离心泵叶轮切割方法的应用

离心泵叶轮切割方法的应用
离心泵叶轮切割方法的应用

离心泵叶轮切割方法的应用

摘要:离心泵使用过程中,由于泵选型不当或工艺发生改变,导致泵的扬程偏大,扬程富

余太多,泵出口阀门开度非常小,节流损失大,排量受到限制,造成工况不稳,调节困难,

轴承振动大,机械密封泄漏次数增多。为使泵满足现场工艺要求,可采用切割叶轮的方法

进行调整,离心泵采用切割叶轮的方法,可以改变泵的性能参数,解决泵的匹配性。适当

减小叶轮外径,在转速不变的条件下降低泵的流量、扬程和功率,改变泵的性能参数,从

而使泵在适当流量下使用,有利于降低检修率及起到节能效果。

关键词:离心泵;叶轮切割;机械性能曲线

0 引言

某炼厂硫磺收回装置半贫液泵为单级离心泵,泵的设计出口压力为0.7MPa,但运行压力为1.0MPa,实际泵出口压力5kg/cm2即可满足要求,设计流量Q=222m3/h,实际200 m3/h 即可满足要求。但该泵平时运行流量为80 m3/h,由于达不到泵的最小稳定连续流量要求,造成泵运行状态恶化,主要表现为:泵出口阀卡量过小,泵振动过大,密封泄漏频繁,造成能耗浪费等。为了优化操作,消除设备隐患,节能降耗,需针对该情况增变频电机或者进行叶轮切割。

1、叶轮切割计算

1.1、设计条件工作与实际条件工况的对比

泵的设计条件和性能参数

设计运行参数设计性能参数

流量Q=222 m3/h 扬程H=60m

温度T=119℃叶轮直径D=460mm

出口压力P

=0.7MPa 效率η=72%

=0.3MPa 功率N=50.38KW

入口压力P

介质密度ρ=961kg/m3泵转速n=2950r/min

泵实际的运行的条件和性能参数

实际运行参数实际性能参数

流量Q=80 m3/h 扬程H=60m

温度T=119℃叶轮直径D=460mm

=1.0MPa 效率η=72%

出口压力P

入口压力P

=0.3MPa 功率N=50.38KW

介质密度ρ=961kg/m3泵转速n=2950r/min

由此参数可以看出,变化最大的为流量和入口压力,流量的偏低导致泵实际运行工况的改

变。

2、计算

泵叶轮切割后的性能(或叶轮的切割量) 的计算通常用大家所熟知的切割定律式来计算如下式

''Q D Q D = 或 ''

Q D D Q = (1)

''2()

H D H D = 或

'

D = (2) ''3()

N D N D = 或

'

D = (3) 式中Q 、H 、N 、D 分别为叶轮切割前泵的流量、扬程、功率、叶轮外径;Q'、H'、N'、D'分别为叶轮切割后的流量、扬程、功率、叶轮外径。 2.1 比转速n s 的计算

1/21/2

3/43/4

(222/3600)3.65 3.65295012460s Q n n rpm H ==??=

表-1 叶轮切割量与比转速的关系

n s (D-D')/D 效率下降值

n s (D-D')/D 效率下降值

n s (D-D')/D 效率下降值

≤60 20% 每切割

10%,效率下降

0.9%

120~200 11% 每切割4%,效率

下降1% 250~350

7%

60~120 15%

200~250

9%

350~450

5%

对于比转速在120~200之间的泵,叶轮最大切割量为11%,即: D min =460×(100-11)%=410mm

验证D =410mm 验证流量是否满足要求。 根据切割定律

''Q D Q D = 即 '410222460Q =

Q'=198 m 3/h

根据装置开停工时的该泵的最大流量为200 m 3/h ,因此,不能满足工艺负荷的生产要求,必须按流量来进行切割计算。 2.2 根据流量的切割计算

根据切割定律

''Q D Q D = 即 '200222460D =

'D =414mm

验证泵出口压力是否满足要求 根据切割定律

''2

()H D H D = 即 '2414()

60

460H = 'H =48.6m 由于原型泵的比转数为124,按表-1的要求核算切割率

(D- D`)/D =(460-414)/460=10%,小于11%,故满足切割量要求。 2.2.1 泵出口压力核算

P=Hγ=48.6×100×961×10-6=4.67kg/cm 2 P 出=P+ P 入=4.67+0.3×10=7.67 kg/cm 2

泵的出口大于5 kg/cm 2,仍有较大余量,故满足工艺生产要求。 2.3 机械性能曲线的变化及相似工况点的确定

根据式(1)、(2)导出:''2(/)H H Q Q =,令 ''2

/K H Q ==常数,则

'2H KQ = (4)

根据(4)式确定K 值:

''2/K H Q ==48.6/2002=0.001215

为了得到切割抛物线方程的曲线,根据上述计算的K 值的结果对不同流量取值,并计算出

曲线上相应的量程值H ,则根据'2H KQ =,见表-2

表-2 相似曲线方程数据表

Q(m /h) H(m) Q(m /h) H(m) Q(m /h) H(m) Q(m /h) H(m) 200

48.6

208 52.6 216 56.7 224 60.9 204 50.6

212

54.6

220

58.8

228

63.2

方程(4)为切割抛物线方程,即相似曲线方程,如图-1所示,绘制出抛物线方程与原型泵的Q-H 曲线,可以看出两者相交于B (Q 、H )点,则B 点为A 点的相似工况点,A 点为实际切割后的工况点。

现场测试切割后泵的流量、压力,根据2.2.1出口压力核算公式,计算扬程如表-3

表-3 泵叶轮切割后实测数据表

实测点Q(m/h)P(kg/cm) H(m)

a 120 8.47 57

b 160 8.09 53

c 200 7.64 48.3

d 240 7.04 42.1

在图内画出切割叶轮后Q-H曲线以虚线表示,发现该性能曲线近似经过A点,现场测试值与理论值较为接近,所以本次叶轮改造是成功的。

2.4 叶轮切割后的机械效率

根据表-1计算泵的效率:(460-414)/460=0.1,故效率下降2.5%,现泵的效率为72%-2.5%=69.5%

2.5 能量计算

该泵叶轮切割前正常运行时电流为75A,切割投用后正常运行时电流为62A,按电流下降75-62=13A计算,该泵每年节约电380×13×24×365/1000=43274.4kw/h,按工厂用电每度电0.946元计算,每年可节省40937.6元。

3、结论

本文以满足装置需求工况及泵实际运行工况相结合,对叶轮进行叶轮切割,叶轮切割后泵的Q-H特性曲线及离心泵进行现场测试,满足现场生产要求。采样叶轮切割的方法,降低了泵的扬程,避免泵因流量过小引起抽空、振动大、机械密封泄漏频繁等,同时又节约了能耗。

参考文献

[1]孟繁华,郝连俭,郝旭林.离心泵叶轮外径切割方法的探讨[J].机械管理开发,2002,(3):21-22

[2]蔡礼权.IS50-32-200型离心泵叶轮切割研究[J].陕西科技大学学报,2009,27(4):93-96

离心泵性能与叶轮几何尺寸的关系

离心泵性能与叶轮几何尺寸的关系 【摘要】离心泵的性能曲线即扬程-流量曲线和效率-流量曲线会因其叶轮几何参数的改变而受到影响。本文首先介绍了离心泵的基本性能参数的定义、计算公式,然后系统的介绍了离心泵叶轮几何参数如叶片进口安放角、叶轮出口直径、叶片出口宽度等对泵性能曲线的影响,定性的分析了这些影响产生的原因以及在实际设计中如何最大限度的提高离心泵的性能。 【关键词】离心泵;性能;叶轮;叶片;几何参数 引言 众所周知,离心泵的工作性能与其叶轮的参数相关,即离心泵的叶片数、叶片出口安放角、叶片进口安放角、叶轮出口直径、叶片出口宽度、叶轮入口直径、叶片入口宽度及转速等均会对泵性能的产生影响。因此,研究离心泵的叶轮几何参数的改变所引起泵性能的变化问题,显得十分必要。 1 离心泵的组成及工作原理 离心泵主要构成部分有吸入室、叶轮以及压出室。吸入室一般位于水面下叶轮进水口的前面,有直锥形、弯管形和螺旋形三种形式,起到把液体引入叶轮的作用;叶轮由盖板和若干个叶片组成,是泵心脏;压出室主要有蜗壳式、导叶和空间导叶三种形式。 离心泵一般用电动机带动。在工作前,先将泵体内充满被输送的液体,当原动机高速旋转时,通过轴传动到叶轮,带动叶轮高速旋转,叶轮上的叶片将带动液体旋转,在离心力的作用下液体从叶轮中心向叶轮外缘流去,叶轮外缘的流体带有一定的压力能和动能,流速一般可达15~25m/s,高速流体从叶轮出口外缘排出,经由压出室、排出管和出口管道到达目的地。另一方面当泵内的液体从叶轮中心被甩到叶轮外缘的时候,在叶轮中心会形成低压区,在压差作用下,流体由吸入管经由吸入室流向叶轮中心,这样源源不断的会有液体从泵里流进再流出,这样,离心泵便完成了连续输送液体的工作。 2 离心泵的基本性能参数 离心泵的基本性能参数有:流量、扬程、轴功率、有效功率、效率、转速、必须汽蚀余量、允许吸上真空高度、比转速等。 (1)流量Q(m3/h或m3/s) 泵的流量也就是泵输送液体的能力,指单位时间内泵所输送的液体体积。流量取决于泵的叶轮直径、叶片宽度以及转速等。在实际工作中,流量还与管道阻力和所需压力有关。

双吸离心泵毕业设计-开题报告

双吸离心泵毕业设计-开题报告

毕业设计(论文)开题报告 学生姓名:陈乐东学号:20121698 学院:机电工程学院 专业:热能动力工程 设计(论文)题目:800S26型双吸泵的设计 指导教师:杨辉 2016年2月15日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇; 4.有关年月日等日期,按照如“2002年4月26日”方式填写。

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写1500字左右的文献综述(包括研究进展,选题依据、目的、意义) 文献综述 800S26型双吸泵的型号意义是,入口直径为800mm,设计点扬程为26m的单极双吸水平中开式离心清水泵。要想了解此泵,首先要了解双吸离心泵。 双吸离心泵是从叶轮两面进水的双吸离心泵,因泵盖和泵体是采用水平接缝进行装配的,又称为水平中开式离心泵。与单级单吸离心泵相比,效率高、流量大、扬程较高。但体积大,比较笨重,一般用于固定作业。适用于丘陵、高原中等面积的灌区,也适用于工厂、矿山、城市给排水等方面。 S型单极双吸离心泵也被称为为中开式离心泵,供抽送清水或物理化学性质类似于水的其他液体之用。S系列单级双吸离心泵主要适用于自来水厂、空调循环用水、建筑供水、灌溉、排水泵站、电站、工业供水系统、消防系统、船舶工业等输送液体的场合。 S型中开泵与其他同类型泵相比较具有寿命长、效率高、结构合理,运行成本低、安装及维修方便等特点,是消防、空调、化工、水处理及其他行业的理想用泵。泵体设计压力为1.6MPa和2.0MPa。泵体的进出口法兰均位于下泵体,这样可以在不拆卸系统管路的情况下取出转子,维修方便。部分泵体采用双流道设计,以减少径向力,从而延长机封和轴承的寿命。叶轮叶轮的水力设计采用了最先进的 CFD 技术,因此提高了S泵的水力效率。对叶轮进行动平衡, 确保S泵的运行平稳。轴轴径较粗,轴承间距较短,从而减小了轴的挠度,延长了机械密封和轴承的寿命。轴套可以采用多种不同的材料,以防止轴被腐蚀和磨损,轴套可更换。磨损环泵体与叶轮间采用可更换的磨损环,防止泵体和叶轮的磨损,更换方便,维修费用低,同时保证运行间隙和较高的工作效率。既可以使用填料也可以使用机械密封,可以在不拆卸泵盖的情况下更换密封装置。轴承独特的轴承体设计使轴承可采用油脂或稀油润滑,轴承的设计寿命10万小时以上,也可使用双列推力轴承和封闭轴承。材料根据用户的实际需要,S型中开泵的材料可为铜、铸铁、球铁、316不锈钢、416;7锈钢、双向钢、哈氏合金、蒙耐合金,钛合金及20号合金等材料。 我国水泵技术的现状 1、我国泵产品图样的来源可分为联合设计、引进、自行开发等几种,引进的这些

离心式水泵设计毕业设计

离心式水泵设计毕业设计 目录 摘要............................................................................ 错误!未定义书签。Abstract ...................................................................... 错误!未定义书签。第一章绪论 . (1) 1.1课题研究的背景及意义 (1) 1.2USB简介 (1) 1.2.1 USB优点 (1) 1.2.2 国内外应用现状及发展趋势 (2) 1.3离心泵测试 (3) 1.4虚拟仪器技术及相关知识 (4) 1.4.1 虚拟仪器简述 (4) 1.4.2 虚拟仪器的优势 (4) 1.4.3 虚拟仪器系统的构成 (5) 1.5课题研究的主要内容 (6) 1.6课题意义 (7) 第二章基于USB数据采集系统整体设计 (8) 2.1USB数据采集系统的性能指标 (8) 2.2USB数据采集系统的硬件构成 (8) 2.3USB数据采集系统的软件设计 (8) 第三章数据采集系统硬件电路设计 (10) 3.1USB2.0协议 (10) 3.1.1 USB系统组成 (10) 3.1.2 USB设备组成 (10) 3.1.3 USB2.0数据帧 (12) 3.1.4 USB2.0端点缓冲区 (13) 3.1.5 USB插头插座 (14) 3.2主要芯片介绍 (14) 3.2.1为何选择CY7C68013 (15)

3.2.2 CY7C68013 芯片简介 (16) 3.1.3 ADS7825P简介 (22) 3.2USB采集系统原理电路设计 (24) 3.2.1主芯片外围电路设计 (24) 3.2.2 A/D转换电路设计 (25) 3.2.3 传感信号处理电路设计 (27) 3.2.4 电源电路设计 (30) 3.2.5 EEPROM电路设计 (32) 第四章 USB数据采集系统软件设计 (34) 4.1固件程序开发 (34) 4.1.1 固件功能及编程 (34) 4.1.2 列举和重列举 (36) 4.1.3 USB 描述符 (38) 4.2驱动程序开发 (40) 4.2.1 使用Driver Development Wizard创建INF 文档 (40) 4.2.2 安装INF文档和USB设备 (43) 4.2.3 使用VISA Interactive Control测试通讯情况 (44) 4.3数据采集程序设计 (46) 4.4上位机程序开发 (47) 第五章结论与展望 (49) 参考文献 (50) 致谢 (51)

离心泵设计论文解析

XXXXX 学院 毕业设计(论文) 题目 学生姓名 年级专业 学号 指导教师 起止日期 20 年月日

XXXXX学院 毕业设计 (论文)任务书机电工程系班级()姓名学号

北海职业学院 学生毕业设计(论文)成绩鉴定表

综述离心泵的完好标准 泵与风机、压缩机是流体机械的重要组成部分,一直是制冷与空调专业人士学习的基本科目。泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 离心泵就是根据设计高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的. 离心泵有好多种.从使用上可以分为民用与工业用泵,从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。 一离心泵的分类方式类型特点一览表

二、离心泵基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。 三、离心泵的工作原理 离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故! 四、离心泵的主要性能参数 (一)流量Q(m3/h或m3/s)离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的流体体积。 (二)扬程H(m) 扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 (三)转速叶轮每分钟的旋转周数叫转数,单位为r/min . (四)效率η泵的效率为有效功率和轴功率之比。效率的表达式为:η=P e/P*100% (五)轴功率N (W或kW)泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η 计算,即 五、离心泵的性能曲线

离心泵叶轮切割定律的分析

离心泵叶轮切割定律的分析 武汉三源泵业制造有限公司 杨爱荣,甘根喜 本文介绍了几种离心泵叶轮的切割定律及针对每种切割定律作出的具体分析,以寻找一个较为准确的计算叶轮切割的方法,从而达到一台泵的多性能要求,提高产品的通用性和系列化。 一、 叶轮切割定律存在的条件及原因分析 叶轮切割定律一 ()12 2 D D Q Q '=' ()22 22 ??? ? ??'='D D H H ()33 22 ??? ? ??'='D D N N 式中: Q 、H 、N 、D 2为叶轮切割前的流量、扬程、轴功率和叶轮外径。 Q '、H '、N '、D 2'为叶轮切割后的流量、扬程、轴功率和叶轮外径。 以上公式成立的条件是: 1、叶轮切割前后的容积效率不变。 2、叶轮吸入口前液流无预旋,即绝对速度的圆周分量V u1等于零。 3、切割前后流液相似,速度三角形对应成比例。 4、切割前后叶轮出口宽度相等,即b 2'=b 2;出口面积不变即F 2'=F 2。 5、切割前后叶片出口角度不变,即β2'=β2. 从大量的试验结果来看,4、5两个条件很难满足。事实上切割

前后的叶轮出口宽度、面积、叶片出口角有的变化较大,最大的变化约为10%。这样就降低了叶轮切割定律的计算精度。在实际应用中往往进行保守切割,增加切割次数来确认要求的性能参数。 另外瑞士的苏尔寿公司针对以上存在的问题提出了的修正系数,即D 2'=D 2'+(D 2-D 2'),该公司认为的修正系数安全可靠,在高效区运行时采用此法切割的叶轮特性曲线略高于要求的曲线。 以上方法在实际应用中较麻烦,而且要多次用试验验证计算结果。因此有关文献针对不同比转数的泵提出了不同的计算方法,陈述事如下: 对于n s <60的低比转速离心泵: (a )、叶轮切割后叶片的出口角β2可能因叶轮外径D 2的减小而发生一些变化,但可以用锉销叶片出口端面的方法加以修正,认为β2'=β2; (b)、锥形叶片出口端将会因切削而变厚,修锉叶片使它恢复到原形大小,可以认为切削叶前后叶片的排挤系数不变; (c )、对于n s <60的叶轮可以认为叶轮是前后盖板平行的经流叶轮,因此可近似地认为叶轮切割前后的出口宽度不变。 以上分析得出叶轮切割定律二: ()12 222222222222 ??? ? ??'=''=''='D D V D V D V b D V b D Q Q m m m m ππ ()22 22222222 ??? ? ??'=''='D D V u V u H H u u

(完整版)离心泵——叶轮设计说明书

主要设计参数 本设计给定的设计参数为: 流量Q=3 3 500.01389m m h s =,扬程H=32m ,功率P=15Kw ,转速 1450min r n =。 确定比转速s n 根据比转速公式 3 4 3.65145046.3632s n ?=== 叶轮主要几何参数的计算和确定 1. 轴径与轮毂直径的初步计算 1.1. 泵轴传递的扭矩 3 15 9.5510955098.81450 t P M N m n =?=?=? 其中P ——电机功率。 1.2泵的最小轴径 对于35号调质钢,取[]52 35010N m τ=?,则最小轴径 0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径 j D 的初步计算 取叶轮进口断面当量直径系数0 4.5K =,则 0 4.50.09696D K m mm ==== 对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算

由于泵的比转速为46.36,比较小,故1k 应取较大值。不妨取10.85k =,则 110.859682j D k D mm ==?= 4. 叶片出口直径2D 的初步计算 2 20.5 0.5 246.369.359.3513.73 10010013.730.292292s D D n K D K m mm --???? ==?= ? ? ?? ?? ==== 5. 叶片进口宽度1b 的初步计算 ()00222 111 4/4//v v m j j h v Q Q V V D D d Q b DV ηηππηπ===-= 所以 220111 1 44j j v V D D b V D K D = = 其中,10v V K V =,不妨取0.8v K =,则 22 118535.42440.863.75j v D b mm K D ===?? 6. 叶片出口宽度2b 的初步计算 225/6 5/6 246.360.640.640.3373 1001000.33730.00727.2s b b n K b K m mm ?? ?? ==?= ? ? ?? ??==== 7. 叶片出口角2β的确定 取2β=15° 8. 叶片数Z 的计算与选择 取叶片数Z=8,叶片进口角0155.8β=。 9. 计算叶片包角? ()0 000360/360360 2.491128 t Z Z φλ??====

长江大学毕业设计开题报告(离心泵的设计)

长江大学 毕业设计开题报告 题目名称离心泵设计及基于solidworks 三维设计院(系)机械工程学院 专业班级装备11001 学生姓名胡强 指导教师门朝威 辅导教师门朝威 开题报告日期2014.04.10

离心泵设计及基于solidworks 三维设计 学生:胡强机械工程学院 指导老师:门朝威机械工程学院 一、题目来源: 生产实际 二、研究目的和意义: 泵是一种通用的工业机械,特别是离心泵,可以说在是在工业生产中不可缺少的一部分,而在工业生产中,研究泵往往是为了更加高效的液体介质输送水力和结构,能适合更多(甚至是苛刻)的工况条件,泵的生命周期成本更低,环 三、阅读的主要参考文献及资料名称 [1] 关醒凡.现代泵技术手册[M].北京:宇航出版社,1995 [2] 濮良贵,纪名刚.机械设计[M].西安:高等教育出版社,2006 [3] 柴立平.泵选用手册[M].北京:机械工业出版社,2009 [4] 侯作富,胡述龙,张新红.材料力学[M].武汉:武汉理工大学出版社,2012 [5] 张锋,古乐.机械设计课程设计手册[M]. 北京:高等教育出版社,2002 [6] 李世煌,吴桐林.水泵设计教程[M]. 北京:机械工业出版社,1987 [7] 于慧力,冯新敏.轴系零部件设计与实用数据查询[M]. 北京.机械工业出版社, 2010 [8] 王朝晖.泵与风机[M].北京.中国石化出版社,2007 [9] 钱锡俊,陈弘.泵与压缩机[M]. 山东.石油大学出版社,1994 [10] 李云,姜培正.过程流体机械[M]. 北京.化学工业出版社,2008 [11] 汪云英,张湘亚.泵与压缩机[M]. 北京:石油工业出版社,1985 [12] 袁恩熙.工程流体力学[M].北京:石油工业出版社,2012 [13] 查森.叶片泵原理及水力设计[M]. 北京:机械工业出版社,1987 [14] Mario ?avar.Improving centrifugal pump efficiency by impeller trimming .[D].Desalination 249(2009)654-659

离心泵的分类及构形式与特点和适用范围

离心泵的主要分类,基本上涵盖目前水泵行业所生产的全部水泵类型,仅供参考。 ①离心泵按主轴方位分类:a.卧式泵:主轴水平放置;b.斜式泵:主轴与水平面呈一定角度放置;c.立式离心泵:主轴垂直于水平面放置。 ②离心泵按叶轮的吸入方式分类:a.单吸泵:液体从一侧流入叶轮,单吸叶轮;b.双吸泵:液体从两侧流人叶轮,双吸叶轮。 ③离心泵按叶轮级数分类:a.单级泵:泵轴只装一个叶轮;b.多级泵:同一泵轴上装有两个或两个以上叶轮,液体依次流过每级叶轮。 ④离心泵按泵壳体剖分方式分类:a.分段式泵:壳体按与主轴垂直的平面剖分;b.节段式泵:在分段式多级泵中,每一段泵体都是分开的;c.中开式泵:壳体从通过泵轴轴心线的平面上分开,按剖分平面的方位又分为:水平中开式泵:剖分面是水平面,为卧式泵;垂直中开式泵:剖分面与水平面垂直,为立式泵;斜中开式泵:剖分面与水平面呈一定夹角,为斜式泵。 ⑤离心泵按泵体的形式分类:a.蜗壳泵;b.双蜗壳泵。 ⑥特殊结构形式的泵: a.潜水电泵:泵和电动机制成一体,能潜入水中工作,泵体一般为单级或多级立式离心泵和轴流泵。 b.液下泵:属单级或多级立式离心泵,电动机、泵座位于液面上部,泵体淹没在液体中,电动机通过长传动轴带动叶轮旋转。主要用于食品等行业。 c.管道离心泵:直接安装在水平管道中或竖直管道中运行,泵的进口和出口在一条直线上,且多数情况下进口与出口的口径相同,适用于工业系统中途加压、空调循环水输送及城市高层建筑给水。 d.屏蔽泵:电动机和泵合为一体,采用电动机和泵共轴形式,电动机内外转子之间采用屏蔽套隔离开,泵除进出口外,在结构上完全封闭,保证泵输送液体时绝对不泄露。 e.磁力泵:电动机的动力通过磁性联轴器传递给泵,其中磁性联轴器的内转子磁钢带动叶轮,磁性联轴器的内、外磁钢之间采用隔离套,和屏蔽泵一样也是无密封、无泄露泵型。 f.自吸泵:首次向泵中灌入少量液体,起动后可自行上水的泵,多为卧式离心泵、旋涡泵等。在喷灌中应用较多。 g.高速泵:从泵工作原理来分有高速部分流切线泵和高速离心泵两种结构形式。从变速方式分有通过电动机变频直驱式高速泵和增速箱的高速泵。电动机变频直驱式转速在9000r/min以下,由变速箱使泵主轴增速,转速可以更高,但最高转速也不超过24000r/mino h.直联泵:泵利用动力机轴做主轴,省去泵悬架部分。 i.深井泵:属多级立式离心泵,用来取地下水的

离心泵的水力设计讲解

离心泵的水力设计 离心泵叶轮设计步骤 第一步:根据设计参数,计算比转速ns 第二步:确定进出口直径 第三步:汽蚀计算 第四步:确定效率 第五步:确定功率 第六步:选择叶片数和进、出口安放角 第七步:计算叶轮直径D2 第八步:计算叶片出口宽度b2 第九步:精算叶轮外径D2到满足要求 第十步:绘制模具图 离心泵设计参数 作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。 下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径 右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。 确定泵的进口直径 泵吸入口的流速一般取为3m/s左右。从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。 进口直径计算公式 此处下标s表示的是suction(吸入)的意思 本设计例题追求高效率,取Vs=2.2m/s Ds=77,取整数80 确定泵的出口直径 对于低扬程泵,出口直径可取与吸入口径相同。高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。一般的计算公式为:

D d=(0.7-1.0)D s 此处下标d表示的是discharge(排出)的意思 本设计例题中,取 D d = 0.81D s = 65 泵进口速度 进出口直径都取了标准值,和都有所变化,需要重新计算。 Vs = 2.05 泵出口速度 同理,计算出口速度= 3.10

汽蚀计算 泵转速的确定 泵的转速越高,泵的体积越小,重量越清。舰艇和军工装备用泵一般都为高 速泵,其具有转速高、体积小的特点。 转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。 转速增大、过流不见磨损快,易产生振动和噪声。 提高泵的转速受到汽蚀条件的限制。 从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。 按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。 汽蚀的概念 水力机械特有的一种现象。当流道中局部液流压力降低到接近某极限值(目前多以液体在该 温度下的汽化压力作为极限值)时,液流中就开始发生空(汽)泡,这些充满着气体或蒸汽的空 泡很快膨胀、扩大并随液流至压力较高的地方后又迅速凝缩、溃灭。液流中空泡的发生、扩 大、渍灭过程涉及许多物理、化学现象,会有噪音,振动甚至对流道材料产生侵蚀作用(汽 蚀)。以上这些现象统称为汽蚀现象。 汽蚀会导致泵的噪声与振动,破坏过流部件,加快腐蚀,性能下降等。汽蚀一直是流体机械 研究的热点和难点。

单级离心泵设计

单级离心泵设计 摘要:本设计从离心泵的基本工作原理出发,进行了一系列的设计计算。考虑离心泵基本工作性能,流量范围大,扬程随流量而变化,在一定流量下只能供给一定扬程(单级扬程一般10~80m)。本设计扬程为50m,泵水力方案通过计算比转数(n=67.5)确定采用单级单吸结构;通过泵轴功率的计算确定选择三相异步电动机;由设计参数确定泵的吸入、压出口直径;通过叶轮的水力设计确定叶轮的结构以及叶轮的绘型;设计离心泵的过流部件,确定吸入室为直锥形吸入室,压出室为螺旋形压出室;设计轴的结构及进行强度校核;确定叶轮,泵体的密封形式及冲洗,润滑和冷却方式;通过查标准确定轴承,键以及联轴器,保证连接件的标准性。从经济可靠性出发,合理设计离心泵部件,选择标准连接件,保证清水离心泵设计的安全性,实用性,经济性。 关键词:离心泵工作原理;水力方案设计;叶轮和过流部件设计;强度校核;密封设计;键、轴承的选择

Centrifugal Pump Design Manua l Abstract : This design starting from the basic working principle of the centrifugal pump, conducted a series of design calculations. consider the basic centrifugal pump performance, flow in a wide range, lift varies with the flow, the flow can only supply some lift (single-stage lift is generally 10~80m).The design head is 50m ,the design of the pump hydraulic scheme by calculating the number of revolutions(n=67.5) to determine the single-stage single-suction structure; choice of motor shaft power calculation; design parameters to determine the pump suction outlet diameter; determine the structure of the impeller and the impeller of the drawing of the hydraulic design of the impeller; flow parts of the design of centrifugal pump suction chamber for straight conical suction chamber, pressed out of the spiral-shaped pressure chamber; the structure and strength check of the axis design; determine the impeller centrifugal pump seal design, pump closed form and washing, lubrication, cooling method; determined by checking the standard bearings, and coupling to ensure that the standard connection. Departure from the economic viability of the rational design of centrifugal pump components, select the standard connector, to ensure the water using a centrifugal pump design safety, practicality, economy. Keyword:Centrifugal pump working principle ;Hydraulic design;Component design of the impeller and the over current; Strength check; Seal design; The choice of key and bearing

离心泵的切割定律

离心泵的切割定律 (H1:H2)2=D1:D2 Q1:Q2=D1:D2 从而可以看出叶轮的直径与扬程的平方成正比,与流量成正比。叶轮直径越大扬程就越大,流量也越大,因为水流出的速度取决于叶轮旋转时产生的离心力和切线上的线速,直径越大,离心力和线速度就越大。 离心泵送水量越与真空度的关系:离心泵是离心力原理来完成抽水的,没有水时空转是会烧坏设备的。抽真空要用真空泵或者一次抽真空二次抽真空的方法。 离心泵入口的真空度由三部分组成(建立泵入口处、吸入液面的方程即可得到)。 吸上高度,这个与流量无关,吸入装置的损失,与流量的平方成正文,建立泵入口处的动能头,与流量的平方成正比;其中第二项与第三项都与流量的平方成正比,因此泵进口处的真空度随流量的增加而增加。水泵比转数定义公式与特性。 定义公式:在设计制造泵时,为了将具有各种各样流量、扬程的水泵进行比较,将某一台泵的实际尺寸,几何相似地缩小为标准泵,次标准泵应该满足流量为75L/s,扬程为1m。此时标准泵的转数就是实际水泵的比转数。比转数是从相似理论中得出来的一个综合性有因次量的参数,它说明了流量、扬程、转数之间的相互关系。 无因次量的比转数称为形式数,用K表示比转数ns = 3.65n√Q H 0.75 双吸泵Q取Q/2; 多吸泵H取单级扬程; 如i级H取H/i ; 式中n —转速(r / min) Q —流量(m3 / s); H —扬程(m); 型式数K = 2 πn √Q 60 (gH) 0.75

特性:同一台泵,在不同的工况下具有不同的比转数;一般是取最高效率工况时的比转数作为水泵的比转数大流量、低扬程的泵,比转数大;小流量、高扬程的泵,比转数小;低比转数的水泵,叶轮出口宽度较小,随着比转数的增加,叶轮出口宽度逐渐增加,这适应于大流量的情况;比转数标志了流量、扬程、转速之间的关系,也决定了叶轮的制造形状;离心泵比转数较低,零流量时轴功率小;混流泵和轴流泵比转数高,零流量时轴功率大;因此离心泵应关闭出口阀起动,混流泵和轴流泵应开启出口阀起动。 钛一车间 2015年3月14日 离心泵的工作原理 1、离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 2、容积泵的工作原理(回转式):动力通过轴传给齿轮,一对同步齿轮带动泵叶作同步反向旋转运动,使进口区产生真空,将介质吸入,随泵叶的转动,将介质送往出口,继续转动,出口腔容积变小,产生压力(出口高压区)将介质输出。由于容积泵转数较低、自吸能力较强、流动性能较差的高粘介质,有充分时间和速度充满空穴,所以,该类型泵适用于高粘介质。泵内部密封面。

离心泵的工作原理和主要部件图

离心泵的工作原理和主要部件图 一、离心泵的工作原理1、离心泵的工作原理离心泵的叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。泵壳中央有一液体吸入4与吸入管5连接。液体经底阀6和吸入管进入泵内。泵壳上的液体排出口8与排出管9连接。在离心泵启动前,泵壳内灌满被输送的液体;启动后,启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。 2、气缚现象当泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气缚现象”。为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。二、离心泵的主要部件离心泵的主要部件有叶轮、泵壳和轴封装置。1、叶轮叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。叶轮一般有6~12片后弯叶片。叶轮有开式、半闭式和闭式三种,

开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。叶轮有单吸和双吸两种吸液方式。2、泵壳泵壳的作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。3、轴封装置轴封装置的作用是防止泵壳内液体沿轴漏出或外界空气漏入泵壳内。常用轴封装置有填料密封和机械密封两种。填料一般用浸油或涂有石墨的石棉绳。机械密封主要的是靠装在轴上的动环与固定在泵壳上的静环之间端面作相对运动而达到密封的目的。

几种离心泵叶轮的切割和计算

第32卷第6期2004年12月 江苏冶金Jiangsu Metallurgy V ol.32 No.6Dec.2004 几种离心泵叶轮的切割和计算 尚建波 辛伟华 (包头钢铁设计研究总院 包头,014010) (柳州钢铁公司 柳州,545000) 收稿日期:2004-08-12 作者简介:尚建波 男,1959年生,工程师。电话:(0472)6966431 摘要:通过对泵叶轮切割后的性能运行情况的统计归纳,得出几种不按切割定律计算的经验公式及一些体会。关键词:离心泵;叶轮切割;切割方法中图分类号:T H311 1 切割定律 泵的叶轮切割在设计中用来扩大泵的使用范围,在实际使用中常为了满足外界实际性能需要,对泵进行的一次性调节,以满足实际使用要求。泵叶轮切割后的性能(或叶轮的切割量)的计算通常用大家所熟知的切割定律式来计算如下式 Q c Q =D 2c D 2 或D 2c =Q c Q D 2 H c H =(D 2c D 2)2或D 2c =D 2H c H (1) P c P =(D 1c D 2 )3或D 2c =D 2 P c P 式中 Q ,H ,P ,D 2分别为叶轮切割前泵的流量、扬程、轴功率及叶轮外径;Q c ,H c ,P c ,D 2c 分别为叶轮切割后泵的流量、扬程、轴功率及叶轮外径。 但是在实际工作中,常遇到不按式(1)变化来切割叶轮,现就常遇到的几种情况谈谈笔者的一些体会和经验。 2 流量不变的叶轮切割 当叶轮切割后,要求流量不变,即Q c =Q ,而只改变泵的扬程时,可按下式进行计算 Q c =Q H c H =(D 2c D 2 )2.5 (2) 按式(2)计算时,泵的运行点会偏大流量工况运转。 3 径向导叶式泵叶轮切割 径向导叶式泵叶轮外径和导叶基圆之间的间隙要求较小,约1~3mm,并且径向导叶一般用于节段式多级泵中,泵的扬程可用增减叶轮数目来调节,所以在径向导叶式泵中一般不采用切割叶轮外径来改变泵的性能。但在单级径向导叶式泵中或多级泵中用改变叶轮数调节扬程,不能满足要求时,也常用叶轮切割的办法来调节。径向导叶式泵叶轮割后性能变化不符合式(1)的计算条件时,建议用下式计算 Q c Q =D 2 c D 2 H c H =(D 2c D 2 ) 2.5~ 5 (3) 式中 2.5~5是根据(D 2-D 2c )/D 2的比值来选取,即(D 2-D 2c )/D 2比值小时取小值,(D 2-D 2c )/D 2比值大时取大值。 径向导叶式泵叶轮切割时,还应注意如下问题:(1)切割量不要太大,否则会使效率下降太多,一般(D 2-D 2c )/D 2比值不超过8%。 (2)叶轮切割时,只车削叶片,而不要车削前后盖板,以保持叶轮外径与导叶之间的间隙对水流的引导作用。 4 中、高比转速泵叶轮切割 对中、高比转速泵,由于叶轮切割后,前后盖板

离心泵水力设计流程

离心泵水力设计 课程设计及指导书 (一)离心泵水力设计任务书 1 设计目的 掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。 2 设计参数及有关资料 (1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)

1. m h rpm n m H h m Q a 3.3,2900,60,/373 =?=== 2. m h rpm n m H h m Q a 44.5, 1450, 16, /903 =?=== 3. 900 ,1430,24, /663 ====C rpm n m H h m Q 4. 900 %, 80,2900, 48,/1453 =====C rpm n m H h m Q η 5. m 5, 2970, 5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6. m h rpm n m H s l Q r 13.2, 2870,10,/3.2=?=== 7. m rpm n m H h m Q 6.2h , 1450,5.32,/170r 3 =?=== 8. % 60,2h , 2900, 20,/20r 3==?===ηm rpm n m H h m Q (2)工作条件:抽送常温清水。 (3)配用动力:用电动机作为工作动力。 3 设计内容及要求 (1)设计内容。包括以下几个方面: l )、离心泵结构方案的确定。 2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。 3)、叶轮轴面投影图的绘制。 4)、螺旋形压水室水力设计。 (2)要求。包括以下几个方面: l )、用速度系数法和解析计算法进行离心泵水力设计。 2)、绘出压水室设计图。 3)、编写设计计算说明书。

离心泵叶轮型式

离心泵闭式开式半开式叶轮的区别 点击次数:8022 发布时间:2012-2-29 离心泵叶轮的区别,闭式叶轮开式叶轮的区别 叶轮是离心泵的做功零件,依靠它高速旋转对液体做功而实现液体的输送,是离心泵的重要零件之一。离心泵叶轮的区别: (1)叶轮的分类叶轮一般由轮毂、叶片和盖板三部分组成。叶轮的盖板有前盖板和后盖板之分,叶轮入口侧的盖板称为前盖板,另一侧的盖板称为后盖板。按结构形式,叶轮可分为以下三种。 ①闭式叶轮叶轮的两侧均有盖板,盖板间有4~6个叶片,如图2-20 (a)所示。当叶片弯曲方向与叶轮旋转方向相反时,称为盾弯式叶片。一般叶轮的叶片均为后弯式叶片。这种闭式叶轮效率较高,应用最广,适用于输送不含固体颗粒及纤维的清洁液体。闭式叶轮有单吸和双吸(图2—21)两种类型。双吸叶轮比单吸叶轮输液量大。 ②开式叶轮叶轮两侧均没有盖板,叶片通过筋板连接在轮毂上,如图2-20 (b)所示。这种叶轮结构简单,制造容易,但效率低,适用输送含较多固体悬浮物或带纤维的液体。 ⑧半开式叶轮这种叶轮只有后盖板,如图2-20(c)所示。它适用于输送易于沉淀或含固体悬浮物的液体,其效率介于开式和闭式叶轮之间。 按叶轮的形状及液体在叶轮内流动方向的不同,叶轮可分为径流式、轴流式和混流式,径流式叶轮应用在离心泵中,液体沿轴向进入叶轮,沿径向从叶轮流出。液体获得的能量主要来源于叶轮旋转时产生的离心力。轴流式叶轮应用在轴流泵中,液体轴向通过叶轮,液体获得的能量主要来源于叶轮旋转时产生的升

力(即推力)。混流式叶轮应用在混流泵中,液体沿轴向进入叶轮,而沿轴向与移径向之间的某方向流出,依靠离心力和轴向推力的混合作用输送液体. 根据不同的需要,叶轮可由铸铁、铸钢、不锈钢、玻璃钢、塑辩等材料制成。叶轮的制造方法有翻砂铸造、精密铸造、焊接、模压等,其尺寸、形状和制造精度对泵的性能影响很大。

离心泵叶轮切割定律的分析

离心泵叶轮切割定律的 分析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

离心泵叶轮切割定律的分析 武汉三源泵业制造有限公司 杨爱荣,甘根喜 本文介绍了几种离心泵叶轮的切割定律及针对每种切割定律作出的具体分析,以寻找一个较为准确的计算叶轮切割的方法,从而达到一台泵的多性能要求,提高产品的通用性和系列化。 一、叶轮切割定律存在的条件及原因分析 叶轮切割定律一 式中: 为叶轮切割前的流量、扬程、轴功率和叶轮外径。 Q、H、N、D 2 '为叶轮切割后的流量、扬程、轴功率和叶轮外径。 Q'、H'、N'、D 2 以上公式成立的条件是: 1、叶轮切割前后的容积效率不变。 2、叶轮吸入口前液流无预旋,即绝对速度的圆周分量V u1等于零。 3、切割前后流液相似,速度三角形对应成比例。 4、切割前后叶轮出口宽度相等,即b2'=b2;出口面积不变即F2'=F2。 5、切割前后叶片出口角度不变,即β2'=β2. 从大量的试验结果来看,4、5两个条件很难满足。事实上切割 前后的叶轮出口宽度、面积、叶片出口角有的变化较大,最大的变化约为10%。这样就降低了叶轮切割定律的计算精度。在实际应用中往往进行保守切割,增加切割次数来确认要求的性能参数。 另外瑞士的苏尔寿公司针对以上存在的问题提出了的修正系数,即D2'=D2'+(D2-D2'),该公司认为的修正系数安全可靠,在高效区运行时采用此法切割的叶轮特性曲线略高于要求的曲线。 以上方法在实际应用中较麻烦,而且要多次用试验验证计算结果。因此有关文献针对不同比转数的泵提出了不同的计算方法,陈述事如下: 对于n s<60的低比转速离心泵: (a)、叶轮切割后叶片的出口角β2可能因叶轮外径D2的减小而发生一些变化,但可以用锉销叶片出口端面的方法加以修正,认为β2'=β2; (b)、锥形叶片出口端将会因切削而变厚,修锉叶片使它恢复到原形大小,可以认为切削叶前后叶片的排挤系数不变; (c)、对于n s<60的叶轮可以认为叶轮是前后盖板平行的经流叶轮,因此可近似地认为叶轮切割前后的出口宽度不变。 以上分析得出叶轮切割定律二: 对中、高比转数的离心泵n s=80—300,叶轮切割后出口宽度b2变大,可以近似地认为叶轮出口面积基本不变即D2'b2'=D2b2由此推出叶轮切割定律三:另外国内泵行业泵厂有实验的基础上又提出了用比转速计算叶轮切割的切割定律四:

相关文档
最新文档