半导体器件中的载流子寿命及其控制原理

半导体器件中的载流子寿命及其控制原理
半导体器件中的载流子寿命及其控制原理

半导体器件中的载流子寿命及其控制原理

微电子器件2011-01-21 17:42:18 阅读106 评论0 字号:大中小订阅

(为什么少子寿命对器件的开关特性、导通特性和阻断特性有很大的影响?

器件的开关特性、导通特性和阻断特性对于少子寿命长短的要求分别怎样?)

Xie Meng-xian. (电子科大,成都市)

半导体中的非平衡载流子寿命是半导体的一个基本特性参数,它的长短将直接影响到依靠少数载流子来工作的半导体器件的性能,这种器件有双极型器件和p-n结光电子器件等。但是,对于在结构上包含有p-n结的单极型器件(例如MOSFET)也会受到载流子寿命的影响。

非平衡载流子寿命主要是指非平衡少数载流子的寿命。影响少子寿命的主要因素是半导体能带结构和非平衡载流子的复合机理;对于Si 、Ge、GaP等间接禁带半导体,一般决定寿命的主要因素是半导体中的杂质和缺陷。

对于少子寿命有明显依赖关系的电子器件特性,主要有双极型器件的开关特性、导通特性和阻断特性;对于光电池、光电探测器等之类光电子器件,与少子寿命直接有关的特性主要有光生电流、光生电动势等。

(1)少子寿命对半导体器件性能的影响:

①双极型器件的开关特性与少子寿命的关系:

双极型器件的开关特性在本质上可归结为p-n结的开关性能。

p-n结的开关时间主要是关断时间,而关断时间基本上就是导通时注入到扩散区中的少子电荷消失的过程时间(包括有存储时间和下降时间两个过程)。少子寿命越短,开关速度就越快。因此,为了提高器件的开关速度,就应该减短少子寿命。

②器件的阻断特性与少子寿命的关系:

半导体器件在截止状态时的特性——阻断特性,实际上也就是p-n结在反向电压下反向漏电流大小的一种反映。因此,这里器件的阻断特性不单指双极型器件,而且也包括场效应器件在内。

p-n结的反向漏电流含有两个分量:一是两边扩散区的少子扩散电流,二是势垒区中复合中心的产生电流;这些电流都与少子寿命有关,载流子寿命越长,反向漏电流就越小,则器件的阻断特性也就越好。当载流子寿命减短到一定程度时,反向电流即大幅度地上升,就会产生反向电流不饱和的“软”的阻断特性。

一般,硅p-n结的反向漏电流主要是势垒区复合中心的产生电流,因此载流子的产生寿命将严重地影响到器件的阻断特性。所以注意工艺控制,减小杂质和缺陷的不良影响,对于提高器件的阻断特性至关重要。

总之,为了获得良好的器件阻断特性,要求器件应该具有较长的少数载流子寿命。为此,半导体的掺杂浓度不可太高,势垒区中的复合中心浓度要尽量减少。

③器件的导通特性与少子寿命的关系:

半导体器件导通特性的好坏可以用它的导通电阻或者导通压降来表征;导通压降越低,器件的大电流性能就越好,器件的功率处理能力也就越强。对于双极型器件,从本质上来看,它的导通特性实际上可近似地归结为p-n结的正向导通特性;而对于双极型功率器件而言,其正向导通特性可归结为pin二极管的导通特性。

因为一般p-n结的正向电流主要是少子扩散电流,则少子寿命越短,少子的浓度梯度越大,正向电流就越大,于是在同样电流情况下的导通压降也就越低。所以少子寿命宜较短一些。

但是,对于pin结则有所不同,因为pin结处于正偏时,即有大量电子和空穴分别从两边注入到本征的i型层,则必为“大注入”;这时可以认为i型层中的电子浓度等于空穴浓度,并且均匀分布,即n=p=const。正是由于在i型层中存在大量的两种载流子,所以必然会产生电导调制效应,使得pin结的正向电压降低。

而pin结的正向导电是由载流子渡越i型层(势垒区)时的复合过程所造成的,则pin结的导通特性与i型层中载流子的复合寿命有很大的关系。在此考虑到大注入的强烈影响,因此决定载流子寿命的因素除了大注入下的寿命——双极复合寿命τa以外,还需要计入Auger复合的寿命τA,于是应该采用有效寿命τeff的概念。由于i层载流子的有效寿命越长,在大注入情况下该层的电导调制效应就越强,则器件的正向压降也就越低,因此pin结的正向压降与载流子有效寿命成反比。然而,有效寿命将随着正向电流密度的增大而减短,特别是在大电流密度时,有效寿命将显著变短,从而会导致正向压降很快增加。

(2)载流子寿命的控制原理:

如上所述,对于功率器件而言,它的开关特性要求载流子寿命越短越好,而它的阻断特性和导通特性却要求载流子寿命越长越好。因此,同一种半导体器件的不同特性,对于载流子寿命的要求不一定相同。这就产生了一个所谓寿命优化的问题,即如何综合考虑、恰当地选取载流子的寿命,以使得器件的特性能够最大限度地满足使用要求。

对于Si等半导体器件,影响载流子寿命的主要因素是缺陷和有害杂质构成的复合中心的浓度以及半导体的本底掺杂浓度。复合中心的重要特性参数是它的能级位置以及俘获截面。在复合中心的能级位置和半导体掺杂浓度适当时,复合中心将成为最有效的复合中心,则对载流子寿命的影响最大。

一般,复合中心能级越深(即越靠近本征Fermi能级)、半导体掺杂浓度越高(即Fermi能级越靠近能带边),复合中心就越有效。例如,位于导带底以下0.54eV的复合中心一般就满足该条件,为一个最有效的复合中心;而位于导带底以下0.3eV的复合中心则是无效复合中心。

实际上,最有效的复合中心也具有较小的对两种载流子的俘获截面之比(接近1)。总之,复合中心的能级越靠近禁带中央,而且其俘获截面比越接近1,则该复合中心就越有效,寿命也就越短。在小注入时,少子寿命与注入水平无关,而仅决定于复合中心的能级位置和俘获截面之比;在大注入时,任何复合中心决定的载流子寿命都将趋于双极寿命τa=τno+τpo(仅决定于复合中心的浓度和俘获截面之比)。

a)兼顾高阻断特性和高开关速度特性的优选复合中心:

为了提高器件的开关速度,应该少子的小注入寿命尽可能短,即要求复合中心能级靠近禁带中央和俘获截面比接近1;但是,为了提高器件的阻断能力,应该少子的产生寿命尽可能长,即要求复合中心能级远离禁带中央和俘获截面比大于1。这种对载流子寿命的矛盾要求,也就意味着少子的产生寿命τs与少子的复合寿命τp之比(τs/τp)应该取极大值。

分析表明:①τs/τp比值的大小与复合中心的性质(能级位置和俘获截面比)无关,但只有在适当的能级位置、俘获截面比和温度情况下才能达到最高值;②复合中心能级靠近能带边(Ec或者Ev)时,τs/τp 比值最大;③最大的τs/τp比值与掺杂浓度和俘获截面比有关,并且掺杂浓度越低、俘获截面比越大,则不

同复合中心能级位置不影响τs/τp取最大值的范围就越大,同时温度越高、该范围也越大(但最大τs/τp比值与本征载流子浓度有关)。

总之,兼顾器件的高阻断特性和高开关速度特性的优化复合中心,其能级应该位于能带边附近处;并且在轻掺杂半导体中,比较容易选择这种优化复合中心;在同样掺杂浓度时,对于俘获截面比较大的复合中心,它的能级位置受到的限制较小。

b)兼顾高导通特性和高开关速度特性的优选复合中心:

为了降低功率器件在大电流时的导通压降,应该增长有效载流子寿命,也就是要求大注入时的载流子寿命(τH=τa)足够长,以加强少子的电导调制作用。但是,为了提高开关速度,则希望少子在小注入时的寿命(τL)足够短。因此,要使得一种复合中心能够兼顾大电流和高速度的需要,就必须选取τH/τL 比值取极大值的那种复合中心。

分析表明:①能够使τH/τL比值取极大值的复合中心,正好是其τs/τp比值取极小值,因此高速大电流的器件,就难以顾及到高的阻断电压,反之亦然;②较高的τH/τL比值,要求复合中心能级位于禁带中央处,这正好也与高τs/τp比值的要求恰恰相反;③τH/τL比值与半导体掺杂浓度有关,并且变化幅度还与复合中心能级的位置有关。

可见,从载流子寿命的优选方面来看,器件的高速大电流性能与高速高耐压性能一般较难以同时兼顾。不过,如果选取某种复合中心,若它的少子寿命对注入水平具有很高的敏感性的话,使得大注入时τH 最大,小注入时τL最小,则既可以得到大电流下的较好导通特性,也可以得到小电流时的较好阻断特性,那么高速大电流性能与高速高耐压性能之间的矛盾即可适当地缓解。

此外,在优选复合中心时还需要考虑其它一些方面的问题,例如:

①复合中心对载流子的补偿问题:

例如n型Si中的Au,是一种复合中心杂质,它有一个能级位于导带底以下0.54eV处,起着受主作用;当Au浓度接近于施主浓度时,将会使平衡电子浓度显著下降,这就是Au的补偿效应。

复合中心的这种补偿效应,显然将会使半导体电阻率升高,并因而影响到器件的导通压降和阻断电压。因此,为了降低复合中心的这种补偿作用,应该选取对少子具有很大俘获截面的那种复合中心杂质;这样既可以保持所需要的寿命,而且又可以降低起补偿作用的复合中心的浓度,以减弱对载流子浓度(半导体电阻率)的影响。

②复合中心对多种掺杂浓度的适应性问题:

为了器件制作工艺的方便,对于不同的半导体器件最好能够统一采用一种寿命控制的方法,即掺入一种复合中心杂质;这就要求在控制寿命的同时,半导体电阻率不要发生变化。因此,应该选取寿命或者两种寿命的比值对掺杂浓度不敏感的那些复合中心杂质。不过,这对于高阻半导体而言往往是一件很困难的事情。

(3)控制少子寿命的主要方法:

一般,有两个方面需要考虑:

一是注意在工艺过程中控制好载流子寿命,使得不发生变化。这里主要是要注意清洁度和操作过程的控制,以避免有害杂质的引入和减少工艺诱生的二次缺陷。

二是通过有意掺入一些深能级杂质,或者造成一些晶体缺陷来加以控制,因为许多深能级杂质和晶体缺陷都将构成复合中心。在Si器件中,常用作为复合中心的深能级杂质是Au和Pt,常用来引入晶体缺陷的措施是电子辐照。

Au和Pt以及电子辐照,这三种复合中心的引入方法各有千秋。一般,可以见到:

①对于高掺杂(低电阻)半导体材料,掺Au和掺Pt的τH/τL比值都较大;但对于低掺杂(高电阻)半导体材料,只有掺Au的τH/τL比值才较大。因此,从既降低导通压降、又提高开关频率的角度来考虑时,还是掺Au的效果比较好。

②从少子产生寿命与大注入寿命之比(τs/τH)来看,掺Pt和电子辐照的比值较大,因此,在保持导通压降相同的情况下,掺Pt和电子辐照都可以维持器件的反向漏电流较小。

③对于掺Pt的Si,τH/τL比值随掺杂浓度的变化很大,因此Pt作为功率器件的复合中心不太理想;

④对于电子辐照的Si,τH/τL比值基本上不随掺杂浓度而变化,因此,电子辐照能够对功率器件提供比较理想的复合中心;

⑤对于掺Au的Si,τH/τL比值完全不随掺杂浓度而变化,因此,Au也是功率器件的一种理想的复合中心。

载流子寿命

载流子寿命 半导体中的非平衡载流子寿命是半导体的一个基本特性参数,它的长短将直接影响到依靠少数载流子来工作的半导体器件的性能,这种器件有双极型器件和p-n结光电子器件等。但是,对于在结构上包含有p-n结的单极型器件(例如MOSFET)也会受到载流子寿命的影响。 非平衡载流子寿命主要是指非平衡少数载流子的寿命。影响少子寿命的主要因素是半导体能带结构和非平衡载流子的复合机理;对于Si、Ge、GaP等间接禁带半导体,一般决定寿命的主要因素是半导体中的杂质和缺陷。 对于少子寿命有明显依赖关系的电子器件特性,主要有双极型器件的开关特性、导通特性和阻断特性;对于光电池、光电探测器等之类光电子器件,与少子寿命直接有关的特性主要有光生电流、光生电动势等。 (1)少子寿命对半导体器件性能的影响: ①双极型器件的开关特性与少子寿命的关系: 双极型器件的开关特性在本质上可归结为p-n结的开关性能。 p-n结的开关时间主要是关断时间,而关断时间基本上就是导通时注入到扩散区中的少子电荷消失的过程时间(包括有存储时间和下降时间两个过程)。少子寿命越短,开关速度就越快。因此,为了提高器件的开关速度,就应该减短少子寿命。 ②器件的阻断特性与少子寿命的关系: 半导体器件在截止状态时的特性——阻断特性,实际上也就是p-n结在反向电压下反向漏电流大小的一种反映。因此,这里器件的阻断特性不单指双极型器件,而且也包括场效应器件在内。 p-n结的反向漏电流含有两个分量:一是两边扩散区的少子扩散电流,二是势垒区中复合中心的产生电流;这些电流都与少子寿命有关,载流子寿命越长,反向漏电流就越小,则器件的阻断特性也就越好。当载流子寿命减短到一定程度时,反向电流即大幅度地上升,就会产生反向电流不饱和的“软”的阻断特性。 一般,硅p-n结的反向漏电流主要是势垒区复合中心的产生电流,因此载流子的产生寿命将严重地影响到器件的阻断特性。所以注意工艺控制,减小杂质和缺陷的不良影响,对于提高器件的阻断特性至关重要。 总之,为了获得良好的器件阻断特性,要求器件应该具有较长的少数载流子寿命。为此,

半导体器件(附答案)

第一章、半导体器件(附答案) 一、选择题 1.PN 结加正向电压时,空间电荷区将 ________ A. 变窄 B. 基本不变 C. 变宽 2.设二极管的端电压为 u ,则二极管的电流方程是 ________ A. B. C. 3.稳压管的稳压是其工作在 ________ A. 正向导通 B. 反向截止 C. 反向击穿区 4.V U GS 0=时,能够工作在恒流区的场效应管有 ________ A. 结型场效应管 B. 增强型 MOS 管 C. 耗尽型 MOS 管 5.对PN 结增加反向电压时,参与导电的是 ________ A. 多数载流子 B. 少数载流子 C. 既有多数载流子又有少数载流子 6.当温度增加时,本征半导体中的自由电子和空穴的数量 _____ A. 增加 B. 减少 C. 不变 7.用万用表的 R × 100 Ω档和 R × 1K Ω档分别测量一个正常二极管的正向电阻,两次测 量结果 ______ A. 相同 B. 第一次测量植比第二次大 C. 第一次测量植比第二次小 8.面接触型二极管适用于 ____ A. 高频检波电路 B. 工频整流电路 9.下列型号的二极管中可用于检波电路的锗二极管是: ____ A. 2CZ11 B. 2CP10 C. 2CW11 D.2AP6 10.当温度为20℃时测得某二极管的在路电压为V U D 7.0=。若其他参数不变,当温度上 升到40℃,则D U 的大小将 ____ A. 等于 0.7V B. 大于 0.7V C. 小于 0.7V 11.当两个稳压值不同的稳压二极管用不同的方式串联起来,可组成的稳压值有 _____ A. 两种 B. 三种 C. 四种 12.在图中,稳压管1W V 和2W V 的稳压值分别为6V 和7V ,且工作在稳压状态,由此可知输 出电压O U 为 _____ A. 6V B. 7V C. 0V D. 1V

常用半导体器件复习题

第1章常用半导体器件 一、判断题(正确打“√”,错误打“×”,每题1分) 1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。()3.本征半导体就是纯净的晶体结构的半导体。() 4.PN结在无光照、无外加电压时,结电流为零。() 5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。()6.晶体三极管的β值,在任何电路中都是越大越好。( ) 7.模拟电路是对模拟信号进行处理的电路。( ) 8.稳压二极管正常工作时,应为正向导体状态。( ) 9.发光二极管不论外加正向电压或反向电压均可发光。( ) 10.光电二极管外加合适的正向电压时,可以正常发光。( ) 一、判断题答案:(每题1分) 1.√; 2.×; 3.√; 4.√; 5.×; 6.×; 7.√; 8.×; 9.×; 10.×。

二、填空题(每题1分) 1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。2.由于浓度不同而产生的电荷运动称为。 3.晶体二极管的核心部件是一个,它具有单向导电性。 4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。7.PN结加正向电压时,空间电荷区将。 8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流围表现出稳压特性,且能保证其正常可靠地工作。 9.晶体三极管三个电极的电流I E 、I B 、I C 的关系为:。 10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。 二、填空题答案:(每题1分) 1.空穴 2.扩散运动 3.PN结 4.导通 5.反向 6.发射机e 7.变薄 8.反向 9.I E =I B +I C 10.材料 三、单项选择题(将正确的答案题号及容一起填入横线上,每题1分)

半导体器件基本结构

课题4.1 半导体器件基本结构 4.2晶体二极管 教学目标【知识目标】掌握PN结单向导体的原理 【能力目标】1.懂得什么是半导体 2.理解PN结的单向导电性 3.掌握半导体的分类 4.懂得半导体的主要参数【德育目标】培养学生的抽象理解能力 教 学重点半导体的主要参数 教 学 难 点 PN结单向导体的原理 教 学时间2课时(第11周) 教 具 准 备 半导体、电阻、电流表 教学组织与实施 教师活动学生活动 【新课导入】 提问1: 【新课讲授】 1.导体绝缘体和半导体 各种物体对电流的通过有着不同的阻碍能力,这种不同的物体允许电流通过的能力叫做物体的导电性能。 通常把电阻系数小的(电阻系数的范围约在0.01~1欧毫米/米)、导电性能好的物体叫做导体。例如:银、铜、铝是良导体。 含有杂质的水、人体、潮湿的树木、钢筋混凝土电杆、墙壁、大地等,也是导体,但不是良导体。 电阻系数很大的(电阻系数的范围约为10~10欧姆·毫米/米)、导电性能很差的物体叫做绝缘体。例如:陶瓷、云母、玻璃、橡胶、塑料、电木、纸、棉纱、树脂等物体,以及干燥的木材等都是绝缘体(也叫电介质)。 举例说明哪些是导体哪些是绝缘体哪些是半导体

导电性能介于导体和绝缘体之间的物体叫做半导体。例如:硅、锗、硒、氧化铜等都是半导体。半导体在电子技术领域应用越来越广泛。 2.PN结 PN结(PN junction)。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。 P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。 3.PN结的单向导电性 PN结具有单向导电性,若外加电压使电流从P区流到N区,PN 结呈低阻性,所以电流大;反之是高阻性,电流小。 如果外加电压使PN结P区的电位高于N区的电位称为加正向电压,简称正偏; PN结P区的电位低于N区的电位称为加反向电压,简称反偏。 (1) PN结加正向电压时的导电情况 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。 (2)PN结加反向电压时的导电情况 外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 分清楚P型半导体和N型半导体

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

半导体器件参数(精)

《党政领导干部选拔任用工作条例》知识测试题(二) 姓名:单位: 职务:得分: 一、填空题(每题1分,共20分): 1、《党政领导干部选拔任用工作条例》于年月发布。 2、《党政领导干部选拔任用工作条例》是我们党规范选拔任用干部工作的一个重要法规,内容极为丰富,共有章条。 3、干部的四化是指革命化、知识化、年轻化、专业化。 4、,按照干部管理权限履行选拔任用党政领导干部的职责,负责《条例》的组织实施。 5、党政领导班子成员一般应当从后备干部中选拔。 6、民主推荐部门领导,本部门人数较少的,可以由全体人员参加。 7、党政机关部分专业性较强的领导职务实行聘任制△I称微分电阻 RBB---8、政协领导成员候选人的推荐和协商提名,按照RE---政协章程和有关规定办理。 Rs(rs----串联电阻 Rth----热阻 结到环境的热阻

动态电阻 本机关单位或本系统 r δ---衰减电阻 r(th--- Ta---环境温度 Tc---壳温 td---延迟时间 、对决定任用的干部,由党委(党组)指定专人同本人 tg---电路换向关断时间 12 Tj---和不同领导职务的职责要求,全面考察其德能勤绩廉toff---。 tr---上升时间13、民主推荐包括反向恢复时间 ts---存储时间和温度补偿二极管的贮成温度 p---发光峰值波长 △λ η---

15、考察中了解到的考察对象的表现情况,一般由考察组向VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) 、正向压降(正向直流电压) △政府、断态重复峰值电压 VGT---门极触发电压 VGD---17、人民代表大会的临时党组织、人大常委会党组和人大常委会组成人员及人大代表中的党员,应当认真贯彻党委推荐意见 VGRM---门极反向峰值电压,带头(AV 履行职责交流输入电压 最大输出平均电压

《半导体器件》习题及参考答案

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm,求零偏压下的总耗尽层宽度、内建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 + =

I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区内存贮的少数载流子总量。设n 型中性区的长度为1μm,空穴扩散长度为5μm。 解:P + >>n ,正向注入:0)(2 202=---p n n n n L p p dx p p d ,得: ) sinh() sinh() 1(/00p n n p n kT qV n n n L x W L x W e p p p ---=- ??=-=n n W x n n A dx p p qA Q 20010289.5)( 4一个硅p +-n 单边突变结,N D =1015cm -3,求击穿时的耗尽层宽度,若n 区减小到5μm,计算此时击穿电压。 解:m V N E B g c /1025.3)1 .1E )q ( 101.148 14 32 1S 7 ?=?=( ε V qN E V B C S B 35022 == ε m qN V x B B S mB με5.212== n 区减少到5μm 时,V V x W x V B mB mB B 9.143])(1[2 2 /=--= 第三章 1 一个p +-n-p 晶体管,其发射区、基区、集电区的杂质浓度分别是5×1018,1016,1015cm -3,基区宽度W B 为1.0μm,器件截面积为3mm 2。当发射区-基区结上的正向偏压为0.5V ,集电区-基区结上反向偏压为5V 时,计算

半导体器件原理简明教程习题答案

半导体器件原理简明教程习题答案 傅兴华 1.1 简述单晶、多晶、非晶体材料结构的基本特点. 解 整块固体材料中原子或分子的排列呈现严格一致周期性的称为单晶材料; 原子或分子的排列只在小范围呈现周期性而在大范围不具备周期性的是多晶材料; 原子或分子没有任何周期性的是非晶体材料. 1.6 什么是有效质量,根据E(k)平面上的的能带图定性判断硅鍺和砷化镓导带电子的迁移率的相对大小. 解 有效质量指的是对加速度的阻力.k E h m k ??=2 1*1 由能带图可知,Ge 与Si 为间接带隙半导体,Si 的Eg 比Ge 的Rg 大,所以Ge μ>Si μ.GaAs 为直接带隙半导体,它的跃迁不与晶格交换能量,所以相对来说GaAs μ>Ge μ>Si μ. 1.10 假定两种半导体除禁带宽度以外的其他性质相同,材料1的禁带宽度为1.1eV,材料2 的禁带宽度为 3.0eV,计算两种半导体材料的本征载流子浓度比值,哪一种半导体材料更适合制作高温环境下工作的器件? 解 本征载流子浓度:)exp( )( 1082.42 15 T dp dn i k Eg m m m n ?= Θ两种半导体除禁带以外的其他性质相同 ∴)9.1exp()exp()exp(0.31.121T k k k n n T T ==-- ΘT k 9.1>0 ∴21n n > ∴在高温环境下2n 更合适 1.11 在300K 下硅中电子浓度330102-?=cm n ,计算硅中空穴浓度0p ,画出半导体能带图, 判断该半导体是n 型还是p 型半导体. 解 3 173 21002 02 0010125.1102)105.1(p -?=??==→=cm n n n p n i i ∴>00n p Θ是p 型半导体 1.16 硅中受主杂质浓度为31710-cm ,计算在300K 下的载流子浓度0n 和0p ,计算费米能级相 对于本征费米能级的位置,画出能带图. 解 3 17010-==cm N p A 200i n p n = T=300K →3 10 105.1-?=cm n i 330 2 01025.2-?==∴cm p n n i 00n p >Θ ∴该半导体是p 型半导体 )105.110ln(0259.0)ln(10 17 0??==-i FP i n p KT E E

半导体器件的贮存寿命

半导体器件的贮存寿命 时间:2008-09-03 08:34来源:可靠性论坛作者:张瑞霞,徐立生,高兆丰点击:1291次1引言高可靠半导体器件在降额条件(Tj=100℃)下的现场使用失效率可以小于10-8/h,即小于10FIT,按照偶然失效期的指数分布推算,其平均寿命MTTF大于108h,即大于10000年。据文献报导,电子元器件的贮存失效率比工作失效率还要小一个数量级 1引言 高可靠半导体器件在降额条件(Tj=100℃)下的现场使用失效率可以小于10-8/h,即小于10FIT,按照偶然失效期的指数分布推算,其平均寿命MTTF大于108h,即大于10000年。据文献报导,电子元器件的贮存失效率比工作失效率还要小 一个数量级,即小于1Fit。 国内航天用电子元器件有严格的超期复验规定,航天各院都有自己的相应标准,其内容大同小异[1]。半导体器件在Ι类贮存条件下的有效贮存期最早规定为3年,后放宽到4年,最近某重点工程对进口器件又放宽到5年,比较随意。同时规定,每批元器件的超期复验不得超过2次。 美军标规定对贮存超过36个月的器件在发货前进行A1分组、A2分组以及可焊性检验[2],并没有有效贮存期的规定。 在俄罗斯军用标准中,半导体器件的最短贮存期一般为25年,器件的服务期长达35年,和俄罗斯战略核武器的设计寿命30年相适应。 然而,国内对于半导体器件的贮存寿命尤其是有效贮存期有着不同的解释,在认识上存在着误区。国内的超期复验的规定过严,有必要参考美、俄的做法加以修订,以免大量可用的器件被判死刑,影响工程进度,尤其是进口器件,订货周期长,有的到货不久就要复验,在经济上损失极大。 2芯片和管芯的寿命预计 高可靠半导体器件通常采用成熟的工艺、保守的设计(余量大)、严格的质量控制、封帽前的镜检和封帽后的多项筛选,有效剔除了早期失效器件。用常规的寿命试验方法无法评估其可靠性水平,一般采用加速寿命试验方法通过阿列尼斯方程外推其MTTF,其芯片和管芯的寿命极长,通常大于108h,取决于失效机构激活能和器件的使用结温。 随着工艺技术的进展,半导体器件的激活能每年大约增长3%。据报道1975年的激活能为0 6eV,1995年增长到1 0eV,其MTTF每隔15年增长一倍,加速系数每隔5年增长一倍。 化合物半导体器件微波性能优越,可靠性高,自80年代以来,在军事领域得到了广泛的

常用半导体器件

《模拟电子技术基础》 (教案与讲稿) 任课教师:谭华 院系:桂林电子科技大学信息科技学院电子工程系 授课班级:2008电子信息专业本科1、2班 授课时间:2009年9月21日------2009年12月23日每周学时:4学时 授课教材:《模拟电子技术基础》(第4版) 清华大学电子学教研组童诗白华成英主编 高教出版社 2009

第一章常用半导体器件 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。 (一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电 路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导 电工作原理、 ?二极管的V-I特性及主要性能指标 1.1 半导体的基本知识 1.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。

半导体器件作业有答案

1.半导体硅材料的晶格结构是(A) A 金刚石 B 闪锌矿 C 纤锌矿 2.下列固体中,禁带宽度 Eg 最大的是( C ) A金属B半导体C绝缘体 3.硅单晶中的层错属于( C ) A点缺陷B线缺陷C面缺陷 4.施主杂质电离后向半导体提供( B ),受主杂质电离后向半导体提供( A ),本征激发后向半导体提供( A B )。 A 空穴 B 电子 5.砷化镓中的非平衡载流子复合主要依靠( A ) A 直接复合 B 间接复合 C 俄歇复合 6.衡量电子填充能级水平的是( B ) A施主能级B费米能级C受主能级 D 缺陷能级 7.载流子的迁移率是描述载流子( A )的一个物理量;载流子的扩散系数是描述载流子( B ) 的一个物理量。 A 在电场作用下的运动快慢 B 在浓度梯度作用下的运动快慢 8.室温下,半导体 Si中掺硼的浓度为 1014cm-3,同时掺有浓度为 1.1×1015cm-3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级( G );将该半导体升温至 570K,则多子浓度约为( F ),少子浓度为( F ),费米能级( I )。(已知:室温下,ni≈1.5×1010cm-3,570K 时,ni≈2×1017cm-3) A 1014cm-3 B 1015cm-3 C 1.1×1015cm-3 D 2.25×105cm-3

E 1.2×1015cm-3 F 2×1017cm-3 G 高于 Ei H 低于 Ei I 等于 Ei 9.载流子的扩散运动产生( C )电流,漂移运动产生( A )电流。 A 漂移 B 隧道 C 扩散 10. 下列器件属于多子器件的是( B D ) A稳压二极管B肖特基二极管C发光二极管 D 隧道二极管 11. 平衡状态下半导体中载流子浓度n0p0=ni2,载流子的产生率等于复合率,而当np

常用半导体器件

第4章常用半导体器件 本章要求了解PN结及其单向导电性,熟悉半导体二极管的伏安特性及其主要参数。理解稳压二极管的稳压特性。了解发光二极管、光电二极管、变容二极管。掌握半导体三极管的伏安特性及其主要参数。了解绝缘栅场效应晶体管的伏安特性及其主要参数。 本章内容目前使用得最广泛的是半导体器件——半导体二极管、稳压管、半导体三极管、绝缘栅场效应管等。本章介绍常用半导体器件的结构、工作原理、伏安特性、主要参数及简单应用。 本章学时6学时 4.1 PN结和半导体二极管 本节学时2学时 本节重点1、PN结的单向导电性; 2、半导体二极管的伏安特性; 3、半导体二极管的应用。 教学方法结合理论与实验,讲解PN结的单向导电性和半导体二极管的伏安特性,通过例题让学生掌握二半导体极管的应用。 4.1.1 PN结的单向导电性 1. N型半导体和P型半导体 在纯净的四价半导体晶体材料(主要是硅和锗)中掺入微量三价(例如硼)或五价(例如磷)元素,半导体的导电能力就会大大增强。掺入五价元素的半导体中的多数载流子是自由电子,称为电子半导体或N型半导体。而掺入三价元素的半导体中的多数载流子是空穴,称为空穴半导体或P型半导体。在掺杂半导体中多数载流子(称多子)数目由掺杂浓度确定,而少数载流子(称少子)数目与温度有关,并且温度升高时,少数载流子数目会增加。 2.PN结的单向导电性 当PN结加正向电压时,P端电位高于N端,PN结变窄,而当PN结加反向电压时,N端电位高于P端,PN结变宽,视为截止(不导通)。 4.1.2 半导体二极管 1.结构 半导体二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。由P区引出的电极称为阳极,N区引出的电极称为阴极。因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。 2. 二极管的种类 按材料来分,最常用的有硅管和锗管两种;按用途来分,有普通二极管、整流二极管、稳压二极管等多种;按结构来分,有点接触型,面接触型和硅平面型几种,点接触型二极管(一般为锗管)其特点是结面积小,因此结电容小,允许通过的电流也小,适用高频电路的检波或小电流的整流,也可用作数字电路里的开关元件;面接触型二极管(一般为硅管)其特点是结面积大,结电容大,允许通过的电流较大,适用于低频整流;硅平面型二极管,结面积大的可用于大功率整流,结面积小的,适用于脉冲数字电路作开关管。

常用半导体器件习题考答案

第7章 常用半导体器件 习题参考答案 7-1 计算图所示电路的电位U Y (设D 为理想二极管)。 (1)U A =U B =0时; (2)U A =E ,U B =0时; (3)U A =U B =E 时。 解:此题所考查的是电位的概念以及二极管应用的有关知识。从图中可以看出A 、B 两点电位的相对高低影响了D A 和D B 两个二极管的导通与关断。 当A 、B 两点的电位同时为0时,D A 和D B 两个二极管的阳极和阴极(U Y )两端电位同时为0,因此均不能导通;当U A =E ,U B =0时,D A 的阳极电位为E ,阴极电位为0(接地),根据二极管的导通条件,D A 此时承受正压而导通,一旦D A 导通,则U Y >0,从而使D B 承受反压(U B =0)而截止;当U A =U B =E 时,即D A 和D B 的阳极电位为大小相同的高电位,所以两管同时导通,两个1k Ω的电阻为并联关系。本题解答如下: (1)由于U A =U B =0,D A 和D B 均处于截止状态,所以U Y =0; (2)由U A =E ,U B =0可知,D A 导通,D B 截止,所以U Y =E ? +9 19=109E ; (3)由于U A =U B =E ,D A 和D B 同时导通,因此U Y =E ?+5.099=1918E 。 7-2 在图所示电路中,设D 为理想二极管,已知输入电压u i 的波形。试画出输出电压u o 的波形图。 解:此题的考查点为二极管的伏安特性以及电路的基本知识。 首先从(b )图可以看出,当二极管D 导通时,电阻为零,所以u o =u i ;当D 截止时,电阻为无穷大,相当 于断路,因此u o =5V ,即是说,只要判断出D 导通与否, 就可以判断出输出电压的波形。要判断D 是否导通,可 以以接地为参考点(电位零点),判断出D 两端电位的高 低,从而得知是否导通。 u o 与u i 的波形对比如右图所示: 7-3 试比较硅稳压管与普通二极管在结构和运用上有 何异同 (参考答案:见教材) 7-4 某人检修电子设备时,用测电位的办法,测出管脚①对地电位为-;管脚②对地电位

半导体器件作业-有答案

1.半导体硅材料的晶格结构是( A ) A 金刚石 B 闪锌矿 C 纤锌矿 2.下列固体中,禁带宽度Eg最大的是( C ) A金属B半导体C绝缘体 3.硅单晶中的层错属于( C ) A点缺陷B线缺陷C面缺陷 4.施主杂质电离后向半导体提供( B ),受主杂质电离后向半导体提供( A ),本征激发后向半导体提供(A B )。 A 空穴 B 电子 5.砷化镓中的非平衡载流子复合主要依靠( A ) A 直接复合 B 间接复合 C 俄歇复合 6.衡量电子填充能级水平的是( B ) A施主能级B费米能级C受主能级 D 缺陷能级 7.载流子的迁移率是描述载流子( A )的一个物理量;载流子的扩散系数是描述载流子( B ) 的一个物理量。 A 在电场作用下的运动快慢 B 在浓度梯度作用下的运动快慢 8.室温下,半导体Si中掺硼的浓度为1014cm-3,同时掺有浓度为1.1×1015cm-3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级(G );将该半导体升温至570K,则多子浓度约为( F ),少子浓度为( F ),费米能级(I )。(已知:室温下,ni≈1.5×1010cm-3,570K 时,ni≈2×1017cm-3) A 1014cm-3 B 1015cm-3 C 1.1×1015cm-3 D 2.25×105cm-3 E 1.2×1015cm- 3 F 2×1017cm-3G 高于Ei H 低于Ei I等于Ei 9.载流子的扩散运动产生( C )电流,漂移运动产生( A )电流。 A 漂移 B 隧道 C 扩散 10. 下列器件属于多子器件的是( B D ) A稳压二极管B肖特基二极管C发光二极管 D 隧道二极管 11. 平衡状态下半导体中载流子浓度n0p0=ni2,载流子的产生率等于复合率,而当np

半导体器件知识点归纳一

一、半导体器件基本方程 1、半导体器件基本方程 泊松方程、电流密度方程、电子和空穴连续性方程的一维微分形式及其物理意义 2、基本方程的主要简化形式 泊松方程分别在N耗尽区和P耗尽区的简化形式 电流密度方程分别在忽略扩散电流和漂移电流时的简化形式 P型中性区电子净复合率、N型中性区空穴净复合率 P区电子和N区空穴的扩散方程及其定态形式 电子电流和空穴电流的电荷控制方程及其定态形式 注:第一章是整个课程的基础,直接考察的概率很小,一般都结合后面章节进行填空或者计算的考察,理解的基础上牢记各公式形式及其物理意义。 二、PN结 1、突变结与缓变结 理想突变结、理想线性缓变结、单边突变结的定义 2、PN结空间电荷区 理解空间电荷区的形成过程 注:自己用概括性的语句总结出来,可能考简述题。 3、耗尽近似与中性近似 耗尽近似、耗尽区、中性近似、中性区的概念 4、内建电场、耗尽区宽度、内建电势 内建电场、内建电势、约化浓度的概念 内建电场、耗尽区宽度、内建电势的推导 电场分布图的画法 内建电势的影响因素 Si和Ge内建电势的典型值 注:填空题可能考察一些物理概念的典型值,这部分内容主要掌握突变结的,可能考计算题,不会完全跟书上一样,会有变形,比如考察PIN结的相关计算;对于线性缓变结,只需记住结论公式即可。 5、外加电压下PN结中的载流子运动 正向电压下空穴扩散电流、电子扩散电流、势垒区复合电流的形成过程 反向电压下空穴扩散电流、电子扩散电流、势垒区产生电流的形成过程 正向电流很大反向电流很小的原因 6、PN结能带图 PN结分别在正向电压和反向电压下的能带图 注:所有作图题应力求完整,注意细节,标出所有图示需要的标识 7、PN结的少子分布 结定律:小注入下势垒区边界上的少子浓度表达式 少子浓度的边界条件 中性区内非平衡少子浓度分布公式 外加正反向电压时中性区中少子浓度分布图 注:书上给出了N区的推导,尽量自己推导一下P区的情况,加深理解 8、PN结的直流伏安特性

电子元器件 半导体器件长期贮存 第1部分:总则-编制说明

国家标准《电子元器件半导体器件长期贮存第1部分:总 则》(征求意见稿)编制说明 一、工作简况 1、任务来源 《电子元器件半导体器件长期贮存第1部分:总则》标准制定是2018年国家标准委下达的国家标准计划项目,计划号:20182268-T-339。由中华人民共和国工业和信息化部提出,全国半导体器件标准化技术委员会集成电路分技术委员会(SAC/TC 78/SC2)归口,中国电子科技集团公司第十三研究所负责标准的制定,项目周期为2年。 2、主要工作过程 2.1 2018.12 成立了编制组,编制组成员包括检验试验管理人员、从事半导体器件长期贮存的技术研究人员,以及具有多年标准编制经验的标准化专家。 2.2 2019.01~2019.04 编制组成员广泛收集资料,对等同采用的IEC标准进行翻译、研究、分析和比较,对国内相关单位展开深入调研和部分试验验证。 2.3 2019.05~2019.06编制工作组讨论稿,编制组内部讨论,对工作组讨论稿进行修改、完善,形成征求意见稿,并完成编制说明。 3 标准编制的主要成员单位及其所做的工作 本标准承办单位为中国电子科技集团公司第十三研究所。在标准编制过程中,主要负责标准的翻译、制定、试验及验证工作。 二、标准编制原则和确定主要内容的论据及解决的主要问题 1、编制原则 本标准为电子元器件半导体器件长期贮存系列标准的第1部分,属于基础标准。为保证半导体器件试验方法与国际标准一致,实现半导体器件检验方法、可靠性评价、质量水平与国际接轨,本标准等同采用IEC 62435-1:2016《电子元器件半导体器件长期贮存第1部分:总则》。 2、确定主要内容的依据 除编辑性修改外,本标准的结构和内容与IEC 62435-1:2016保持一致,标准编写符合GB/T 1.1—2009《标准化工作导则第1部分:标准结构和编写》、GB/T 20000.2-2001 《标准化工作指南第2部分:采用国际标准》的规定。

常用半导体元件习题及答案

第5章常用半导体元件习题 5.1晶体二极管 一、填空题: 1.半导体材料的导电能力介于和之间,二极管是将 封装起来,并分别引出和两个极。 2.二极管按半导体材料可分为和,按内部结构可分为_和,按用途分类有、、四种。3.二极管有、、、四种状态,PN 结具有性,即。4.用万用表(R×1K档)测量二极管正向电阻时,指针偏转角度,测量反向电阻时,指针偏转角度。 5.使用二极管时,主要考虑的参数为和二极管的反向击穿是指。 6.二极管按PN结的结构特点可分为是型和型。 7.硅二极管的正向压降约为 V,锗二极管的正向压降约为 V;硅二极管的死区电压约为 V,锗二极管的死区电压约为 V。 8.当加到二极管上反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象。 9.利用万用表测量二极管PN结的电阻值,可以大致判别二极管的、和PN结的材料。 二、选择题: 1. 硅管和锗管正常工作时,两端的电压几乎恒定,分别分为( )。 A.0.2-0.3V 0.6-0.7V B. 0.2-0.7V 0.3-0.6V C.0.6-0.7V 0.2-0.3V D. 0.1-0.2V 0.6-0.7V 的大小为( )。 2.判断右面两图中,U AB A. 0.6V 0.3V B. 0.3V 0.6V C. 0.3V 0.3V D. 0.6V 0.6V 3.用万用表检测小功率二极管的好坏时,应将万用表欧姆档拨到() Ω档。 A.1×10 B. 1×1000 C. 1×102或1×103 D. 1×105 4. 如果二极管的正反向电阻都很大,说明 ( ) 。 A. 内部短路 B. 内部断路 C. 正常 D. 无法确定 5. 当硅二极管加0.3V正向电压时,该二极管相当于( ) 。 A. 很小电阻 B. 很大电阻 C.短路 D. 开路 6.二极管的正极电位是-20V,负极电位是-10V,则该二极管处于()。 A.反偏 B.正偏 C.不变D. 断路 7.当环境温度升高时,二极管的反向电流将() A.增大 B.减小 C.不变D. 不确定 8.PN结的P区接电源负极,N区接电源正极,称为()偏置接法。

半导体器件寿命影响因素分析及处理方法

半导体器件寿命影响因素分析及处理方法 摘要:随着半导体器件的广泛使用,其寿命指标受到业界普遍关注。半导体器 件寿命的延续是一种性能退化过程,最终导致失效。造成这种退化的原因很多, 如人为使用不当、浪涌和静电击穿等,但通过一定的预防措施和增加必要的附加 电路可以有效延长半导体器件的寿命。 关键词:半导体器件;寿命;处理办法 作为现代信息社会基础的半导体材料和器件有着相当重要的地位,半导体电 子器件本身就具有很多不错的优点,不管是在工业上,还是在电力设备当中,半 导体电子器件的应用越来越多。可是,半导体电子器件也是存在着或多或少的不 足之处,再加上自身的特点,所以在设计使用的时候要注意。电子元器件是产品 的最小组成部分, 其可靠性高低直接影响着在此基础上设计的产品可靠性。尤其 是微电子技术的发展使得集成电路的可靠性愈来愈重要, 若其可靠性得不到保证, 不仅影响最终产品的可靠性, 还会影响研制进度、信誉及经济效益。 1 半导体电子器件的发展 随着科学技术的快速发展,电子器件的功能也就越来越强大了。人类的发展 对器件的需求也推动了半导体器件的发展,而半导体的发展又带动了器件的发展。 1)真空电子管。关于真空电子管的意思是指把电子引导进入真空的环境之中,用加在栅极上的电压去改变发射电子阴极表面附近的电场从而控制阳极电流大小,由此来把信号放大。真空电子管的材料有钨、钼、镍、钡锶钙氧化物等等,再以 真空电子学为理论依据,利用电子管制造工艺来完成工作。 2)固体晶体管。固体晶体管具有检波、整流、放大、开关、稳压、信号调制 等多种功能。固体晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关不同,固体晶体管利用电讯号来控制自身的开合,而且开关 速度可以非常快,实验室中的切换速度可达100GHz以上。 2 半导体器件的退化和失效 大量试验表明,半导体器件的失效随时间的统计分布规律呈浴盆状,失效期 包括早期的快速退化失效、中期的偶然失效与后期的快速损耗失效。早期快速失 效一般是由半导体材料本身原因造成;中期偶然失效期的时域较宽,在此期间导 致半导体器件失效的原因具有一定的偶然性;后期失效概率较高,主要由各种损 耗积累与综合爆发引起。由此可知,只要通过初期的严格筛选,同时加强质量管 理和改进生产工艺,防止偶然失效,半导体器件就能获得较长的寿命。如图所示。 3 半导体器件寿命影响因素及预防措施 PN 结是半导体器件的核心,对电压冲击的承受能力很差,一旦被击穿,便无法产生非平 衡载流子。在使用过程中,半导体器件的损坏多半是由浪涌或静电击穿造成的。浪涌是一种 突发性的瞬间电信号脉冲,具有很强的随机性,一般表现为尖脉冲,脉宽很窄,但峰值较高,容易使半导体器件瞬时过压造成PN 结击穿,即使不致于一次性使半导体器件产生完全失效,但在多次浪涌的冲击下也会加速它的性能退化和最终失效。在电路的使用过程中,出现比较 多的浪涌是开启或关断电源时抑或器件接触不良时产生的电压/ 电流冲击,以及由于电网波 动或其它大功率电器启动而产生的电压/ 电流冲击。另外,静电也是造成PN 结损坏或击穿的 重要原因。 1)短路保护开关。为半导体器件并联一个电阻较小的短路保护开关是一种简单的消浪涌 方法。当需要启动半导体器件电源时,先闭合短路保护开关,让启动电源瞬间产生的浪涌经 短路保护开关放电,待电源工作稳定后,断开短路开关,稳定的电源便可正常工作于半导体

相关文档
最新文档