遗传算法的0-1背包问题(c语言)09184

遗传算法的0-1背包问题(c语言)09184
遗传算法的0-1背包问题(c语言)09184

基于遗传算法的0-1背包问题的求解

摘要:

一、前言

组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。

遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。

背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其

计算复杂度为

)2(O n

,传统上采用动态规划来求解。设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。 二、问题描述

背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和0>i p ,背包的容量(contain )假设设为0>i

c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之

内所装物品的价值最大

该问题的模型可以表示为下述0/1整数规划模型:

目标函数:∑==n

i i i n x c x x x f 1

21),,(max

?????

=∈≤∑=)

,2,1(}1,0{t .s 1n i x p x w i n

i i i i (*)

式中i x 为0-1决策变量,1=i x 时表示将物品i 装入背包中,0=i x 时则表示不将其装入背包中。

三、求解背包问题的一般方法

解决背包问题一般是采取动态规划、递归回溯法和贪心方法。动态规划可以把困难得多阶段决策变换为一系列相互联系比较容易的单阶段问题。对于背包问题可以对子过程用枚举法求解,而且约束条件越多,决策的搜索范围越小,求解也越容易。它的主要缺点是用数值方法求解时会随着状态变量的个数呈指数级的增长,往往对于求解背包问题的实际问题是不现实的。

使用递归回溯法解决背包问题的优点在于它算法思想简单, 而且它能完全遍历搜索空间,肯定能找到问题的最优解;但是由于此问题解的总组合数有n 2个,因此,随着物件数 n 的增大,其解的空间将以n

2级增长,当 n 大到一定程度上,用此算法解决背包问题将是不现实的。

使用贪心方法求解时计算的复杂度降低了很多,但是往往难以得到最优解,有时所得解与最优解相差甚远。因此, 我们可以探索使用遗传算法解决物件数较大的背包问题。 四、遗传算法简介

遗传算法( Genetic Algorithms ,GA) 是在1975 年首次由美国密西根大学的D 。J 。Holland 教授和他的同事们借鉴生物界达尔文的自然选择法则和孟德尔的遗传进化机制基础之上提出的。经过近30年的研究、应用,遗传算法已被广泛地应用于函数优化、机器人系统、神经网络学习过程、模式识别、图象处理、工业优化控制等领域。

遗传算法是将问题的每一个可能性解看作是群体中的一个个体(染色体),并将每一个染色体编码成串的形式,再根据预定的目标函数对每个个体进行评价,给出一个适应值。算法将根据适应度值进行它的寻优过程,遗传算法的寻优过程

是通过选择、杂交和变异三个遗传算子来具体实现的。它的搜索能力由选择算子和杂交算子决定,变异算子则保证了算法能够搜索到问题空间的尽可能多的点,从而使其具有搜索全局最优的能力。遗传算法的高效性和强壮性可由Holland提出的模式定理( Schema Therem) 和隐式并行性得以解释。在遗传算法中,定义长度较短、低阶且适应值超过平均适应值的模式在群体中数目的期望值按指数递增,这个结论称为遗传算法的基本定理。遗传算法是通过定义长度短、确定位数少、适应度值高的模式的反复抽样、组合来寻找最佳点,称这些使遗传算法有效工作的模式为积木块,是遗传算法构造答案的基本材料。但归根到底,要使遗传算法有效工作必须按照遗传算法的模式定理(或积木块假设) 根据具体问题设计合理的编码方案。

在运行遗传算法程序时,需要对一些参数作事先选择,它们包括种群的大小、染色体长、交叉率、变异率、最大进化代数等,这些参数对GA 的性能都有很重

p = 要的影响。在试验中参数一般选取如下:种群大小N= 20~100 ,交叉概率

c p = ~ ,最大进化代数maxgen = 100~500。

~ ,变异概率

m

遗传算法是具有“生成+检测”的迭代过程的搜索算法。它的基本处理流程如图1所示。

图1、遗传算法的基本流程

遗传算法的基本流程描述如下:

(1)编码:将解空间的解数据进行二进制编码,表达为遗传空间的基因型串

(即染色体)结构数据,如将数据9编码为“1001”;

(2)初始化种群:定义整数pop_size 作为染色体的个数,并且随机产生

pop_size 个染色体作为初始种群;

(3)评估种群中个体适应度:评价函数对种群中的每个染色体(chromosome )

求得其个体适应度)(fitness f i ;

(4)选择:选择把当前群体中适应度较高的个体按某种规则或者模型遗传到

下一代种群中,这里所用的规则是:染色体在种群中被选择的可能性与其个体的适应度的大小成正比;

(5)交叉:定义参数c p 作为交叉操作的概率,由(4)选择得到的两个个体

以概率c p 交换各自的部分染色体,得到新的两个个体;

(6)变异:定义参数m p 作为变异操作的概率,由(5)得到每个个体中的每

个基因值都以概率m p 进行变异;

(7)演化:经过选择、交叉和变异操作,得到一个新的种群,对上述步骤经

过给定的循环次数(maxgen )的种群演化,遗传算法终止。 五、背包问题的遗传算法求解描述

基于背包问题的模型(*),我们设计了针对于背包问题的染色体编码方法:将待求解的各量X 表示成长为n 的二进制字符串]j [x ,j=1,2, …,n 。0]j [x =表示物体j 不放入背包内,1]j [x =表示物体j 放入背包内。例如:0…000111代表一个解,它表示将第1、2、3、6、7…n-2,n-1,n 号物体放入背包中,其它的物体则不放入。

根据遗传算法的基本流程,我们确定了求解背包问题的遗传算法: 步骤1、初始化过程

1.1 确定种群规模popsize 、杂交概率c p 、变异概率m p 、染色体长度lchrom 及最大进化代数maxgen ;

1.2 读入背包问题的相关信息,如每个物体的重量weight[j]、每个物体的收益profit[j]和背包的容量contain ,其中1)lchrom (,1,0j -= ;

1.3 取1)lchrom (,1,0j )

1,0(u ]j [x -== ,其中)1,0(u 表示0-1整数的均匀

分布函数,即随机地生成数0或1,生成的]j [x 串即可看为一个染色体个体。

若不满足模型(*)的约束条件,则拒绝接受,由重新生成一个新的染色体个体chrom ;如果产生的染色体可行,则接受它作为种群的一名成员,经过有限次的抽样后,得到popsize 个可行的染色体chrom ,形成新的种群。 置种群的代数gen=0;

步骤2、计算种群中个体适应度以及统计种群适应度情况 按照下列公式计算种群中个体适应度:

)1(1

lchrom 0

j ]

j [chrom *]j [weight weight ∑-==;

)2(contain

ifweight )contain weight (*alpha ]j [chrom *]j [profit contain ifweight ]j [chrom *]j [profit fitness 1

lchrom 0

j 1

lchrom 0

j ???????>--≤=∑∑-=-=

公式(2)的下半部分即为适应度的惩罚函数,其中参数 1.0alpha >。 按公式(3)计算种群的总体适应度,

)3(]

i [fitness sumfitness 1

popsize 0

i ∑-==

并且按照排序的方法统计出种群中的最大、最小适应度的染色体个体,分别标记为maxpop 、minpop ; 步骤3、选择操作

3.1 生成一个随机数rand_Number ,要求1_0<

int selection( ) {

i=0;

c

p c

p pp <]

1lchrom ,[0-m p m

p pp <

itness;

minfitness=pop[0].fitness;

minpop=0;

maxfitness=pop[0].fitness;

maxpop=0;

for (i=1;i

{

itness;

tmp_fit=pop[i].fitness;

itness;

maxpop=i;

}

itness;

minpop=i;

}

n",gen); hrom[j]);

}

,(int)pop[maxpop].fitness);

printf("\nThe knapsack weight is %d.\n\n",(int)pop[maxpop].weight); }

/* 生成初始种群 */

void initpop()

{

int i,j,ispop;

double tmpWeight;

hrom[j]=rand()%2; arent1=0; arent2=0;

oldpop[i].cross=0; hrom);

if (tmpWeight<=contain)

{

oldpop[i].fitness=cal_fit(oldpop[i].chrom);

oldpop[i].weight=tmpWeight;

oldpop[i].parent1=0;

oldpop[i].parent2=0;

oldpop[i].cross=0;

ispop=true;

}

}

itness;

parent=parent+1;

} while (partsum

return parent-1;

}

/* 交叉操作 */

int crossover(unsigned int *parent1,unsigned int *parent2,int i) {

int j,cross_pos;

if (execise(pc))

{

.(lchrom-2)

cross_pos=rand()%(lchrom-1);

}

else cross_pos=lchrom-1;

for (j=0;j<=cross_pos;j++)

{ hrom[j]=parent1[j];

}

for(j=cross_pos+1;j<=(lchrom-1);j++)

{

hrom[j]=parent2[j];

}

ross=cross_pos;

return 1;

}

/* 变异操作 */

int mutation(unsigned int alleles)

{

if (execise(pm))

{

if (alleles)

alleles=0;

else alleles=1;

}

hrom,oldpop[mate2].chrom,i);

hrom[j]=mutation(newpop[i].chrom[j]);

}

hrom);

if (tmpWeight<=contain)

{

newpop[i].fitness=cal_fit(newpop[i].chrom);

newpop[i].weight=tmpWeight;

newpop[i].parent1=mate1;

newpop[i].parent2=mate2;

ispop=true;

}

}

hrom[k]=oldpop[oldmaxpop].chrom[k];

newpop[minpop].fitness=oldpop[oldmaxpop].fitness;

newpop[minpop].parent1=oldpop[oldmaxpop].parent1; newpop[minpop].parent2=oldpop[oldmaxpop].parent2;

newpop[minpop].cross=oldpop[oldmaxpop].cross;

statistics(newpop);

}

else if (maxfitness>oldmax)

{

report(newpop,gen);

}

;

getch();

}

遗传算法求解实例

yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值 0.2)*10sin()(+=x x x f π,∈x [-1, 2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9, 最大遗传代数为25 译码矩阵结构:?????????? ??????? ???? ?=ubin lbin scale code ub lb len FieldD 译码矩阵说明: len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界; code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码, code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术 刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或 ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I), Y, 'bo'); 中variable(I)越界 yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为: ∑ == n i i x x f 1 2 )(, 512512≤≤-i x 这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量: NIND (个体的数量):=40; MAXGEN (最大遗传代数):=500; NV AR (变量维数):=20; PRECI (每个变量使用多少位来表示):=20; GGAP (代沟):=0.9 注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab 保留字,下同! yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】

基于遗传算法的一种新的约束处理方法

基于遗传算法的一种新的约束处理方法 苏勇彦1,王攀1,范衠2 (1武汉理工大学 自动化学院, 湖北 武汉 430070) (2丹麦理工大学 机械系 哥本哈根) 摘 要:本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 关键词:遗传算法、约束处理、可行解、不可行解、两种群混合交叉 1引言 科学研究和工程应用中许多问题都可以转化为求解一个带约束条件的函数优化问题[1]。遗传算法(Genetic Algorithm )与许多基于梯度的算法比较,具有不需要目标函数和约束条件可微,且能收敛到全局最优解的优点 [2],因此,它成为一种约束优化问题求解的有力工具。目前,基于GA 的约束处理方法有拒绝策略,修复策略,改进遗传算子策略以及惩罚函数策略等。但是这些方法都存在一些问题[3]:修复策略对问题本身的依赖性,对于每个问题必须设计专门的修复程序。改进遗传算子策略则需要设计针对问题的表达方式以及专门的遗传算子来维持解的可行性。惩罚策略解的质量严重依赖于惩罚因子的选取,当惩罚因子不适当时,算法可能收敛于不可行解。 本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 2约束处理方法描述 2.1单目标有约束优化问题一般形式 )(max x f ..t s ;0)(≤x g i 1,,2,1m i L L =;0)(=x h i )(,,1211m m m m i +=+=L X x ∈ 这里都是定义在m m m m h h h g g g f ,,,;,,;2121111L L ++n E 上的实值函数。X 是n E 上的 子集,x 是维实向量,其分量为。上述问题要求在变量满足约 束的同时极大化函数。函数通常为目标函数。约束n n x x x ,,,21L n x x x ,,,21L f f ;0)(≤x g i 称为不等式约束;约束称为等式约束。集合;0)(=x h i X 通常为变量的上下界限定的区域。向量且满足所有约束,则称之为问题的可行解。所有可行解构成可行域。否则,为问题的不可行解,所有不可行解构成不可行域。问题的目标是找到一个可行解X x ∈x 使得)()(x f x f ≤对于所有可行解x 成立。那么,x 为最优解[4]。 2.2算法描述 目前,最常采用的约束处理方法为惩罚函数法。但优化搜索的效率对惩罚因子的选择有

用遗传算法解决0-1背包问题概述

实现遗传算法的0-1背包问题 求解及其改进 姓名: 学号: 班级: 提交日期:2012年6月27日

实现遗传算法的0-1背包问题求解 摘要:研究了遗传算法解决0-1背包问题中的几个问题: 1)对于过程中不满足重量限制条件的个体的处理,通过代换上代最优解保持种群的进化性 2)对于交换率和变异率的理解和处理方法,采用逐个体和逐位判断的处理方法 3)对于早熟性问题,引入相似度衡量值并通过重新生成个体替换最差个体方式保持种群多样性。4)一种最优解只向更好进化方法的尝试。 通过实际计算比较表明,本文改进遗传算法在背包问题求解中具有很好的收敛性、稳定性和计算效率。通过实例计算,表明本文改进遗传算法优于简单遗传算法和普通改进的遗传算法。 关键词:遗传算法;背包问题;优化 1.基本实现原理: 一、问题描述 0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。01背包问题的一般描述如下: 给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。选择合适的物品装入背包,使得背包中装入的物品的总价值最大。注意的一点是,背包内的物品的重量之和不能大于背包的容量C。在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。称此类问题为0/1背包问题。 其数学模型为: 0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。传统的方法不能有效地解决0-1背包问题。遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。 二、遗传算法特点介绍: 遗传算法(Genetic Algorithm, GA)是1962年Holland教授首次提出了GA算法的思想是近年来随着信息数据量激增,发展起来的一种崭新的全局优化算法,它借用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。 基本遗传算法求解步骤: Step 1 参数设置:在论域空间U上定义一个适应度函数f(x),给定种群规模N,交叉率P c 和变异率P m,代数T; Step 2 初始种群:随机产生U中的N个染色体s1, s2, …, s N,组成初始种群S={s1, s2, …, s N},置代数计数器t=1; Step 3计算适应度:S中每个染色体的适应度f() ; Step 4 判断:若终止条件满足,则取S中适应度最大的染色体作为所求结果,算法结束。Step 5 选择-复制:按选择概率P(x i)所决定的选中机会,每次从S中随机选定1个染色体并将其复制,共做N次,然后将复制所得的N个染色体组成群体S1; Step 6 交叉:按交叉率P c所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; Step 7 变异:按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3; Step 8 更新:将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3;

使用遗传算法求解函数最大值

使用遗传算法求解函数最大值 题目 使用遗传算法求解函数 在及y的最大值。 解答 算法 使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。 定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。 设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。 然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。 一选择操作 首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。 二交叉操作 首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。 三变异操作 首先是根据变异概率probMutation选择要变异的个体。 变异时先随机生成变异的位置,然后把改位的01值翻转。

遗传算法求解背包问题

遗传算法求解背包问题 信管专业李鹏 201101002044 一、遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。 二、背包问题描述 背包问题是一个典型的组合优化问题,在计算理论中属于NP完全问题,主要应用于管理中的资源分配,资金预算,投资决策、装载问题的建模。传统“0/1”背包问题可以描述为:把具有一定体积和价值的n件不同种类物品放到一个有限容量的背包里,使得背包中物品的价值总量最大。 三、数学模型 背包问题可以描述如下:假设有n个物体,其重量用表示,价值用表示,背包的最大容量为b。这里和b都大于0。问题是要求背包所装的物体的总价值最大。背包问题的数学模型描述如下: (1) (2) (3) 约束条件(3)中表示物体i被选入背包,反之,表示物体i没有被选入背包。约束条件(2)表示背包的容量约束。

四、使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。 五、程序整体流程 (1)读取存取包的限种、商品的重要和价值的TXT文件; (2)初始化种群; (3)计算群体上每个个体的适应度值(Fitness) ; (4)评估适应度,对当前群体P(t)中每个个体Pi计算其适应度F(Pi),适应度表示了该个体的性能好坏; (5)依照Pc选择个体进行交叉操作; (6)仿照Pm对繁殖个体进行变异操作 (7)没有满足某种停止条件,则转第3步,否则进入8 ; (8)输出种群中适应度值最优的个体。 六、代码 function Main() %定义全局变量 global VariableNum POPSIZE MaxGens PXOVER PMutation VariableNum=3 %变量个数 POPSIZE=50 %种群大小 MaxGens=1000 %种群代数 PXOVER=0.8 %交叉概率 PMutation=0.2 %变异概率 %读取数据文件

一种基于遗传算法的Kmeans聚类算法

一种基于遗传算法的K-means聚类算法 一种基于遗传算法的K-means聚类算法 摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。关键词:遗传算法;K-means;聚类 聚类分析是一个无监督的学习过程,是指按照事物的某些属性将其聚集成类,使得簇间相似性尽量小,簇内相似性尽量大,实现对数据的分类[1]。聚类分析是数据挖掘 技术的重要组成部分,它既可以作为独立的数据挖掘工具来获取数据库中数据的分布情况,也可以作为其他数据挖掘算法的预处理步骤。聚类分析已成为数据挖掘主要的研究领域,目前已被广泛应用于模式识别、图像处理、数据分析和客户关系管理等领域中。K-means算法是聚类分析中一种基本的划分方法,因其算法简单、理论可靠、收敛速 度快、能有效处理较大数据而被广泛应用,但传统的K-means算法对初始聚类中心敏 感,容易受初始选定的聚类中心的影响而过早地收敛于局部最优解,因此亟需一种能克服上述缺点的全局优化算法。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。在进化过程中进行的遗传操作包括编码、选择、交叉、变异和适者生存选择。它以适应度函数为依据,通过对种群个体不断进行遗传操作实现种群个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文针 对应用最为广泛的K-means方法的缺点,提出了一种基于遗传算法的K-means聚类算法GKA(Genetic K-means Algorithm),以克服传统K-means算法的局部性和对初始聚类中心的敏感性。用遗传算法求解聚类问题,首先要解决三个问题:(1)如何将聚类问题的解编码到个体中;(2)如何构造适应度函数来度量每个个体对聚 类问题的适应程度,即如果某个个体的编码代表良好的聚类结果,则其适应度就高;反之,其适应度就低。适应度函数类似于有机体进化过程中环境的作用,适应度高的个体 在一代又一代的繁殖过程中产生出较多的后代,而适应度低的个体则逐渐消亡;(3) 如何选择各个遗传操作以及如何确定各控制参数的取值。解决了这些问题就可以利

遗传算法求解动态规划

Using Genetic Algorithms for Dynamic Scheduling
Ana Madureira * Carlos Ramos * Sílvio do Carmo Silva ? anamadur@dei.isep.ipp.pt,, csr@dei.isep.ipp.pt, scarmo@dps.uminho.pt
1
Institute of Engineering Polytechnic of Porto, GECAD - Knowledge Engineering and Decision Support Research Group, Dept. of Computer Science Rua de S?o Tomé, 4200 Porto-Portugal Phone: +351 228340500 Fax: +351 228321159
2 Minho University, Dept. of Production and Systems 4710-057, Braga -– Portugal, Phone: +351 253604745
Abstract
In most practical environments, scheduling is an ongoing reactive process where the presence of real time information continually forces reconsideration and revision of pre-established schedules. Scheduling algorithms that achieve good or near optimal solutions and can efficiently adapt them to perturbations are, in most cases, preferable to those that achieve optimal ones but that cannot implement such an adaptation. This reality, motivated us to concentrate on tools, which could deal with such dynamic, disturbed scheduling problems, both for single and multi-machine manufacturing settings, even though, due to the complexity of these problems, optimal solutions may not be possible to find. We decided to address the problem drawing upon the potential of Genetic Algorithms to deal with such complex situations. We decided to address the problem drawing upon the potential of Genetic Algorithms to deal with such complex situations. Since in a sense natural evolution is a process of continuous adaptation, it seems appropriate to consider Genetic Algorithms as good candidates for dynamic scheduling problems. This paper is concerned with vertical oriented detailed scheduling of Extended Job-Shop on dynamic environments. It addresses the scheduling of tasks, either simple or complex products, comprehending the parts fabrication and their multistage assembly into complex products. Key Words: Dynamic Scheduling, Population Dynamic Adaptation, Regenerating Mechanism, Genetic Algorithms.
1. INTRODUCTION
Research on the theory and practice of scheduling has been pursued for many years. Theoretical scheduling problems concerned with searching for optimal schedules subject to a limited number of constraints have adopted a variety of techniques including branch-and-bound and dynamic programming. From the point of view of combinatorial optimization the question of how to sequence and schedule jobs in a dynamic environment looks rather complex and is known to be NP-hard. For literature on this subject, see for example, Baker (1974), French (1982), Blazewicz et al. (2001), Pinedo (2001) and Brucker (2001). In generic terms, the scheduling process can be defined as the assignment of time-constrained jobs to timeconstrained resources within a pre-defined time framework, which represents the complete time horizon of the schedule. An admissible schedule will have to satisfy a set of hard and soft constraints imposed on jobs and resources. So, a scheduling problems can be seen as a decision making process for operations starting and resources to be used. A variety of characteristics and constraints related with jobs and production system, such as operation processing times, release and due dates, precedence constraints and resource availability, can affect scheduling decisions. If all jobs are known before processing starts a scheduling problem is said to be static, while, to classify a problem as dynamic it is sufficient that job release times are not fixed at a single point in time, i.e. jobs arrive to the system at different times. Scheduling problems can also be classified as either deterministic, when processing times and all other parameters are known and fixed, or as non-deterministic, when some or all parameters are uncertain (French, 1982). Most of the known work on scheduling deals with optimisation of scheduling problems in static environments, whereas, due to several sorts of random occurrences and perturbations, real world scheduling problems are usually of dynamic nature. Due to their dynamic nature, real scheduling problems have additional complexity in relation to static ones. However, in many situations, both static and dynamic problems, even for apparently simple cases, are hard to

matlab、lingo程序代码3-背包问题(遗传算法)复习过程

背包问题---遗传算法解决 function Population1=GA_copy(Population,p,w0,w) %复制算子 %Population为种群 n=length(Population(:,1)); fvalue=zeros(1,n); for i=1:n fvalue(i)=GA_beibao_fitnessvalue(Population(i,:),p,w0,w); end fval=fvalue/sum(fvalue); F(1)=0; for j=1:n F(j+1)=0; for k=1:j F(j+1)=F(j+1)+fval(k); end end for i=1:n test=rand; for j=1:n if((test>=F(j))&&(test

POP(j,z)=Population(i,z); end POP(j,l+1)=i; p(j)=randint(1,1,[1 l-1]); j=j+1; end end k0=j-1; k=floor(k0/2); if k>=1 for m=1:k for t=p(2*m-1)+1:l s=POP(2*m-1,t); POP(2*m-1,t)=POP(2*m,t); POP(2*m,t)=s; end end for m=1:k0 for i=1:l Population1(POP(m,l+1),i)=POP(m,i); end end end function fitnessvalue=GA_fitnessvalue(x,p,w0,w) %使用惩罚法计算适应度值 %x为染色体 %p为背包问题中每个被选物体的价值 %w0为背包问题中背包总容积 %w为背包问题中每个被选物品的容积 l=length(x); for i=1:l a(i)=p(i).*x(i); end f=sum(a); b=min(w0,abs(sum(w)-w0)); for i=1:l wx(i)=w(i).*x(i); end if abs(sum(wx)-w0)>b*0.99 p=0.99;

遗传算法求解VRP问题的技术报告【精品毕业设计】(完整版)

遗传算法求解VRP 问题的技术报告 摘要:本文通过遗传算法解决基本的无时限车辆调度问题。采用车辆和客户对应排列编码的遗传算法,通过种群初始化,选择,交叉,变异等操作最终得到车辆配送的最短路径。通过MA TLAB 仿真结果可知,通过遗传算法配送的路径为61.5000km,比随机配送路径67km 缩短了5.5km 。此结果表明遗传算法可以有效的求解VRP 问题。 一、 问题描述 1.问题描述 车辆调度问题(Vehicle Scheduling/Routing Problem,VSP/VRP )的一般定义为[1]:对一系列送货点和/或收货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量,送发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆数尽量少等)。问题描述如下[2]:有一个或几个配送中心),...,1(n i D i =,每个配送中心有K 种不同类型的车型,每种车型有n 辆车。有一批配送业务),...,1(n i R i =,已知每个配送业务需求量),...,1(n i q i =和位置或要求在一定的时间范围内完成,求在满足不超过配送车辆载重等的约束条件下,安排配送车辆在合适的时间、最优路线使用成本最小。 2.数学模型 设配送中心有K 台车,每台车的载重量为),...,2,1(K k Q k =,其一次配送的最大行驶距离为k D ,需要向L 个客户送货,每个客户的货物需求量为),...,2,1(L i q i =,客户i 到j 的运距为ij d ,配送中心到各个客户的距离为),...,2,1,(0L j i d j =,再设k n 为第K 台车配送的客户数(k n =0表示未使用第K 台车),用集合k R 表示第k 条路径,其中ki r 表示客户ki r 在路径 k 中的顺序为 (不包括配送中心),令 0k r 表示配送中心,若以配送总里程最短为目标函数,则可建立如下数学模型: ∑∑==?+=-K k k rk r n i r r n sign d d Z k kn k ki i k 101)] ([min )1( (1) k n i ki Q qr k ≤∑=1 (2) k k rk r n i r r D n sign d d k kn k ki i k ≤?+∑=-)(01)1( (3) L n k ≤≤0 (4)

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题 一、问题描述 给定n种物品和容量为C的背包。物品i的重量是wi,其价值为vi。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 二、知识表示 1、状态表示 (1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。 (2)基因:染色体的每一个比特。 (3)种群:解的集合。 (4)适应度:衡量个体优劣的函数值。 2、控制参数 (1)种群规模:解的个数。 (2)最大遗传的代数 (3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。 3、算法描述 (1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T; (2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1; (3)计算S中每个个体的适应度f() ; (4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。 (5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1; (6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2; (7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3; (8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。 三、算法实现 1、主要的数据结构 染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。 种群:用二维数组表示,每一行表示一个染色体。 具有最大价值的染色体:由于每一个染色体经过选择、交叉、变异后都可能发生变化,所以对于产生的新的总群,需要记录每个物品的选中状态。同时保存该状态下物品的最大价值,如果新的总群能够产生更优的值,则替换具有最大价值的染色体。

遗传算法求解函数极值

题目:生成两个整型,求在这两个整形之间cost=x1+x2-10*(cos(2*3.14*x1)+cos(2*3.14*x2))函数的最小值 源程序: #include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) {

遗传算法求解y=x2 - 副本

初始遗传算法及一个简单的例子 遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 下面我以一个实例来详细表述遗传算法的过程 例:求下述二元函数的最大值: 2 =] y x x∈ ,0[ 31 1、编码: 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L为一固定的数,如本例的编码为 s1 = 1 0 0 1 0 (17) s2 = 1 1 1 1 0 (30) s3 = 1 0 1 0 1 (21) s4 = 0 0 1 0 0 (4) 表示四个个体,该个体的染色体长度L=5。 2、个体适应度函数 在遗传算法中,根据个体适应度的大小来确定该个体在选择操作中被选定的概率。个体的适应度越大,该个体被遗传到下一代的概率也越大;反之,个体的适应度越小,该个体被遗传到下一代的概率也越小。基本遗传算法使用比例选择操作方法来确定群体中各个个体是否有可能遗传到下一代群体中。为了正确计算不同情况下各个个体的选择概率,要求所有个体的适应度必须为正数或为零,不能是负数。这样,根据不同种类的问题,必须预先确定好由目标函数值到个体适应度之间的转换规则,特别是要预先确定好目标函数值为负数时的处理方法。

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解0/1背包问题实验报告 Pb03000982 王皓棉 一、问题描述: 背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。 遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。 GA是一种群体型操作,该操作以群体中的所有个体为对象。选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。 遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。 二、实验目的: 通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。 三、算法设计: 1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大 max. 进化代数gen x=1表 2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n, i x=0表示不装入背包。例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包, i 这三个物件被选入包中。

基于遗传算法的TSP问题解决

基于遗传算法的TSP问题解决 —余小欢B07330230 概述:TSP问题是一个经典的运筹学的组合优化问题,针对此问题,研究人员提出了个中各样的算法,主要有贪婪算法,遗传算法,混沌搜索算法等。在本文中分别用贪婪算法和遗传算法去解决30个城市的最短路径问题,并把两者得到了最优解进行比较,发现用遗传算法解决TSP问题非常具有优越性,同时在文章的最后提出了对此遗传算法进行改进的方向。 1.贪婪算法 x=[18 87 74 71 25 58 4 13 18 24 71 64 68 83 58 54 51 37 41 2 7 22 25 62 87 91 83 41 45 44]; y=[54 76 78 71 38 35 50 40 40 40 42 44 60 58 69 69 62 67 84 94 99 64 60 62 32 7 38 46 26 21 35]; a=zeros(30,30); for i=1:30 for j=1:30 a(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); %求取距离矩阵的值end a(i,i)=1000; %主对角线上的元素置为1000作为惩罚 end b=0; c=zeros(30); for j=1:30 [m,n]=min(a(:,j)); b=b+m; %得到的b值即为贪婪最佳路径的总距离 a(n,:)=1000; %已经选择的最小值对应的行的所有值置为1000作为惩罚 c(j)=n; end x1=zeros(30); y1=zeros(30); for t=1:30

x1(t)=x(c(t)); y1(t)=y(c(t)); end plot(x1,y1,'-or'); xlabel('X axis'), ylabel('Y axis'), title('ì°à·?·??'); axis([0,1,0,1]); axis([0,100,0,100]); axis on 用贪婪算法得出的最佳路径走遍30个城市所走的路程为449.3845km 其具体的路径图如下: 2.遗传算法 1主函数部分 clc; clear all;

遗传算法解决01背包问题

遗传算法解决01背包问题2015 ~2016 学年第二学期 学生姓名 专业 学号 2016年 6 月

目录 一:问题描述 (3) 二:遗传算法原理及特点 (3) 三:背包问题的遗传算法求解 (3) 1.文字描述 (3) 2.遗传算法中的抽象概念在背包问题的具体化 (3) 3.算法求解的基本步骤 (4) 四:算法实现 (4) 1.数据结构 (4) 2.部分代码 (5) 五:结论 (8) 六:参考文献 (8)

一、问题描述 0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。 01背包问题的一般描述如下: 给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。问应如何选择合适的物品装入背包,使得背包中装入的物品的总价值最大。注意的一点是,背包内的物品的重量之和不能大于背包的容量C。在选择装入背包的物品时,对每种物品i只有两种选择:即装入背包或者不装入背包,不能讲物品i装入背包多次,也不能只装入部分的物品,称此类问题为0/1背包问题。 二、遗传算法原理及特点 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法有着鲜明的优点:(1)遗传算法的操作对象是一组可行解,而非单个可行解;搜索轨道有多条,而非单条,因而具有良好的并行性.(2)遗传算法只需利用目标的取值信息,而无需递度等高价值信息,因而适用于任何规模,高度非线形的不连续多峰函数的优化以及无解析表达式的目标函数的优化,具有很强的通用性.(3)遗传算法择优机制是一种“软”选择,加上良好的并行性,使它具有良好的全局优化性和稳健性.(4)遗传算法操作的可行解集是经过编码化的(通常采用二进制编码),目标函数解释为编码化个体(可行解)的适应值,因而具有良好的可操作性与简单性. 三、背包问题的遗传算法求解 1、文字描述 0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。传统的方法不能有效地解决0-1背包问题。在物品不是很多的时候用这些算法来处理背包问题效率上还是可以接受的,一旦物品过多(如50件物品)这些算法的效率就大打折扣了,因此采用一些智能的启发式搜索算法来处理就显得很有必要,遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。 2、遗传算法中的抽象概念在背包问题的具体化 (1)基因:0或1,代表相应的商品选还是不选。 (2)染色体:本实验中固定有50个商品,所以染色体就是50个基因序列,也就是40个0、1串,代表了一种往包里装商品的组合。一个染色体例:0111101101011011110101110101010101011110。 (3)群体:一定数量的基因个体组成了群体(population),群体中个体的数量叫做群体大小。本实验的背包问题中,种群大小为100,代表100个往包里装商品的组合。 (4)适应度:各个个体对环境的适应程度叫做适应度。本实验的背包问题中,每染色体个体的适应度为选入包中的商品的价值和。

相关文档
最新文档