研究发现猪拥有与人类非常相似基因特征

研究发现猪拥有与人类非常相似基因特征
研究发现猪拥有与人类非常相似基因特征

研究发现猪拥有与人类非常相似基因特征(图)

左为一头杜洛克猪,右为它的近亲野猪,与它的祖先类似。根据一项新的基因研究发现,猪在感官知觉等很多方面与人

类相似

新浪科技讯北京时间11月16日消息,据国外媒体报道,在乔治-奥威尔的经典小说《动物庄园》中,猪和人类几乎一模一样。根据一项新的研究发现,现实世界中的猪确与《动物庄园》所描述的那样。通过迄今为止规模最大的猪基因组研究,科学家发现猪拥有很强的适应能力,容易被食物诱惑和驯化,这些特征都与人类非常相似。

根据刊登在《自然》杂志上的研究发现,猪拥有与人类相同的与很多人类疾病有关的基因和蛋白质变异,例如阿尔

茨海默病、帕金森氏症以及肥胖症。研究人员指出,通过进一步研究,猪的基因可以孕育出新疗法,对抗这些疾病。首席研究员、荷兰瓦赫宁根大学的马蒂恩-格罗内教授表示:“我们发现了很多与人类疾病有关的基因变异,进一步证明猪是一个非常有价值的生物医药学模型。”

此外,这项研究也揭示了人类如何驯化第一批家猪以及如何饲养猪以获取猪肉背后的一些秘密。现代家猪的祖先最初出现在东南亚,逐渐迁移到欧亚大陆。猪拥有敏锐的嗅觉,能够嗅探出微小的气味差异,但它们的味觉很差。猪的苦味受体基因少于人类,对甜味和肉味的感知也与人类截然不同。

爱丁堡大学教授,参与此项研究的艾伦-阿奇巴尔德指出:“了解影响猪特性的基因有助于揭示它们如何被人类驯化以及为何被驯化。可能的原因在于:它们可以吃一些人类吃起来味道很差的食物。了解现代猪的基因起源非常重要,因为我们需要大量繁育猪以满足日趋增长的猪肉需求,同时还要提高猪抵御新老疾病的能力。”

此项具有突破性的研究由苏格兰、美国和荷兰科学家进行,是迄今为止进行的最深入而全面的家猪及野猪基因组分析。研究发现对猪的养殖具有重要意义。目前,全球每年喂养的猪数量超过10亿头。家牛的祖先已经灭绝,相比之下,

猪仍有远亲生活在野外。研究人员表示可以利用在野猪身上发现的基因进一步优化家猪繁育。研究论文执笔人之一的鲍勃-伊斯特表示:“这项研究证明对家畜及其近亲的基础基因组研究能够让我们人类受益。这项研究对农业具有重要意义,有助于我们了解猪的进化,同时也有助于药物的研发。”(

人类基因组计划研究的进展及其意义

人类基因组计划研究的进展及其意义 摘要:文章综述了人类基因组计划研究和进展的情况 关键词: 正文: 定义 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约4万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。命人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生科学的"登月计划"。 人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。 背景 20世纪是物理学和化学的世纪,21世纪是生物学的世纪。生命科学将取代物理学和化学成为带头学科,从而为其他学科的研究和发展提供新的思路和方法,生物工程产业将成为支柱产业。早在上世纪中叶,生物技术就被称作是21世纪的关键技术。许多科学家预言,生物技术将与信息技术、材料技术以及能源技术共同构成新的技术革命的基础,生物技术将重塑医学、农业以及生命科学研究本身,进而改造社会,改变人类的生活方式。一些重大的研究项目如人类基因组计划、体细胞克隆技术、转基因技术等的影响已超出了学科的范围,引起了公众的广泛关注。在生命科学领域随着分子生物学研究的不断深入,80年代末出现了一个新的研究领域———基因组学(Genomics)。基因组研究被称作是20世纪末21世纪初最重大的全球性的科研项目,其中以人类基因组计划(HGP)最为重要 人类基因组计划研究的目的,是获得人类染色体的物理图谱和基因图谱以及测定核苷酸的全序列 进展 人类基因组计划是由美国国立研究院和能源都1990年发起,后来有德、日、英、法、中等国科学家加入,有至少16个实验室及1100名生物学家、计算机专家和技术人员参与,预计耗资30亿美元,在15年内完成。人类基因组计划正式启动以来,受到人类各界的极大关心,经过全球科学家的努力,各阶段进展一再提前,已提前完成绘制出基因的遗传图谱和物理图谱的草图,现在已进入大规模的测序阶段。目前已完成了人类基因组约50%的测序,预期在2005年将能

人类基因组计划.doc

【篇一】人类基因组计划随着人类基因组计划的完成 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测 序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

猪基因组研究

猪基因组研究 鉴于猪的经济重要性以及医学研究价值, 猪是一种重要的动物模型, 是未来外源器官 移植的重要来源。由于猪的经济重要性以及医学研究价值, 许多有关猪的研究计划被先后掀起。许多有关猪的研究计划被先后掀起, 其中猪的基因组是研究热点和重点。从猪的基因定位、基因图谱、QTL定位、候选基因分析、测序进展、功能分析和蛋白质组学研究等方面综述了猪基因组研究取得的进展, 为进一步深入研究猪基因组提供理论参考。。PiGMaP 基因定位项目由欧洲经济共同体资助, 共有18 个欧洲实验室及7 个美国、日本和澳大利亚的实验室共同参与; 。此外, 美国农业部(USDA) 展开了二大项目研究: 一是在内布拉斯加州肉用动物 研究中心开展的大规模基因定位计划; 二是国家动物 基因组研究计划, 此项目提供了不同动物基因组的框 架, 促进包括猪在内的所有物种基因定位的互作及简 易化。近几年来, 美国州立、私立大学以及联邦实验室 的科学家们共同成立猪基因组技术委员会, 并积极参 与了动植物基因组会议, 这些研究最终促进了猪基因 图谱和功能基因组学的快速发展。。2004 年9 月在华盛顿主办 的“未来25 年基因组学的需求工作组会议”强烈要求 支持猪的基因组测序及一些高通量技术和仪器的开发 及利用。在过去的10 多年, 已有大量猪基因和QTLs 被分离鉴定及定位, 一些改善猪生产性能的基因测试 已应用到实践中。测序和表达分析的发起为充分了解 猪生物学的复杂性提供了一条新途径。

我国特有三种猪PPAR 分析我国特有三个小型猪品系巴马小型猪、五指山小型猪, 中国农大小型猪过氧化物酶体增 殖物激活受体 ( PPAR )基因exon 5 intron 5 这段序列的单核苷酸多态性( SNPs)分布特点,为我国小型猪在糖尿病和 代谢性疾病的研究中提供基础资料。方法 提取三个品系小型猪血液基因组DNA, 以基因组DNA 为模板, 应用多 聚合酶链式反应( PCR) 技术在合成的特异性引物引导下扩增, 将PCR 产物纯化, 然后进行测序, 再将测序结果在 NCBI中进行BLAST比对分析。结果测序结果显示:在PPAR 基因exon 5 intron 5 中存在12 个单核苷酸位点,分 别为83G→A, 133C→T, 134G→T , 141C→G, 146 T→G, 150 T→G, 179C→A, 196C→T, 205C→T, 212C→T , 218 T→C, 219T→C,其中只有83G→A 这一单核苷酸突变位点位于编码区内,密码子TCA→TCG,氨基酸为Ser163Ser。结论 在三 个品系小型猪中PPAR 基因多态位点的分布存在差异, 表明小型猪的品种不同多态情况不同。 过氧化物酶体增殖物激活受体α( peroxisome roli ferator activated receptor , PPARα) 是一类由配体激活的核转录因子, 属核激素受体超家族成员[ 1 ]。1990 年, Issemann 首次在啮齿类动物的肝脏中克隆出过氧化物酶体增值物激活受体α[ 2], 紧接着由Dreyer克隆出了其同源基因β及γ[ 3 ],从此掀起了研究PPAR 基因的热潮。PP ARα基因是调节糖、脂代谢的重要因子, 在高脂血症、动脉粥样硬化症、肥胖及2 型糖尿病等疾病的发病机制中可能发挥重要作用。近年来国外研究发现, PPARα基因第5 外显子L162V ( CTT→GTT) 多态性与低体重糖尿病或糖尿病脂质代谢异常水平有关。小型猪被认为是 2 型糖尿病的理想模型,本研究选择我国特有的巴马小型猪、五指山小型猪、中国农大小型猪三个品系为研究对象, 对PPARα基因外显子5 到内含子5 这段DNA序列进行多态性分析, 为我国小型猪在糖尿病等代谢性疾病中的应用提供基础资料。

生物技术与人类健康论文

浅谈基因工程与人类健康 王招弟 经济管理学院 14会计4班 70 摘要:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程在世界围发展迅速,渗透科学各个领域。其中包括基因制药、转基因技术的发展及应用等,回顾生物技术的每一步发展都为人类的健康做出了巨大的贡献。 关键词:基因工程、基因制药、转基因技术、人类健康 20世纪80年代以来,运用基因工程技术已成功生产出白细胞介素-2、尿激酶、乙型肝炎苗等,临床上发挥了重要作用。目前人类已知至少五千多种疾病的发生都直接或间接与基因有关,如肿瘤、高血压、糖尿病、肥胖、艾滋病,如何根治这些疾病还需人类基因组的进一步研究。2003年4月中国、美国、英国、日本、法国、德国六国政府首脑联合发表了《六国政府首脑关于完成人类基因组序列图的联合声明》宣布:国际人类基因组测序协作组已经解读了人类生命密码书中所有章节的秘密,完成了人类基因组的“完成图”,并且全世界都可以不受限制地免费获取这些信息。日前美国奎格?文特研究所和多伦多儿童医院以及加州大学的研究者第一次向世界公布了个人的二倍体基因组序列。 有关基因工程与人类健康的密切联系,我将从以下几个方面展开叙述。一、基因制药 科学家预言,下个世纪的药物主要是基因药物。在庞大的“人类基因组”这台大戏中,基因药物扮演了一个重要角色。尤其是针对一些遗传疾病与疑难顽症,基因药物把传统疗法上升到了基因疗法。 随着基因工程的发展,将相应的人体遗传物质(基因)转移到不同的微生物中,制造出如胰岛素、干扰素、生长激素等药物,已成现实。科学家在牛羊中植入人类基因,使这些动物的乳汁含有人类血液的主要成分,如特有的蛋白质、使血液凝结的成分和抗体等等。科学家还把基因切开、粘上,从一种植物转移到另一种植物,从一种动物转移到另一种动物,把切下的基因植入任何生命细胞中,从而获

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

人类基因组计划及其意义

人类基因组计划及其意义 摘要:人类基因组计划意义深远,对人类健康、中医药、当代科学研究方法、甚至是商 业等都有影响。 关键词:人类基因组计划意义 人类从古至今都想揭开生命的奥秘,都想了解人类自身,探究人的生老病死是怎么一回事。于是人人心中都有一个疑问:到底什么是生命?但是由于当时知识与技术的限制,人类的疑问得不到科学合理的解释。美国东部时间2000年6月26日,国际人类基因组计划(Human Genome Project ,HGP)的美、英、法、德、日、中6国协作组向世界联合宣布:人类生命蓝图人类基因组“工作框架图”已经完成。它的问世标志着人类在研究自身规律的过程中迈出了至关重要的一步,也预示着人类在探索生命奥秘的历史进程中翻开了新的篇章。 什么是人类基因组计划? 生物学的原理告诉我们,基因是染色体上的DNA双螺旋链的一段,它由四种碱基通过不同的排列组合而成,并在特定的条件下表达遗传信息和表现特定功能,是生物性状遗传的基本功能单位。基因组指合成具有生物功能的蛋白质多肽链或RNA所必须的全部DNA序列。1985年美国科学家诺贝尔奖获得者杜伯克首先提出了人类基因组计划,目的在于通过国际间的合作,识别人类DNA中所有的十万个以上的基因,测定人类DNA的30亿个碱基对顺序,以建立详细的人类基因组遗传图和物理图,解读人类基因组中所有的基因,最终解读人类生、老、病、死的遗传信息,使得人类第一次在分子水平上全面认识自我。 人类基因组计划的意义 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。 人类基因组计划带来的革命 1.基因治疗 人类基因组计划将为基因治疗技术的发展提供基础性的支持,对特异致病基因的研究,无疑会给基因治疗技术针对性地指明方向,加速这一技术的发展。基因治疗就是利用基因工程的手段,通过向人体导入功能基因,修补、改变相应的缺陷基因,以对相关疾病进行治疗和预防。对基因治疗的临床研究早在十年前就开始了,90年美国研究人员对一个4岁的小女孩施行了基因治疗,使她的病情大大好转。十年来,基因治疗技术在实验过程中取得了不少的成果,载体的改进和靶细胞的选择使基因治疗技术的效果也不断提高。 2.基因工程药物研究

植物功能基因组学及其研究技术_崔兴国

第9卷 第1期2007年3月 衡水学院学报 J o u r n a l o f H e n g s h u i U n i v e r s i t y V o l.9,N o.1 Ma r.2007植物功能基因组学及其研究技术 崔兴国 (衡水学院 生命科学系,河北 衡水053000) 摘 要:植物基因组的研究已经由以全基因组测序为目标的结构基因组学转向以基因功能鉴定为目标的功能基因组学研究.植物功能基因组学研究是利用结构基因组学积累的数据,从中得到有价值的信息,阐述D N A序列的功能,从而对所有基因如何行使其职能并控制各种生命现象的问题作出回答.近年来植物功能基因组学的研究技术主要包括表达序列标签、基因表达的系列分析、D N A微阵列和反向遗传学等.对植物功能基因组学的研究将有利于我们对基因功能的理解和对植物形状的定性改造和利用. 关键词:植物;功能基因组学;研究技术 中图分类号:Q3-3 文献标识码:A 文章编号:1673-2065(2007)01-0023-04 基因是细胞的遗传物质,决定细胞的生物学形状,细胞的生物学功能最终是由大量的基因表达完成的.随着人类基因组“工作框架图”的完成,生命科学研究的重点已经从结构基因组学转移到了功能基因组学的研究,特别是模式植物拟南芥(A r a b i d o p-s i s t h a l i a n a)和水稻(O r y z a s a t i v a)基因组测序的完成,公共数据库中已经积累了大量基因序列信息,获得了许多与植物发育相关的功能基因,在此基础上应用实验分析方法并结合统计和计算机分析来研究基因的表达、调控与功能,并相应诞生和发展了一批新的研究技术,为功能基因组学的研究提供了必要而有效的技术支撑.功能基因组学研究的最终目标是解析所有基因的功能,即从基因水平上大规模批量鉴定基因的功能,进而全面研究控制植物生长发育及响应环境变化的遗传机制,在基因组序列与细胞学行为之间起到桥梁作用,共同承担起从整体水平上解析生命现象的重任. 1 植物功能基因组学研究 植物的生长和发育是一个有机体或有机体的一部分形态建成和功能按一定次序而进行的一系列生化代谢反应的总合,反应在分子水平上,它要求相应的遗传代谢途径必须按照特定的时空次序严格进行以保证正常发育.植物功能基因组研究就是要利用植物全基因组序列的信息,通过发展和应用系统基因组水平的实验方法来研究和鉴别基因组序列的作用;研究基因组的结构、组织与植物功能在细胞、有机体和进化上的关系以及基因与基因间的调控关系;从表达时间、表达部位和表达水平3个方面对目的基因在植物中的精细调控进行系统研究.当前植物功能基因组学研究主要集中于一年生的拟南芥与水稻两个物种上,这主要是由于它们的遗传背景清楚,基因组较小,基因结构简单而且易于进行分子生物学操作.拟南芥研究组“2010计划”的宏伟目标是充分利用拟南芥基因组计划获得的序列信息并结合功能基因组研究技术来获知其25000个基因的全部功能,例如开花的诱导过程是植物生活周期中最奇妙的过程,目前从拟南芥中鉴定了提早开花和延迟开花的多种突变体,显示植物开花受多个遗传基因的控制,如延迟开花的两个突变体是由等位基因 C O(C O N S T A N S)和L D(C O L D L U M I N I D E P E N- D E N S)突变引起,这两个基因均已被克隆,并使其在转基因植物的叶片中进行表达,将C O基因转移到拟南芥中,高效表达C O蛋白的转基因植株即使处于短日照条件下也会开花,这说明C O基因具有激活开花基因的作用.对模式植物功能基因组的研究将有助于整个植物基因组学的研究. 目前的功能基因组研究主要包括以下几个方面:(1)c D N A全长克隆与测序;(2)获得D N A芯片 ①收稿日期:2006-10-12 作者简介:崔兴国(1963-),女,河北冀州市人,衡水学院生命科学系副教授.

猪基因组序列草图绘制完成

猪基因组序列草图绘制完成 Swine genome draft completed 作者:Tim lundeen 综述 译自:Feedstuffs,November 9,2009 译者:张爱玲 通过全球科研团队的协作,目前家猪的基因组草图已经绘制完成,据参与研究机构声明,这项巨大的研究成果将会对农业、医药、资源保护与生物进化等研究带来深远影响。 一头来自伊利诺伊大学的杜洛克猪现在将成为基因组已被测序家畜中的一员。 英国Hinxton的Wellcome Trust Sanger研究所是在11月2日一会议上宣布这一成就的,该研究所完成了该基因组测序的大部分工作。 该测序计划的首席专家伊利诺伊大学生物医学教授Larry Schook说:“猪是一种独特的动物,是人类非常重要的食物组成部分,而且可以作为一种动物模型来研究人类的疾病,由于目前地球上还有存在着家猪的野生型个体——野猪,因此家猪对于研究驯化过程中基因组的作用来讲确实是一种令人感兴趣的动物。” 一个国际性的科学团队和一些基因组测序中心参与了该测序计划。 隶属于美国农业部的国家粮食与农业研究所提供1000万美元作为启动资金,同时还有来自其它参与机构的重要的基金支持,不过同时也要求该计划应是世界上的唯一的猪基因组计划,须公共团队和私人协作,须是全球性合作成果。 该计划花费大约2430万美元,资金来自美国农业和食品部研究服务机构和许多基金组织。(参与该计划的另一项要求是成果须公开,不允许从中获得私利)。 这张已经完成98%的基因组序列草图将使研究人员能够去精确定位与猪肉生产相关的有益基因,定位参与免疫或者其它重要生理活动的基因。而且这将加强育种实践,为探索猪的疾病或者说是人的疾病提供借鉴,为保护全球性的珍稀、濒临灭绝的野猪提供帮助。 该计划的完成对人类的健康研究也非常重要,因为猪在生理、行为和营养需要等方面与人类非常相似。 Max Rothschild,美国爱荷华州立大学著名的教授,爱荷华州立大学综合动物基因组中心主任,自1993年就开始担任美国农业部的猪基因组组织协调者。他说:“爱荷华州作为猪肉生产量最大的州,我们从这项重要的科学成果中获得的知识将会对养猪生产者增添更有竞争力的优势。 “从根本上讲,最终获益的是消费者”,Rothschild说,“除了能够吃到更好的猪肉外,猪基因组序列或者说DNA结构,将会对人类的健康提供新的重要的信息。没有比猪更为适合的模型来研究人类的疾病。对猪基因组更深入的了解应为解决人

基因与人类健康

基因与人类健康 系别:生物科学系专业:生物技术姓名:王晓思学号:20111341031028 【摘要】:介绍了基因与疾病的关系(主要是肿瘤与其基因的关系)、基因治疗与基因免疫的原理及其应用等。阐述基因在疾病产生中的作用,反衬出正常基因的表达其对健康的重要性。 【关键字】:基因疾病 基因是生命体遗传信息的载体,能够表达产生蛋白质,且蛋白质是构成生命体的物质基础。生物之所以能幸存、维持机体各部分结构功能的正常,首先在于它的DNA能被忠实的复制(复制后的DNA携带遗传信息进入新的细胞或机体),并且尽可能的保护机体免受各种因素的损伤,维护DNA编码蛋白质的准确性。但这些过程一旦出现问题就会导致一系列的或轻或重的疾病的发生,从而影响人类的健康。因此基因对医学各生命科学的发展极具现实意义[1]。 1、基因与疾病的关系 在人类的疾病中,由遗传因素或主要由遗传因素决定的疾病,称谓遗传病。其中的一部分是由基因组某个基因座(Locus)上存在致病基因而引起的,此类遗传病称为单基因遗传病;如:地中海贫血、血友病、白化病等。另一些疾病则是由多个基因座位存在有缺陷基因,这些缺陷基因相互协同作用所致。在许多情况下,这些缺陷基因还需要一定的环境因素参与,才能致个体发病,这一类疾病称谓多基因遗传病,如:高血压、糖尿病、冠心病、肿瘤等等。 基因疾病的发生往往由于基因缺失、突变、错位或外来基因(或DNA片段)插入所引起,导致疾病症状发生的直接原因往往是基因控制的产物发生改变所致[2]。基因产物(蛋白质、酶)的一级结构,二级结物、三级结构或四级结构的改变都可引起疾病[3]。 1.1 基因与肿瘤 癌(Cancer)是一群不受生长调控而增殖的细胞,也称恶性肿瘤。目前已经发现了上百个原癌基因和许多抑癌基因,证明细胞癌变的分子基础是基因突变,DNA的变化和不正常活动导致了细胞癌变。癌基因可分为两大类:一类是病毒癌基因(主要有DNA病毒和RNA病毒),其使靶细胞发生恶性转化。另一类是细胞转化基因(原癌基因),其广泛存在与生物界,具有高保守性,属于管家基因,正常表达时对细胞的生长和分化有调控作用。 ①RNA病毒至少含有gag(组成病毒中心和结构的蛋白质的基因)、pol(逆转录酶的基因)、env(病毒外壳的基因)三种基因,其反转录出的线性双链DNA与宿主的DNA整合,其线性双链表达的产物会激活宿主特定的基因表达,破坏宿主细胞本身固有的平衡,导致细胞发生癌变。 ②原癌基因的突变使其转录活性改变造成细胞癌变。 ③基因互作与癌基因表达主要有染色体构象影响原癌基因表达与抑癌基因产物对原癌基因的调控。 2、基因治疗 基因治疗是通过分子生物学遗传工程手段,将正常基因包括它表达所需要的顺序导入有缺陷基因的患者细胞内,使导入基因发挥作用,从而纠正基因缺陷所致的各种疾病临床症状。纠正致病基因,才能根本上消除病患。目前肝癌基因治疗的方法有: ①反义基因治疗[4]根据肝癌发病原因,导入反义寡核苷酸封闭肝癌基因的表达或用正常

植物基因组测序

千年基因将应邀参加第十六届全国植物基因组学大会 第十六届全国植物基因组学大会将于2015年8月19日-22日在陕西杨凌召开,千年基因应邀参加此次会议,并将在会场学术交流区设立展台。届时千年基因的技术团队会向大家展示我们最全面的测序平台、一站式的基因组学解决方案以及近年来在植物基因组学领域取得的科研成果,欢迎广大科研人员莅临指导交流! 在测序平台方面,千年基因目前拥有国内最全面的测序平台,能够为科研人员提供一站式解决方案。以PacBio RS II三代平台为例,千年基因自去年提供PacBio RS II测序以来,通过项目经验的积累及严格的质量控制,目前各项数据指标已达国内最高水平。数据产出已稳步升级至1.4Gb/ SMRT cell,读长最长可达42 Kb,reads N50高达18Kb,远超PacBio官方提供的数据标准!在植物基因组de novo测序的研究中,千年基因提供的超长读长测序可更好地跨越基因组高重复序列、转座子区域以及大的拷贝数变异区域和结构变异区,从而实现对高杂合及高重复基因组的完美组装。在植物转录组测序的研究中,千年基因提供的超长读长测序无需拼接即可获得全长转录组序列信息,同时可获得全面的可变剪切、融合基因以及Isoform信息。另外,千年基因提供的HiSeq 4000及HiSeq 2000/2500测序可解决研究人员在植物基因组重测序、转录组测序、小RNA测序等方面的科研需求。 在项目经验方面,千年基因与来自全球的科研人员合作开展了大量植物基因组项目,相关成果已发表于Nature、Nature Genetics、Science等杂志。例如,油棕榈基因组项目在Nature 杂志同时发表两篇文章,辣椒基因组项目的成果发表于Nature Genetics,玉米基因组项目的成果发表于Science。在国外合作方面,千年基因与美国爱荷华州立大学Patrick Schnable教授领导的国际玉米基因组团队合作开展的上万份玉米样本重测序项目也正在进行中;千年基因与国际半干旱热带作物研究所建立长期战略合作关系,正在开展上千份木豆、鹰嘴豆及高粱样本的群体遗传学研究;同时千年基因与华盛顿大学的Evan Eugene Eichler院士及佐治亚大学的Jeffrey Lynn Bennetzen院士也有大量基因组项目合作。在国内合作方面,千年基因与广东省农科院、山东省农科院共同启动的花生基因组项目已全部完成de novo测序及数据挖掘,同时与中国科学院、北京大学、中国农业大学、中国科学技术大学、上海交通大学、

微生物基因组研究

微生物基因组研究 微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、 环保等诸多领域。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,

全基因组选择在猪育种上的研究进展

全基因组选择在猪育种上的研究进展 自野生动物被驯化以来,科学家一直致力于提高畜禽育种值的研究。近半个世纪来,畜禽育种值估计的方法主要经历了综合选择指数法、同期群体比较法、最佳线性无偏预测法(Best LinearUnbiased Prediction,BLUP)、分子标记辅助选择育种(MAS)以及近几年快速发展的GS 法。同时,随着高密度基因芯片的出现和高通量测序技术的快速发展,单核苷酸多态性(SingleNucleotide Polymorphism,SNP)分型成本快速下降,GS 才逐渐引起畜禽界的关注。特别是Schaeffer发现,在奶牛育种中利用GS比后裔测定可节约成本97%,且遗传进展可提高3~4倍后,全球掀起了一股研究GS的热潮。 全基因组选择(GS) 什么是GS 2001年,Meuwissen等人最先提出GS,实质为全基因组范围的标记辅助选择。其理论基础是应用整个基因组的标记信息和各性状值来估计每个标记或染色体片段的效应值,然后将效应值加和即得到基因组育种值(GenomicEstimated Breeding Value,GEBV)。GS在某种程度上是MAS的延伸,弥补了在MAS 中标记数量只能解释一部分遗传方差以及数量性状位点(QuantitativeTrait Locus,QTL) 定位困难的缺点。其中心任务是提高GEBV值的准确性,并尽可能准确地估计每个标记的效应。而估计标记效应的方法在实际运用中以BLUP法为主;Bayes法虽其准确性高于BLUP,但因其计算复杂,需在超级计算机上运行而限制其应用。不过随着快速算法的开发和计算机硬件的改进,Bayes法的运算效率有望提高。 为什么选用GS GS的优势 与MAS相比,GS的优势主要表现在: 1)能对所有的遗传和变异效应做出准确的估计。而MAS 只能对部分遗传变异进行检测,且容易高估其遗传效应。 2)缩短世代间隔、提高畜禽年遗传进展、降低生产成本等,这在需要后裔测定的家畜中尤为明显。如GS给奶牛育种带来了巨大经济效益。 3)早期选择准确率高。 4)对于较难实施选择的性状具有重大影响。如低遗传力性状、难以测定的性状等。 5)GS在提高种群的遗传进展前提下,还能降低群体的近交增量。 GS的可靠性

基因与健康

自20世纪以来,生命科学获得了极大的发展。特别是1953年DNA双螺旋结构的发现以及1985年Crick的遗传信息传递的中心法则的提出,更是极大地促进了基因组学的发展,从而引发了一场世界范围内的基因技术革命,它对整个社会的影响是巨大的,在工业、农业、环保、医药等方面显示出广阔的发展前景。由世界六国科学家联手合作的“人类基因组工作草图”绘制成功。中国作为参加国际人类基因组测序工作的唯一的发展中国家,完成了其中1%的的测序任务,在世界基因组学的研究中占有一席之地。 一、基因含义 基因是从英文“Gene”音译过来的。基因是脱氧核核酸(DNA)分子上具有遗传效应的功能片段。基因位于细胞核内的染色体上,呈双螺旋结构。每个细胞内的基因总数称为基因组,人类只有一个基因组,大约有10万个基因,贮存着生命从诞生到死亡的全部信息。通过复制、表达、修复,完成生命繁衍、细胞分裂、蛋白质合成等重要生理过程。基因与人的相貌,特征、性格、体态、智力以及疾病等都有着密切的关系。基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常将会不可避免的导致各种疾病。某些缺陷基因可能会遗传给他们(或者她们)的后代,有些则不能。总之,基因是生命之源,生命之本。没有基因,便没有生命。原美国总统克林顿便将基因称为“上帝创造生命的语言”,它在谈到基因时说到:“我们正在学习上帝创造生命的语言……这是人类有史以来最重要、最神奇的图谱,也是迈向解读人类生命语言的第一步”。破译了人类基因就有望弄清楚人类各种疾病的根源,从而揭示生命的所有奥秘。它是一项改变世界、影响到我们每一个人的科学计划,专家形容其为“生物学的阿波罗登月计划”。 通过破译基因,可以给人类生活带来巨大改变。杨焕明博士指出,通过破译基因,医生可以早期诊断、治疗危害人类健康的5000多种遗传病以及与遗传密切相关的癌症、心血管疾病、关节炎、糖尿病、高血压、精神病等。甚至可以通过改变基因把胖人变瘦,在孩子出生前通过遗传分析进行风险预测保障生个健康、漂亮的宝宝,以及根据“基因图”调整自己的生活方式,使自己处于最佳的生命环境中,拨动人体的生物钟,人类可以活到500岁…… 科学研究还进一步表明,目前人类畏惧的癌症、艾滋病等绝症,以及高血压、心脏病、糖尿病、帕金森氏综合征等临床上难以治愈的常见疑难病,都是由遗传基因的缺陷而引起的。据估计,因基因缺陷而引起的疾病约有7000种,今后对它们都有可能运用“基因疗法”进行有效的治疗。 二、基因与性格 人的性格和基因有一定关系人的性格不同,至少有一部分原因是他们的遗传基因各不相同。不久前,以色列和美国的研究小组各自单独发表声明,宣布他们已经发现人体第11号染色体上有种叫D4DR的遗传基因,它对人的性格有不可忽视的影响。而美国明尼苏达大学的布卡德对分开抚养的同卵孪生子的一项研究结果提示:基因塑造了人类的心灵。这些孪生子基因型相同而成长环境差异很大,却在众多的方面都显示出强烈的一致性。 同时,科学家发现,7号染色体上的SPCH1基因与语言能力的发展有关,该基因发生变异会使人在学习语法和语言时遇到巨大困难;人类遗传性智力低下症与X染色体上的PAK3基因的变异有关。我国台湾省的陈景虹教授提出了基因与人类行为的因果理论。她认为,有些人之所以不能循规蹈距,动辄惹是生非甚至犯罪,是和他们的遗传基因有关,对于具有这种性格的人可进行基因治疗。 但英国基因观察组织苏·梅尔博士也指出:获得基因知识和了解基因是件好事,但我们还需要一点人性的东西,因为我们不止是基因的集合物。在决定人的智力和性格方面,环境因素至少与遗传因素同等重要。同时,基因的改变有可能来自遗传,但也可能受到环境污染或紫外线辐射产生。 三、基因与习惯

人类基因组计划及生物制药展望

人类基因组计划及生物制药展望 杨亚军(200805035)法医学专业 关键词:人类基因组、生物技术、基因工程、生物制药、经济发展 摘要:20世纪90年代以后,生物技术产业发展迅速,为生物制药企业发展带来了机遇和挑战,特别是人类基因组计划的实施,使得生物医药的市场无比广阔。本文综述了生化药物和基因工程药物的发展历史与国内外的研究进展。基因工程诞生二十余年,运用于医药行业研制和开发基因工程药物,已取得长足进步。迄今为止,已有近一百个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有强大的生命力。 在中国几个高增长、高收益的产业(生物制药、高端装备制造、新能源、IT产业、)中,生物制药始终是一个充满潜力的产业,虽然现在因为一些技术和政策的原因,中国的生物制药技术稍微有些落后,但是不可否认,生物制药的前景必然是可观的,成为21世纪经济发展的支柱这一点的趋势确信是必然的。这不仅是因为生物制药会带来不可估量的社会效益和经济效益,更是因为这是一项真正以人的健康为本,以人的健康为依归的科技。 自20世纪70年代初基因工程问世以来,基因工程药物的研究与开发一直是发展最快和最活跃的领域。美国礼来公司于1982年首先利用重组DNA技术合成了人胰岛素病投放市场,标志着生物工程药物时代的开始。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态,形成了一个巨大的高兴技术产业。

目前全世界的医药品已有一半是生物合成的,特别是合成分子结构复杂的药物时,它不仅比化学合成法简便,而且有更高的经济效益。 生物制药是21世纪新兴的支柱型产业,具有投入高、周期长、收益高、风险大等特点,识别生物制药企业的成功要素是投资人和管理者共同关心的重点问题。 半个世纪以来微生物转化在药物研制中一系列突破性的应用给医药工业创造了巨大的医疗价值和经济效益。微生物制药工业生产的特点是利用某种微生物以“纯种状态”,也就是不仅“种子”要优而且只能是一种,如其它菌种进来即为杂菌。对固定产品来说,一定按工艺有它最合适的“饭”—培养基,来供它生长。培养基的成分不能随意更改,一个菌种在同样的发酵培养基中,因为只少了或多了某个成分,发酵的成品就完全不同。如金色链霉菌在含氯的培养基中可形成金霉素,而在没有氯化物或在培养基中加入抑制生成氯化的物质,就产生四环素。药物生产菌投入发酵罐生产,必须经过种子的扩大制备。从保存的菌种斜面移接到摇瓶培养,长好的摇瓶种子接入培养量大的种子罐中,生长好后可接入发酵罐中培养。不同的发酵规模亦有不同的发酵罐,如

猪链球菌的比较基因组学研究进展

猪链球菌的比较基因组学研究进展 猪链球菌是一种重要的人兽共患病病原菌, 可以引起人猪链球菌病暴发流行。近几年来, 猪链球菌的基因组学研究发展迅速: 共有6株猪链球菌的基因组全序列公布。6株测序菌株都是血清2型, 并引起脑膜炎、败血症等侵袭性感染。其中89- 1591为北美分离株, P1 /7 为欧洲分离株,BM407为越南分离株, SC84、98HAH33和05ZYH 33等3株为引起暴发流行的中国分离株。6株测序菌株的基因组都含有一条染色体, C + G 含量为41% 。 近几年来, 猪链球菌的比较基因组学研究发展迅速, 采用多种技术从基因组水平发现和比较了猪链球菌菌株间共同具有的和菌株特异的基因。 通过对菌株P1 /7 的基因组序列进行功能注释, 同时将其与菌株89- 1591的部分基因组序列进行系统的比较基因组学的研究。2个菌株的基因组比较结果表明, 其平均编码区( CDS )的长度非常接近, 大部分的CDS序列具有一定的相似性。在所有开放阅读框( ORF) 中, 同源ORF 数为1306 个。2个菌株的毒力相关因子大多数具同源性, 都含有编码溶菌酶释放蛋白(M rp)、纤维原结合因子( FBP)、谷氨酸脱氢酶( GDH )、甘油醛- 3-磷酸脱氢酶( GAPDH )以及与其他细菌如戈登链球菌(Streptococcus g ord on ii )、肺炎链球菌( Streptococcus pneumoniae) 以及化脓性链球菌( Streptococcus pyogenes) 等具同源性的双肽酰肽酶( D ipeptidy l peptidase, DPP)。但毒力因子也存在明显差异, P1 /7中编码细胞外因子( EF)和溶血( Haemo lysin)的基因未在89- 1591菌株中发现。预测到的P1 /7的表面蛋白质( surface protein) 中有11个具有革兰阳性锚定蛋白功能域, 其中有2 个蛋白( SSU1474,SSU1886) 未能在89 - 1591 中找到相应的同源基因。同时, P1 /7的7个具有YSIRK 功能域的表面蛋白质中有3个( SSU1715、SSU1773、SSU1849)未在89- 1591 中发现。对于具有转肽酶( sortase) 功能域的蛋白, 89- 1591 中只找到4个可能与P1 /7 相关蛋白质匹配的基因, 而缺失SSU1882 和SSU 1883的同源基因。这些特性表明2个菌株的遗传背景不同, 为了适应不同的环境压力而演化出各自特有的功能单位, 提示2个菌株在致病机制上存在着一定的差异。 单核苷酸多态性( SNP ) 分析表明,05ZYH33与98HAH12之间的Ka /Ks比值为0.776;98HAH12与P1 /7之间的Ka /Ks比值为0.816; 3个基因组的K a /K s无显著差异, 提示其进化过程中经历了相近的选择压力。基因组全长的C + G 含量、共线性比较等, 提示流行株98HAH12 和05ZYH 33中都含有一个约89Kbp 长度的特异DNA 片段。不同来源的2个89K 片段序列几乎完全相同, 不同之处为89K05较89K98长19 bp。89K 特异片段的平均G+ C含量为36.8% , 显著低于猪链球菌基因组的平均G + C 含量( 41.1% )。 随着DNA 测序技术的发展, Roche 454、So lex a等新一代高通量测序平台被应用于细菌的基因组测序。Sanger 研究所采用Sanger 法、454 /Roche GS20、So lex a等技术分别完成了3株猪链球菌(血清2型)的基因组测序[ 14] 。其中, 欧洲菌株P1 /7分离自疫猪的血培养物, MLST 型别为ST1。ST1型菌株BM 407分离自越南胡志明市1 名脑膜炎患者的脑脊液。 基因组序列的比较结果显示, 3株测序菌株的基因组高度保守, 共有成分占绝大多数。病例分离株与疫猪分离株的主要遗传学差异为3个长度约90Kbp的插入片段。插入片段为镶嵌样结构, 由ICE 成分和转座子组成。测序的猪链球菌与链球菌属的其他基因组相比, 约60% 编码基因为直系同源基因, 猪链球菌

相关文档
最新文档