大 B.离地越高的太空垃圾运行角速度越小 C.由公式v=gr得,离地越高的太空垃圾运行速率越大 D.太空垃圾一定能跟同一轨道上同向飞行的航天器相撞 3.已知引力常量G,在下列给出的情景中,能根据测量数据求出月球密度的是( ) A.在月球表面使一个小球做自由落体运动,测出下落的高度H和时间t B.发射一颗贴近月球表面绕月球做匀速圆周运动的飞船,测出飞船运行的周期T C.观察月球绕地球的圆周运动,测出月球的直径D和月球绕地球运行的周期T D.发射一颗绕月球做匀速圆周运动的卫星,测出卫星离月球表面的高度H和卫星的周期T 4. “嫦娥”一号探月卫星沿地月转移轨道到达月球,在距月球表面200 km的P点进行第一次“刹 车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图2所示.之后,卫星在P点经过几次“刹车制动”,最终在距月球表面200 km的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T1、T2、 鑫达捷 图2

人教版高一物理必修2全册教案

课题 5.2运动的合成和分解课型新授课课时 1 教学目标 (一)知识教学点 1.知道合运动、分运动、知道合运动和分运动是同时发生的,并且互不影响,能在具体的问题中分析和判断. 2.理解运动的合成、运动的分解的具体意义.理解运动的合成和分解遵循平行四边形定则. 3.会用图示方法和教学方法求解位移,速度合成、分解的问题. (二)能力训练点 培养观察和推理的能力、分析和综合的能力. (三)教育渗透点 辩证地看待问题 (四)美育渗透点 学生在学习过程运用概念进行推理、判断,能体会到物理学科中所渗透出的逻辑美. 教学重点难点1.重点 明确一个复杂的运动可以等效为两个简单的运动的合成或等效分解为两个简单的运动,理解运动合成、分解的意义和方法. 2.难点 认识分运动和分运动相互独立、互不相干;分运动和合运动的同时性.理解两个直线运动的合运动可以是直线运动,也可以是曲线运动. 教学准备教材实验装置 课件:运动的合成和分解多媒体设备 教学过程 (一)明确目标 (略) (二)整体感知 本节的地位比较特殊.为知识的学习,涉及到许多基本概念和基本规律;作为方法的介绍,体会把较复杂的运动看作是几个简单运动的合成;作为能力的培养,提高观察和推理能力,分析和综合的能力. (三)重点、难点的学习与目标完成过程 1.什么是分运动、合运动? 演示实验(具体操作见课本) 学生观察蜡块的运动:由A到B沿玻璃管竖直向上匀速直线运动;由A到D随玻璃管向右匀速直线运动;蜡块实际的运动是上述两个运动的合成.即由A到C的匀速直线运动,如图5-2所示.

②定量分析,在 x 方向有x = 2 1a 2 t ,在y 方向有y =y v t ,约去时间t 得 k y a v x y y 2 22= 故2y =kx .此为抛物线型方程,表明合运动是曲线运动.(定量分析可结合学生情况留给学生课后思考) (2)一个曲线运动可以分解为两个方向上的直线运动 既然两个直线运动的合运动可以是曲线运动,反过来,一个曲线运动可以用两个方向上的直线运动来等效替代.也就是说,分别研究这两个方向上的受力情况和运动情况,弄清楚分运动是直线运动的规律,就可以知道作为合运动的曲线运动的规律. 作 业 布 置 练习二 (1)(2)(3)(4) 课堂总结 1.在进行运动的合成和分解时,一定要明确合运动是物体实际的运动.分运动是假想的,这与力的合成和分解是有区别的,如图5-3所示.通过一定滑轮拉一物体,使物体在水平面上运动,如果是讨论运动的合成和分解,物体实际运动即合运动的速度方向是水平的,沿绳方向的速度是分运动的速度;如果是讨论力的合成和分解,沿绳方向的拉力是物体实际受到的力,沿水平方向的力是拉力的分力. 图5-3 2.合成和分解的精髓是“等效”的思想.学习时要深刻体会,可以结合课本“思考和讨论”进一步说明.

高中物理必修2全册精品学案(含答案)

第五章曲线运动 1 曲线运动 学习目标 1.知道曲线运动是一种变速运动,知道曲线运动的位移和瞬时速度的方向,会利用矢量合成分解知识求位移、速度的大小. 2.能在曲线运动轨迹上画出各点的速度方向. 3.经历物体做曲线运动的探究过程,用牛顿第二定律分析曲线运动条件,掌握速度和合外力方向与曲线弯曲情况之间的关系. 自主探究 1.描述物体运动的物理量、、.矢量合成和分解遵循. 2.曲线运动的定义:. 3.曲线运动速度方向:. 4.合运动与分运动的定义及特点: 定义: . 特点: (1)独立性:分运动之间互不相干,它们按各自规律运动,彼此互不影响. (2)等时性:各个分运动与合运动总是同时发生,同时结束,经历的时间相等. (3)等效性:各个分运动叠加的效果与合运动相同. (4)相关性:分运动的性质决定合运动的性质和轨迹. 5.物体做曲线运动的条件:,合力与运动轨迹弯曲情况之间的关系为. 6.曲线运动特点:,是速运动.其速度方向为运动轨迹上该点的方向. 合作探究 一、曲线运动的定义 观看教学课件,总结你看到的这几种运动有什么共同特点? 运动轨迹是的运动叫做曲线运动. 二、曲线运动的位移 质点做曲线运动时的位移矢量 演示:将一粉笔头水平抛出,观察粉笔头的运动轨迹,并思考如何确定粉笔头在一段时间内的位移.试写出粉笔头在任意时刻的位移大小和方向表达式.

大小:l= 方向: 三、曲线运动的速度 速度方向探究: 1.观看教学课件砂轮打磨刀具,水滴从伞边缘甩出,仔细观察演示实验,分析墨滴从陀螺边缘甩出后形成的轨迹,得出曲线运动速度方向. 2.若物体运动的轨迹不是圆周,而是一般的曲线,那么怎样确定做曲线运动的物体经过某一位置时或在某一时刻的速度方向? 3.物体做曲线运动时,速度方向时刻发生变化,所以曲线运动一定是变速运动,对吗? 课堂小结:. 针对训练: 1.如图所示,质点沿曲线运动,先后经过A、B、C、D四点,试在图中画出各点速度方向. 2.教材问题与练习第3题. 3.利用矢量合成、分解法则求质点曲线运动的速度. v=方向: 四、实例分析 利用运动合成分解知识自己动手处理质点在平面内运动. 演示:红蜡块在平面内的运动. (1)演示蜡块沿玻璃管匀速上升速度v1. (2)演示蜡块随玻璃管水平匀速运动速度v2. (3)演示玻璃管水平匀速运动的同时,蜡块沿玻璃管匀速上升. 明确合运动、分运动及它们之间的关系. 求:蜡块的位置 蜡块的位移

2021新人教版高中物理必修2全册复习教学案

高中物理必修2(新人教版)全册复习教学案 内容简介:包括第五章曲线运动、第六章万有引力与航天和第七章机械能守恒定律,具体可以分为,知识网络、高考常考点的分析和指导和常考模型规律示例总结,是高一高三复习比较好的资料。 一、 第五章 曲线运动 (一)、知识网络 (二)重点内容讲解 1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循曲线运动

平等四边形定则。 2、平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:a x =0,v x =v 0,x= v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y= gt 2 /2。 (3)合运动:a=g ,2 2y x t v v v += ,22y x s +=。v t 与v 0方向夹角为θ,tan θ= gt/ v 0, s 与x 方向夹角为α,tan α= gt/ 2v 0。 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s= v 0 g h 2。 3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv 2/r=mr ω2 列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。 对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v 临=gR ,杆类的约束条件为v 临=0。 (三)常考模型规律示例总结 1.渡河问题分析 小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动. 例1:设河宽为d,船在静水中的速度为v 1,河水流速为v 2 ①船头正对河岸行驶,渡河时间最短,t 短= 1 v d ②当 v 1> v 2时,且合速度垂直于河岸,航程最短x 1=d 当 v 1< v 2时,合速度不可能垂直河岸,确定方法如下: 如图所示,以 v 2矢量末端为圆心;以 v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则 合速度沿此切线航程最短, 由图知: sin θ=2 1v v

(完整版)人教版高中物理必修2《生活中的圆周运动》导学案习题及答案

第八节生活中的圆周运动 【目标要求】 1.知识与技能 知道如果一个力或几个力的合力的效果是使物体产生向心加速,它就是圆周运动的物体所受的向心力。会在具体问题中分析向心力的来源。 理解匀速圆周运动的规律。 知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。 2.过程与方法 通过对匀速圆周运动的实例学习,渗透理论联系实际的观点,提高分析和解决问题的能力. 通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高分析能力. 3.情感.态度与价值观 通过对几个实例的学习,明确具体问题必须具体分析,学会用合理.科学的方法处理问题。 通过离心运动的应用和防止的实例分析,明白事物都是一分为二的,要学会用一分为二的观点来看待问题。 【巩固教材-稳扎稳打】 1.关于列车转弯处内外铁轨间的高度关系,下列说法中正确的是( ) A.内外轨一样高,以防列车倾倒造成翻车事故 B.因为列车转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车倾倒 C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压 D.以上说法都不对 2.关于离心运动,下列说法中正确的( ) A.物体突然受到向心力的作用,将做离心运动。 B.做匀速圆周运动的物体,在外界提供的向心力突然变大时将做离心运动。 C.做匀速圆周运动的物体,只要向心力的数值发生变化,就将做离心运动。 D.做匀速圆周运动的物体,当外界提供的向心力突然消失或变小时将做离心运动。3.下列哪些现象是为了防止物体产生离心运动( ) ①汽车转弯时要限制速度②转速很高的砂轮半径不能做得太大。 ③在修筑铁路时,转弯处轨道的内轨要低于外轨④洗衣机脱水工作。 A.①②③B.②③④ C.①②④D.①③④ 4.市内公共汽车在到达路口转变前,车内广播中就要播放录音:“乘客们请注意,前面车辆转弯,请拉好扶手”,这样以( ) A.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向前倾倒 B.提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向后倾倒 C.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的外侧倾倒 D.主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的内侧倾倒 【重难突破—重拳出击】 1.一个做匀速圆周运动的物体,当合力F

高中物理必修二知识点整理

德胜学校高一物理校本学案 粤教版高中物理必修二知识点汇总 时间 班级 姓名 第一章 抛体运动 一、曲线运动 1.曲线运动的速度方向 做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中 的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物 体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) 2.物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直 线上.当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物 体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合 外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. 3.曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受 合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向. 二、运动的合成与分解的方法 1.运动的合成与分解:平行四边形定则,等效分解。 2.运动分解的基本方法 (1)根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解. (2)两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定. ①根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变 速运动;若合加速度变化(包括大小或方向)则为非匀变速运动. ②根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速 度的方向在同一直线上则为直线运动,否则为曲线运动. ③小船过河的两类问题:最短时间过河以及最短路程过河。 如图所示,用v 1表示船速,v 2表示水速.我们讨论几个关于渡河的问题. θ sin 11s v d t v == ,船渡河的位移短直河岸),渡河时间最垂直河岸时(即船头垂当以最小位移渡河:当船在静水中的速度 1v 大于水流速度2v 时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d ,船头

打包下载(含28套)人教版高中物理必修1【全册】学案汇总

(共28套78页)人教版高中物理必修1(全册)精 品学案汇总 §1.1 质点参考系和坐标系

【学习目标】1、理解质点的定义,知道质点是一个理想化的物理模型. 初步体会物理模型在探索自然规律中的作用. 2、知道物体看成质点的条件. 3、理解参考系的概念,知道在不同的参考系中对同一个运动的描述可能是不同的. 4、理解坐标系的概念,会用一维坐标系定量描述物体的位置以及位置的变化. 【学习重点】质点概念的理解 【学习难点】物体看成质点的条件、不同参考系描述物体运动的关系 【学习流程】 【自主先学】 1、什么是机械运动? 2、物理学中的“质点”与几何学中的“点”有何区别? 3、什么是运动的绝对性?什么是运动的相对性? 【组内研学】 ●为什么要引入“质点”概念?(阅读P9~10) 1、定义:叫质点. 讨论一:在研究下列问题时,加点的物体能否看成质点? 地球 ..通过桥梁的时间、火车 ..从上海到北京的运动时间、轮船在海..的自转、火车 ..的公转、地球 里的位置 2、物体可以看成“质点”的条件: . 3、“质点”的物理意义:. 【交流促学】讨论:下列各种运动的物体中,在研究什么问题时能被视为质点? A.做花样滑冰的运动员B.运动中的人造地球卫星 C.投出的篮球D.在海里行驶的轮船 请说一说你的选择和你的理由? 小结:⑴将实际物体看成“质点”是一种什么研究方法? ⑵哪些情况下,可以将实际物体看作“质点”处理? 【组内研学】 ●为什么要选择“参考系”?(阅读P10和插图1.1-3) 讨论二:⑴书P11“问题与练习”第1题;⑵插图1.1- 4什么现象?说明了什么? 1、定义:叫参考系. 2、你对参考系的理解: ⑴

高中物理必修二52导学案

高中物理必修二5.2《平抛运动》导学案 【学习目标】1.知道什么是抛体运动。 2、理解平抛运动是两个直线运动的合成。 3.掌握平抛运动的规律,并能用来解决简单的问题。 【重点】1、平抛运动的研究方法——可以用两个简单的直线运动来等效替代。 2、平抛运动的规律。 【难点】平抛运动的规律及用规律解决简单的问题。 【学案导学】复习 一.匀变速直线运动的运动学基本公式 速度公式:位移公式:导出公式: 1.物体做曲线运动的条件 3. 在曲线运动中,合运动与分运动及各个分运动之间有什么关系? ①运动的:分运动的规律叠加起来与合运动的规律在效果上是完全相同的。 ②运动的:一个物体可以同时参与几种不同的运动,各个运动互相独立进行,互不 影响。 ③运动的:各分运动总是同时开始,同时进行,同时结束,合运动与分运动时间相 同。 二、新知学习(一)抛体运动 1.定义:以一定的将物体抛出,在空气阻力可以忽略的情况下,物体所做的运动。 2.特点:物体只受作用,其加速度,所以抛体运动是个运动。 3. 分类:(1)初速度沿水平方向的,叫做 (2)初速度沿竖直方向的,叫做 (3)初速度方向是斜向上或斜向下方,叫做 (二)、平抛运动的研究 1、平抛运动的特点 初速度沿方向,只受力作用,轨迹为线 2、平抛运动的研究方法(化曲为直——运动的合成与分解) 水平方向和竖直方向分别做什么运动? 由于物体受到的重力是竖直方向,它在水平方向的分力是所以物体在水平方向的加速度是那么物体在水平方向做运动;重力在竖直方向的分力为所以加速度为那么物体在竖直方向做运动 平抛运动就是水平方向的运动和竖直方向的运动合成。 训练题1.关于平抛运动的描述正确的是() A.平抛运动的速度在时刻变化B. 平抛运动的加速度在时刻变化 C. 平抛运动是匀变速运动 D. 平抛运动的速度不可能竖直向下 (三)平抛运动的求解方法 1、抛体的位置物体在任一时刻的位置坐标的求解。 以抛出点为坐标原点,水平方向为x轴(正方向和初速度v0的方向相同),竖直方向为y轴,正方向向下,则物体在任意时刻t的位置坐标为 ? ? ? = = y x 2、抛体的位移 位移的大小= s 合位移s的方向与水平方向夹角为= β tan 3、抛体的速度 水平分速度为Vx= 竖直分速度为Vy= t秒末的合速度= t v t v的方向= θ tan 课外思考:能否用v=v0+gt求A点的速度? 又能否用v2-v02=2gS求A点的位移? 知识小结:对抛体运动的理解 1、物体做抛体运动的条件:(1)______________________(2)______________________ 2、抛体运动的特点(1)理想化特点:物理上提出的抛体运动是一种________模型,即把物体看成质点,抛出后只考虑_________的作用,忽略_________。 (2)匀变速特点:抛体运动的加速度________,始终等于_________,这是抛体运动的共同特点,其中加速度与速度方向不共线的抛体运动是一种_______________运动。 (3)速度变化的特点:做抛体运动的物体在任意相等的时间内速度的变化量________,均为_________ = ?v,方向___________。 3、平抛运动的理解(1)条件:①_________________,②__________________。 (2)性质:加速度为g的_______________运动。 (3)处理思路:将平抛运动分解为水平方向的_____________和竖直方向上的_________________。 例题1 一个物体以l0 m/s的速度从10 m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)?

第二章 学案2步步高高中物理必修二

学案2匀速圆周运动的向心力和向心加速度 [目标定位]1.理解向心力的概念及其表达式的含义.2.知道向心力的大小与哪些因素有关,并能用来进行计算.3.知道向心加速度和线速度、角速度的关系,能够用向心加速度公式求解有关问题. 一、什么是向心力 [问题设计] 分析图1甲、乙、丙中小球、地球和“旋转秋千”(模型)做匀速圆周运动时的受力情况,合力的方向如何?合力的方向与线速度方向有什么关系?合力的作用效果是什么? 图1 答案甲图中小球受绳的拉力、水平地面的支持力和重力的作用,合力等于绳对小球的拉力;乙图中地球受太阳的引力作用;丙图中秋千受重力和拉力共同作用.三图中合力的方向都沿半径指向圆心且与线速度的方向垂直,合力的作用效果是改变线速度的方向. [要点提炼] 1.向心力:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力. 2.向心力的方向:总是沿着半径指向圆心,始终与线速度的方向垂直,方向时刻改变,所以向心力是变力. 3.向心力的作用:只改变线速度的方向,不改变线速度的大小. 4.向心力是效果力:向心力是根据力的作用效果命名的,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,或某个力的分力. 注意:向心力不是具有特定性质的某种力,任何性质的力都可以作为向心力,受力分析时不能添加向心力.

二、向心力的大小 [问题设计] 如图2所示,用手拉细绳使小球在光滑水平地面上做匀速圆周运动,在半径不变的的条件下,减小旋转的角速度感觉手拉绳的力怎样变化?在角速度不变的条件下增大旋转半径,手拉绳的力怎样变化?在旋转半径、角速度相同的情况下,换一个质量较大的铁球,拉力怎样变化? 图2 答案 变小;变大;变大. [要点提炼] 1.匀速圆周运动的向心力公式为F =m v 2r =mω2r =mr (2πT )2. 2.物体做匀速圆周运动的条件:合力大小不变,方向始终与速度方向垂直且指向圆心,提供物体做圆周运动的向心力. 三、向心加速度 [问题设计] 做匀速圆周运动的物体加速度沿什么方向?若角速度为ω、半径为r ,加速度多大?根据牛顿第二定律分析. 答案 由牛顿第二定律知:F 合=ma =mω2r ,故a =ω2r ,方向与速度方向垂直,指向圆心. 1.定义:做匀速圆周运动的物体,加速度的方向指向圆心,这个加速度称为向心加速度. 2.表达式:a =v 2r =rω2=4π2T 2r =ωv . 3.方向及作用:向心加速度的方向始终与线速度的方向垂直,只改变线速度的方向,不改变线速度的大小. 4.匀速圆周运动的性质:向心加速度的方向始终指向圆心,方向时刻改变,所以匀速圆周运动是变加速曲线运动. [延伸思考] 甲同学认为由公式a =v 2r 知向心加速度a 与运动半径r 成反比;而乙同学认为由公式a =ω2r 知向心加速度a 与运动半径r 成正比,他们两人谁的观点正确?说一说你的观点. 答案 他们两人的观点都不正确.当v 一定时,a 与r 成反比;当ω一定时,a 与r 成正比.(a 与r 的关系图像如图所示)

高一物理新人教版必修二学案-6.3-万有引力定律

6.3 万有引力定律 学案(人教版必修2) 1.假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力,同样遵从 “____________”的规律,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍, 所以月球轨道上一个物体受到的引力是地球上的________倍.根据牛顿第二定律,物体 在月球轨道上运动时的加速度(月球______________加速度)是它在地面附近下落时的加 速度(____________加速度)的________.根据牛顿时代测出的月球公转周期和轨道半径, 检验的结果是____________________. 2.自然界中任何两个物体都____________,引力的方向在它们的连线上,引力的大小与 ________________________成正比、与__________________________成反比,用公式表 示即________________.其中G 叫____________,数值为________________,它是英国 物理学家______________在实验室利用扭秤实验测得的. 3.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于 物体本身的大小时;特殊地,用于两个均匀球体,r 是________间的距离. 4.关于万有引力和万有引力定律的理解正确的是( ) A .不能看做质点的两物体间不存在相互作用的引力 B .只有能看做质点的两物体间的引力才能用F =Gm 1m 2 r 2计算 C .由F =Gm 1m 2 r 2知,两物体间距离r 减小时,它们之间的引力增大 D .万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11 N ·m 2/kg 2 5.对于公式F =G m 1m 2 r 2理解正确的是( ) A .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对平衡力 B .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力 C .当r 趋近于零时,F 趋向无穷大 D .当r 趋近于零时,公式不适用 6.要使两物体间的万有引力减小到原来的1 4 ,下列办法不可采用的是( ) A .使物体的质量各减小一半,距离不变 B .使其中一个物体的质量减小到原来的1 4 ,距离不变 C .使两物体间的距离增为原来的2倍,质量不变 D .使两物体间的距离和质量都减为原来的1 4 【概念规律练】 知识点一 万有引力定律的理解 1.关于万有引力定律的适用范围,下列说法中正确的是( ) A .只适用于天体,不适用于地面上的物体 B .只适用于球形物体,不适用于其他形状的物体 C .只适用于质点,不适用于实际物体

相关文档
最新文档