干熄焦技术介绍

干熄焦技术介绍
干熄焦技术介绍

干熄焦技术介绍

1技术简介

干熄焦(CDQ)是替代传统湿熄焦一项新技术。干熄焦采用惰性气体冷却炽热焦炭,并回收余热产生蒸汽的节能技术。该技术可节约用水、减少大气污染物排放、能够回收大量红焦显热并产生中高压蒸汽、有效提高能源利用效率、同时提高焦炭质量、扩大炼焦煤适应性、降低炼铁工序能耗,最终实现企业的节能减排。

2主要功能

回收利用红焦显热

提高焦炭质量

产生蒸汽用于发电及其它用途

3技术价值

3.1 节能和经济效益明显

?焦炭显热回收

在焦炉的热平衡中被红焦带走的热量相当于焦炉加热所需热量的37%。湿熄焦无法回收焦炭显热,干熄焦可回收红焦热量的80%,

每熄1 吨红焦可回收0.55t 蒸汽,发电130kwh 。

?水的消耗

湿熄焦吨焦耗水0.45 吨,干熄焦熄焦过程中不耗水。

?高炉生产率

才用干熄焦的焦炭,炼铁高炉的焦比降低2%?3%,高炉生产能力提高1%

3.2环境效益明显

湿熄焦会对环境产生大量的污染:一是红焦在熄焦塔内用水喷洒时产生大量的水蒸汽,并夹带大量粉焦散发,另一方面会产生大量的酚、氰化合物和硫化合物等有害物质,严重腐蚀周围设备并污染大气。

干熄焦采用惰性循环气体在密闭的干熄炉内对红焦进行冷却,基本没有大量气体和液体外泻,可以免除酚、氰化合物和硫化合物等有害物质对周围设备的腐蚀和对大气的污染。通过对焦粉的收集和处理,最后以高净化烟气排入大气(粉尘质量浓度低于50mg/ m3)。

3.3可提高焦炭质量

干熄焦后焦炭机械强度、耐磨性、反应后强度均有明显提高,反应性降低。采用干熄焦,焦炭块度的均匀性提高,这对于高炉也是有利的。干熄焦比湿熄焦焦炭M40提高3?8%, M10降低0.3?0.8%, 反应性有一定程度的降低。

干熄焦与湿熄焦焦炭质量对比

3.4扩大炼焦煤源

在保持焦炭质量不变的情况下,采用干熄焦可在配煤中多用15% 的弱粘结性煤,有利于保护资源和降低焦炭成本

4主要原理

干熄焦是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。其中惰性气体在封闭的系统内循环使用

工艺流程:

焦炭流程:

焦炉中的红焦炭-焦罐-提升机-装焦装置-干熄炉-排焦装置T冷焦运输装置T用户

循环气体冷却流程:

干熄炉冷却室-一次除尘器-干熄焦锅炉-二次除尘器-循环

风机-副省煤器-干熄炉冷却室

蒸汽用途:

外供或至汽轮发电机产生电力

干熄焦装置图片:

5经济技术指标

以140t/h干熄焦装置(带发电)为例,项目投资约16000万元。年节约标煤约4.1万吨,减少温室气体(CO2)排放12~19万吨,减少粉尘排放158?196吨。

技术经济指标

6政策背景

中国发展改革委员会制定了《“ ^一五”十大重点节能工程实施

意见》将干熄焦列入重点推广节能改造项目,因此,在我国采用干法

熄焦技术是大势所趋,势在必行

工信部最新编制的《钢铁企业和焦化企业干熄焦技术推广实施方案》提出,我国将在条件成熟的大中型钢铁企业及一些独立焦化企业推广干熄焦技术。2010?2013年,计划投资124亿元建设干熄焦装置75 套(含在建),处理焦炭能力7947 万吨。预期大中型钢铁企业干熄焦率达90%以上,焦化行业干熄焦率40%以上,最终形成节能3 1 8万吨标准煤的能力。

2008 年新修订的《焦化行业准入条件》中规定钢铁企业新建焦炉要同步配套建设干熄焦装置并配套建设相应除尘装置。

《产业结构调整指导目录》(2007 年)鼓励类目录中有干法熄焦技术应用。

国家发改委于2009年4 月颁布的《钢铁产业调整和振兴规划细则》中指出:重点大中型企业吨钢综合能耗不超过620千克标准煤,吨钢耗用新水量低于5 吨,吨钢烟粉尘排放量低于1.0 千克,吨钢二氧化碳排放量低于1.8 千克,二次能源基本实现100%回收利用,冶金渣近100%综合利用,污染物排放浓度和排放总量双达标。

《国家钢铁产业发展政策》(2005 年)中规定焦炉必须同步配套干熄焦装置并匹配收尘装置。

2001?2006年干熄焦项目引入国债贴息项目中,2007年以来干熄焦项目进入国家财政补贴项目中。

干熄焦方案设计

目录 1 干熄焦工艺222222222222222222 1 1.1概述222222222222222222222 1 1.2干熄焦装置主要工艺参数(以下为一套干熄焦装置) 1 1.3干熄焦工艺流程2222222222222222 2 1.4干熄焦装置的布置222222222222222 2 1.5主要工艺设备的功能及规格22222222222 2 1.6干熄焦的环保措施22222222222222217 1.7干熄焦工艺温度和压力指标2222222222218 2干熄焦热力系统2222222222222222219 2.1概述22222222222222222222219 2.2干熄焦热力系统的布置222222222222219 3焦处理装置222222222222222222231 3.1概述22222222222222222222311 3.2设施及主要设备222222222222222311 3.3其他22222222222222222222322

1干熄焦工艺 1.1概述 甘肃兴华松迪化工有限公司新建焦炉及配套工程为2355孔JNDK55-07型捣固焦炉,年产焦炭130万吨,小时焦炭产量127.1吨。 为回收红焦的显热﹑降低能耗,减少污染,提高焦炭质量,本工程采用干法熄焦,干熄焦装置的处理能力为23140t/h。先上一套140t/h干熄焦装置,分二期完成。 当干熄焦装置年修或出现故障时,湿熄焦系统作为备用。 1.2干熄焦装置主要工艺参数(以下为一套干熄焦装置) a)焦炉基本工艺参数 焦炉配置2355孔JNDK55-07型焦炉 焦炉周转时间26h 焦炉紧张操作系数 1.07 每孔炭化室干全焦产量 30.044t 小时焦炭产量127.1t b)干熄焦装置基本工艺参数 干熄站配置13140t/h 允许焦炉的检修制度 3次/d,1h/次 每孔炭化室操作时间约12.4min 入干熄炉焦炭温度 950~1050℃ 干熄后焦炭平均温度≤200℃ 干熄时间约2h 焦炭烧损率(设计值)≤0.95% 入干熄炉的吨焦气料比约1280m3/t焦 系统最大循环风量 205000m3/h 循环风机全压 11.5kPa 进干熄炉循环气体温度130℃ 出干熄炉循环气体温度880~960℃ 干熄炉操作制度 24h连续,340d/a

焦化厂干熄焦技术发展

焦化厂干熄焦技术的发展综述 摘要:干熄焦技术是通过对焦炉中推出焦炭的显热进行回收,与湿熄焦技术相比在资源有效利用,环保和提高焦炭质量等方面具有明显的优势。通过对该技术及其发展的了解,展现干熄焦技术在焦炭行业具有重要现实意义和应用价值。 Abstract:Coke Dry Quenching is charged by its coke oven coke show heat for a recovery, and wet out in resources than the focal technology effectively, the environmental protection and enhancing coke quality has obvious advantages. Through to the technology and its development of understanding, show charged technology in coke industry has important meaning for and application value. 关键词:干熄焦技术湿法熄焦余热发电应用 1.干熄焦技术概述 1.1技术原理: 干法熄焦,其英文名称为Coke Dry Quenching,简称CDQ。干熄焦技术是利用冷的惰性气体(燃烧后的废气),在干熄炉中与赤热红焦换热从而冷却红焦。吸收了红焦热量的惰性气体将热量传给干熄焦锅炉产生蒸汽,被冷却的惰性气体再由循环风机鼓入干熄炉冷却红焦。干熄焦锅炉产生的蒸汽或并入厂内蒸汽管网或送去发电。 1.2技术特点: 1.2.1回收红焦显热:出炉的红焦显热约占焦炉能耗的35-40%,这部分能量相当于炼焦煤能量的5%,如将其回收和利用,可大大降低冶金产品成本,起到节能降耗的作用。采用干熄焦可回收80%的红焦显热,平均每熄1吨焦炭可回收3.9MPA 450℃的蒸汽0.45吨-0.6吨。 1.2.2减少环境污染:由于干熄焦能够产生蒸汽(5-6吨蒸汽需要1吨动力煤),并可用于发电,可以避免生产相同数量蒸汽的锅炉燃煤对大气的污染,尤其减少了SO2、CO2向大气的排放。对规模为年产100万吨焦炭的焦化厂而言,采用干熄焦每年可以减少8-10万吨动力煤燃烧向大气排放的各种污染物。 1.2.3可改善焦炭质量:国际上公认,大型高炉采用干熄焦焦炭可使其焦比降低2%,使高炉生产能力提高1%。在保持原焦炭质量不变的条件下,采用干熄焦可以降低强粘结性的焦、肥煤配入量10-20%,有利于保护资源和降低焦炭成本。

干熄焦技术

2、干熄焦技术特点 以某厂干熄焦装置处理能力140t/h为例。 干熄焦装置额定处理能力140t/h,采用带横移的旋转焦罐及高温高压自然循环余热锅炉,产生蒸汽最大80.5t/h,实际71.87t/h,主蒸汽调节阀后压力9.5MPa,温度540℃。配置1套25MW抽凝式汽轮发电机组用来发电和供热。 干熄焦年处理105.3万t/a(年运行时间按345天计算),温度1000±50℃焦炭。主要产品产量:蒸汽37.26万t/a,压力1.2MPa,温度过热;发电125.33×106 kWh/a;除尘焦粉2.1万t/a。主要技术特点如下。 1)干熄槽(冷却段)采用矮胖型。 2) 炉顶设料钟式布料器。 3) 在冷却段与循环风机之间设置给水预热器,使干熄炉入口处的循环气体温度由约 170℃降至≤130℃。 4) 采用连续排料的电磁振动给料器与旋转密封阀组合的排出装置。 5) 炉顶水封设压缩空气吹扫管。 6) 电机车采用APS强制对位装置,使焦罐车在提升塔下的对位修正范围控制在 ±100mm,对位精度达±10mm。 7) 余热锅炉采用膜式水冷壁,全悬挂形式。高温高压自然循环。 8) 提升机使用PLC控制。 9) 干熄槽设有2个料位计,高料位采用电容式料位计,同时采用雷达微波料位计进行 连续测量。 10) 装入装置漏斗后部设有尾焦收集装置。 11) 采用带横移的旋转焦罐。 12) 根据干熄槽各部位的操作温度和工作特点,采用性能不同的耐火材料。 生产操作技术要求以下。 1) 旋转焦罐内只能接一炉焦炭(约21.4t),静置时间不超过30min,焦罐内不得装入炉头焦、余煤、铁器等。 2) 干熄炉预存段压力保持在0~-100Pa,炉内料位控制在常用料位(下限料位与上限料位之间),排焦温度小于200℃。 3) 严格控制干熄炉入口处循环气体的温度在115~130℃之间,在锅炉入口处温度不高于970℃,工况正常时不得低于680℃。

国内外干熄焦技术现状及发展趋势

国内外干熄焦技术现状及发展趋势 点击次数: 142 文章作者:发布时间:2006-06-20 字体: [大中小] 一、国外干熄焦最新技术及发展趋势 (一)干熄焦工艺发展概况 干法熄焦简称干熄焦(CDQ),是相对于湿熄焦而言的采用惰性气体熄灭赤热焦炭的一种熄焦方法。干熄焦能回收利用红焦的显热,改善焦炭质量,减轻熄焦操作对环境的污染。 干熄焦起源于瑞士,最早的干熄焦装置是1917年瑞士舒尔查公司在丘里赫市炼焦制气采用的。20世纪30年代起,前苏联、德国、日本、法国、比利时等许多国家也相继采用了构造各异的干熄焦装置。干熄焦装置经历了罐室式、多室式、地下槽式、地上槽式的发展过程,由于处理能力都比较小,发生蒸汽不稳定、投资大等因素,这一技术长期未得到发展。到了20世纪60年代,前苏联在干熄焦技术工业化方面取得了突破性进展,在切列波维茨钢铁厂建造了带预存室的地上槽式干熄焦装置,处理能力达到5 2-56t/h。这种带预存室地上槽式干熄焦工业装置解决了过去干熄焦装置发生蒸汽不稳定等问题,实现了连续稳定的热交换操作。20世纪70年代,全球范围内的能源危机进一步推动了干熄焦技术的发展。日本首当其冲,在能源短缺、节能呼声高涨的背景下,从前苏联引进干熄技术和专利实施许可,经过消化移植,在大型化、自动化和环境保护措施等方面有所发展。到了20世纪90年代,日本建成投产了单槽处理能力为56-200t/h的多种规模的干熄焦装置39套,干熄焦率约占日本高炉焦用量的80%,是干熄焦装置应用最多的国家之一。 目前,日本新日铁、NKK、德国蒂森·斯梯尔·奥托公司在干熄焦技术上处于领先水平。这些公司在扩大干熄焦装置能力、改善冷却室特性、热平衡、物料平衡、自动化、环保等方面实现了最佳化设计,其处理能力和装置的先进性远远超过前苏联,并形成了各自的特点,见表1。 表1 乌克兰、日本、德国干熄焦技术对比表

干熄焦余热发电技术

干熄焦余热发电技术 目录 一、基本原理和工艺流程 1、干熄焦概念:所谓干熄焦是相对于湿熄焦而言的,干熄焦是采用惰性气体将红焦在无氧的环境下降温冷却的一种熄焦方法。 2、干熄焦流程:在干熄焦过程中,红焦从干熄炉的顶部装入,低温惰性气体由循环风机鼓入干熄炉冷却段红焦层内,冷却后的焦炭从干熄炉底部排除;吸收红焦潜热后温度升高的惰性循环气体从干熄炉环形烟道排出后,进入干熄焦余热锅炉进行换热,锅炉产生的蒸汽进入汽轮机带动发电机发电,从干熄焦余热锅炉冷却后的低温惰性气体进入循环风机重新鼓入干熄炉。 二、干熄焦技术优势及与湿熄焦的比较 1、干法熄焦能够提高焦炭强度和降低焦炭反应性,与传统湿法熄焦相比,M40可以提高3~5%,入炉焦比降低2~5%,高炉的常能可以提高1%; 2、同湿法熄焦相比,干熄焦可回收83%的红焦显热,采用干法熄焦,每处理1t焦炭,可以回收约为1.35GJ的热量,每干熄1t焦炭可以产生压力为3.8MPa,450℃的蒸汽0.54t.而传统的湿法熄焦不论采用低水分熄焦还是压力蒸汽熄焦的方法,都不能把这部分热量回收回来; 3、湿法熄焦过程中,红焦和水基础产生大量的酚、氰化合物和硫化物等有害物质,熄焦产生的蒸汽也被自由排放,严重腐蚀周围设备并污染大气,而干法熄焦采用惰性气体在密闭的系统中循环使用,可以有效降低排放污染; 4、利用熄焦产生的大量余热可以用来发电,降低企业电耗,发电后的蒸汽还可以作为参与到其它生产工序中; 三、应用条件及案例 对于年产100万吨焦炭,2.3亿立方米燃气的原工艺采用湿法熄焦,总投资约1.4亿元,建设处理能力为125T/H干熄焦工程项目并配套12MW次

干熄焦工艺介绍

一、干法熄焦的发展 干熄焦起源于20世纪40年代的瑞士,在20世纪70年代,由于全球能源危机促使干熄焦得到长足发展,我国自20世纪80年代初,宝钢首先引进了日本的干熄焦技术,随之济钢、首钢、武钢等企业先后引进这项技术,均在节能减排方面取得一定的成果。目前,山西仅有太原钢铁集团采用了干法熄焦技术。 二、干法熄焦概述(1) 装满红焦的焦罐由电机车牵引至提升井架下,通过自动对位装置对准提升位置。提升机将装满红焦的焦罐提升并横移至干熄炉炉顶,通过带料钟的装入装置将焦炭装入干熄炉内。在干熄炉中焦炭与惰性气体直接进行热交换,焦炭被冷却后经排焦装置卸至胶带输送机上,经胶带输送机送往原筛焦工段。 冷却焦炭的惰性气体由循环风机通过干熄炉底部的供气装置鼓入干熄炉与红焦炭进行换热。由干熄槽出来的热惰性气体温度随着入炉焦炭温度的不同而变化。如果入炉焦炭温度稳定在1050℃,该温度约为980℃。热的惰性气体经一次除尘器除尘后进入余热锅炉换热,温度降至170℃。惰性气体由锅炉出来后,再经二次除尘和循环风机加压经水预热器冷却至约130℃进入干熄槽循环使用。 除尘器分离出的焦粉,由专门的输送设备将其收集在贮槽内,以备外运。 干熄焦的装入、排焦、预存室放散等处产生的烟尘均进入干熄焦环境除尘系统进行除尘后达标排放。 干熄焦工艺流程见图1:

1--焦炉2--导焦车3--焦罐4--横移台车5--运载车6--横移牵引装置7--吊车8--装炉装置9--预存室 10--冷却室11--排焦装置12--皮带机13--一次除尘器14--锅炉15--水除氧器16--二次除尘器17--循环风机 图1 干熄焦工艺流程图 三、干法熄焦所采用的环保措施: 干法熄焦在减排方面取得显着的效果,具体采取的措施如下:(1)红焦运输途中,从提升塔到装焦口焦罐加盖; (2)干熄炉炉顶装焦口设置环形水封座,装焦时接焦漏斗的升降式密封罩插入水封座中形成水封,防止粉尘外溢,同时,接焦漏斗接通活动式抽尘管,斗内被抽成负压,将装焦时瞬间产生的大量烟尘抽入除尘管中,以减少粉尘的扩散污染; (3)排焦装置采用电磁振动给料机加旋转密封阀的方式,胶带机设密封罩,并在 焦炭排出口及胶带机受料点均设吸气罩,将烟气导入脉冲袋式除尘器,经除尘净化后排放;

焦化厂干熄焦技术的发展

焦化厂干熄焦技术的发展 摘要:干熄焦,是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。在干熄焦过程中,红焦从干熄炉顶部装入,低温惰性气体由循环风机鼓入干熄炉冷却段红焦层内,吸收红焦显热,冷却后的焦炭从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体流经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,惰性气体在封闭的系统内循环使用。干熄焦在节能、环保和改善焦炭质量等方面优于湿熄焦。 关键词:干熄焦技术、优点、发展 Abstract:CDQ coke wet quenching, are relative terms, refers to a kind of coke quenching method of cooling hot coke with inert gas. In CDQ process, red coke Conggan quenching furnace top load, low temperature inert gas by the circulation fan drum into dry quenching furnace cooling section red coke layer, absorbing red coke sensible heat, cooling of coke dry quenching furnace is discharged from the bottom, through the coke dry quenching boiler heat exchange from the high temperature inert gas dry quenching furnace the annular flue out, boiler to generate steam, inert gas cooled by circulating fan to drum into dry quenching furnace, inert gas is recycled in the closed system. CDQ is superior in energy-saving and environmental protection, and improve the quality of coke, coke wet quenching. Keywords:coke dry quenching technology, advantages, development 1.干熄焦技术概述 1.1 干熄焦定义 所谓干熄焦,是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。通常CDQ是焦炭干法熄焦的简称,Coke Dry Quenching 。 1.2 干熄焦原理 在干熄焦过程中,1000℃的红焦从干熄炉顶部装入, 130℃的低温惰性循环气体由循环风机鼓入干熄炉冷却段红焦层内,吸收红焦显热,冷却后的焦炭(低于200℃)从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体流经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,惰性气体在封闭的系统内循环使用。 2.干熄焦优点 1.2.1吸收红焦的热量,节约能源 传统的熄焦方法采用喷水降温,红焦显热浪费很大。因为每炼1公斤焦耗热约750~800千卡,而湿熄焦浪费的热量可达355千卡。干熄焦避免了上述的缺点,它吸收红焦的80%左右的热量使之产生蒸汽。干熄每吨焦炭可产生420~450Kg,450℃,4.6Mpa的中压蒸汽(蒸汽压力根据各厂实际而定)实际上还要高一些。 1.2.2改善焦炭的质量 焦炭在干熄炉的预存室里有一个再炼焦的过程,再加上它随着排焦均匀的下降和缓慢的冷却,因此焦炭裂纹较少,强度较好。再则干熄焦炭与焦粉容易分离也减轻筛分的困难,焦粉又可

干熄焦技术介绍

干熄焦技术介绍 Prepared on 24 November 2020

干熄焦技术介绍 1 技术简介 干熄焦(CDQ)是替代传统湿熄焦一项新技术。干熄焦采用惰性气体冷却炽热焦炭,并回收余热产生蒸汽的节能技术。该技术可节约用水、减少大气污染物排放、能够回收大量红焦显热并产生中高压蒸汽、有效提高能源利用效率、同时提高焦炭质量、扩大炼焦煤适应性、降低炼铁工序能耗,最终实现企业的节能减排。 2 主要功能 回收利用红焦显热 提高焦炭质量 产生蒸汽用于发电及其它用途 3 技术价值 节能和经济效益明显 ●焦炭显热回收 在焦炉的热平衡中被红焦带走的热量相当于焦炉加热所需热量的37%。湿熄焦无法回收焦炭显热,干熄焦可回收红焦热量的80%,每熄1吨红焦可回收蒸汽,发电130kwh。 ●水的消耗 湿熄焦吨焦耗水吨,干熄焦熄焦过程中不耗水。 ●高炉生产率 才用干熄焦的焦炭,炼铁高炉的焦比降低2%~3%,高炉生产能力提高1%。

环境效益明显 湿熄焦会对环境产生大量的污染:一是红焦在熄焦塔内用水喷洒时产生大量的水蒸汽,并夹带大量粉焦散发,另一方面会产生大量的酚、氰化合物和硫化合物等有害物质,严重腐蚀周围设备并污染大气。 干熄焦采用惰性循环气体在密闭的干熄炉内对红焦进行冷却,基本没有大量气体和液体外泻,可以免除酚、氰化合物和硫化合物等有害物质对周围设备的腐蚀和对大气的污染。通过对焦粉的收集和处理,最后以高净化烟气排入大气(粉尘质量浓度低于50mg/m3)。 可提高焦炭质量 干熄焦后焦炭机械强度、耐磨性、反应后强度均有明显提高,反应性降低。采用干熄焦,焦炭块度的均匀性提高,这对于高炉也是有利的。干熄焦比湿熄焦焦炭M40提高3~8%,M10降低~%,反应性有一定程度的降低。 干熄焦与湿熄焦焦炭质量对比 扩大炼焦煤源

我国干熄焦现状分析

我国干熄焦现状分析 徐列张秋强董兴宏邵丰 中冶焦耐工程技术有限公司 鞍山华泰干熄焦工程技术有限公司 近年来,干熄焦技术在我国得到迅速推广,相继投产了36 套干熄焦装置,年处理焦炭能力已达到4430万t,另有49 套干熄焦装置正在建设,加上2001年以前建设的17套,干熄焦装置总数已达到102套,成为世界上干熄焦装置建设最多的国家,干熄焦技术达到了国际先进水平。 一、我国干熄焦技术发展的两个阶段 干法熄焦简称“干熄焦”,是相对于用水熄灭炽热焦炭的湿熄焦而言的。其基本原理是利用冷的惰性气体(燃烧后的废气),在干熄炉中与赤热红焦换热从而冷却红焦。吸收了红焦热量的惰性气体将热量传给干熄焦锅炉产生蒸汽,被冷却的惰性气体再由循环风机鼓入干熄炉冷却红焦。 干熄焦具有回收红焦显热、减少环境污染和改善焦炭质量三大优点。但是,从1985年上海宝钢引进日本的4 75t/h干熄焦装置正式投产运行到2001年首钢引进日本的1×65t/h干熄焦装置建成投产,16年间我国只有17套干熄焦装置相继投产运行,年干熄焦炭的能力也只有755万t,占当时我国焦炭产量13130万t的5.8%。这些干熄焦装置处理能力小——每套干熄焦装置每小时处理焦炭65—75t,其技术和设备必须引进。这是我国干熄焦技术发展的第一阶段。这一阶段漫长而且缓慢,其主要特点是技术水平低,技术和设备靠引进。 2000年,当时的国家经贸委批准了干熄焦技术与设备国产化“一条龙”项目,2003年12月和2004年3月其依托工程——武钢7、8号焦炉140t/h干熄焦装置,示范工程——马钢5、6号焦炉125t/h 干熄焦装置相继投产。2005年4月干熄焦国产化“一条龙”项目通过了中国钢铁工业协会组织的项目鉴定。2005年11月,获得中国冶金科技进步一等奖。从2001年开始到现在是我国干熄焦技术发展的第二阶段,在这段时间里,我国干熄焦技术得到了迅速发展。这个阶段里已投产和在建的干熄焦装置达到了85套!其主要特点是干熄焦装置系列化、大型化,干熄焦国产化技术和设备得到全面开发和应用。 二、我国已投产和在建的干熄焦工程 目前,我国已投产和在建的干熄焦装置已经达到了102套,年干熄焦炭总处理能力达到9854万t,占2006年我国机焦炭产量26279万t的37.5 %。在102套干熄焦装置中,处理能力75t/h以下(含75 t/h)24套,占总数的23.5 %;75t/h以上140t/h以下(含140 t/h)59套,占总数的57.8 %;140t/h 以上160t/h以下(含160 t/h)15套,占总数的14.7 %;160t/h以上4套,占总数的3.9 %。最大的已投产干熄焦装置小时处理焦炭能力已达到160t,处理能力190-260t/h的干熄焦装置正在建设。在

干熄焦技术发展

干熄焦技术发展 干熄焦, 技术发展 一、国外干熄焦最新技术及发展趋势 (一)干熄焦工艺发展概况 干法熄焦简称干熄焦(CDQ),是相对于湿熄焦而言的采用惰性气体熄灭赤热焦炭的一种熄焦方法。干熄焦能回收利用红焦的显热,改善焦炭质量,减轻熄焦操作对环境的污染。 干熄焦起源于瑞士,最早的干熄焦装置是1917年瑞士舒尔查公司在丘里赫市炼焦制气采用的。20世纪30年代起,前苏联、德国、日本、法国、比利时等许多国家也相继采用了构造各异的干熄焦装置。干熄焦装置经历了罐室式、多室式、地下槽式、地上槽式的发展过程,由于处理能力都比较小,发生蒸汽不稳定、投资大等因素,这一技术长期未得到发展。到了20世纪60年代,前苏联在干熄焦技术工业化方面取得了突破性进展,在切列波维茨钢铁厂建造了带预存室的地上槽式干熄焦装置,处理能力达到52-56t/h。这种带预存室地上槽式干熄焦工业装置解决了过去干熄焦装置发生蒸汽不稳定等问题,实现了连续稳定的热交换操作。20世纪70年代,全球范围内的能源危机进一步推动了干熄焦技术的发展。日本首当其冲,在能源短缺、节能呼声高涨的背景下,从前苏联引进干熄技术和专利实施许可,经过消化移植,在大型化、自动化和环境保护措施等方面有所发展。到了20世纪90年代,日本建成投产了单槽处理能力为56-200t/h的多种规模的干熄焦装置39套,干熄焦率约占日本高炉焦用量的80%,是干熄焦装置应用最多的国家之一。 目前,日本新日铁、NKK、德国蒂森·斯梯尔·奥托公司在干熄焦技术上处于领先水平。这些公司在扩大干熄焦装置能力、改善冷却室特性、热平衡、物料平衡、自动化、环保等方面实现了最佳化设计,其处理能力和装置的先进性远远超过前苏联,并形成了各自的特点,见表1。 巴西、土耳其、尼日利亚和我国都相继建成了干熄焦装置。 (二)工艺技术特点 与常规湿法熄焦相比,干熄焦主要有以下三方面特点。 1、回收红焦显热

煤化工干熄焦

1.干熄焦简介 所谓干熄焦,是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。在干熄焦过程中,红焦从干熄炉顶部装入,低温惰性气体由循环风机鼓人干熄炉冷却段红焦层内,吸收红焦显热,冷却后的焦炭从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体流经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,惰性气体在封闭的系统内循环使用。干熄焦在节能、环保和改善焦炭质量等方面优于湿熄焦。 2.干熄焦历史 干熄焦起源于瑞士,20世纪40年代许多发达国家开始研究开发干熄焦技术,采取的方式各异,而且一般规模较小,生产不稳定。进人60年代,前苏联在干熄焦技术方面取得了突破进展,实现了连续稳定生产,获得专利发明权,并陆续在其国内多数大型焦化厂建成干熄焦装置。到目前为止,前苏联有40%的焦化厂采用了干熄焦技术,单套处理量在50~70t/h。但前苏联干熄焦装置在自动控制和环保措施方面起点并不高。 20世纪70年代的全球能源危机促使干熄焦技术得到了长足发展。资源相对贫乏的日本,率先从苏联引进了干熄焦技术,并在装置的大型化、自动控制和环境保护方面进行改进。到90年代中期,日本已建成干熄焦装置31套,其中单套处理能力在100 t/h以上的装置有17套,日本新日铁和NKK等公司建成的干熄焦单套处理量可达到200 t/h以上;装焦方式采用了料钟布料,排焦采用了旋转密封阀连续排焦,接焦采用了旋转焦罐接焦等技术,使气料比大大降低,极大地降低了干熄焦装置的建设投资和装置的运行费用;在控制方面实现了计算机控制,做到了全自动无人操作;在除尘方面,采用了除尘地面站方式,避免了干熄焦装置可能带来的二次污染。日本的干熄焦技术不仅在其国内被普遍采用,同时它将干熄焦技术输出到德国、中国、韩国等国家,其干熄焦技术已达到国际领先水平。 20世纪80年代,德国又发明了水冷壁式干熄焦装置,使气体循环系统更加优化,并降低了运行成本。德国蒂森斯蒂尔奥托(TSOA)公司成功地将水冷栅和水冷壁置入干熄炉,并将干熄炉断面由圆形改成方形,同时在排焦和干熄炉供气方式上进行了较大改进,干熄炉内焦炭下降及气流上升,实现了均匀分布,大大提高了换热效率,使气料比降到了1000 m3/t焦以下,进一步降低了干熄焦装置

干熄焦技术的难点、现状及发展方向

干熄焦技术 一、干熄焦技术及其特点 1. 干熄焦技术 基本原理: 干法熄焦简称“干熄焦”,是相对于用水熄灭炽热焦炭的湿熄焦而言的,其基本原理是利用冷的惰性气体(燃烧后的废气)在干熄炉中与赤热红焦换热从而冷却红焦。吸收了红焦热量的惰性气体将热量传给干熄焦锅炉产生蒸汽,被冷却的惰性气体再由循环风机鼓入干熄炉冷却红焦。干熄焦锅炉产生的中压(或高压)蒸汽用于发电。 工艺流程(见图1): 从炭化室中推出的950℃~1050℃的红焦经过拦焦机的导焦栅落入运载车上的焦罐内,运载车由电机车牵引至干熄焦装置提升机井架底部,由提升机将焦罐提升至井架顶部,再平移到干熄炉炉顶,通过炉顶装入装置将焦炭装入干熄炉。在干熄炉中,焦炭与惰性气体直接进行热交换,冷却至250℃以下。冷却后的焦炭经排焦装置卸到胶带输送机上,再经炉前焦库送筛焦系统。 180℃的冷惰性气体由循环风机通过干熄炉底的供气装置鼓入炉内,与红焦炭进行热交换,出干熄炉的热惰性气体温度约为850℃左右。热惰性气体夹带大量的焦粉经一次除尘器进行沉降,气体含尘量降到6g/m3以下,进入干熄焦锅炉换热,在这里惰性气体温度降至200℃以下。冷惰性气体由锅炉出来,经二次除尘器,含尘量降到1g/m3以下后同循环风机送入干熄炉循环使用。 锅炉产生的蒸汽或并入厂内蒸汽管网或送去发电。 干熄焦装置的主要设备包括:电机车、焦罐及其运载车、提升机、装料装置、排焦装置、干熄炉、鼓风装置、循环风机、干熄焦锅炉、一次除

尘器、二次除尘器等。 2. 与湿熄焦相比干熄焦的特点 a)回收红焦显热 出炉红焦的显热约占焦炉能耗的35~40%,这部分能量相当于炼焦煤能量的5%。如果将这部分这量回收并充分利用,可以大大降低冶金产品成本,起到节能降耗的作用。采用干熄焦可回收约80%的红焦显热,平均每熄1吨焦炭可回收3.9MPa,450℃蒸汽0.45t,发达国家可产0.6t左右。日本新日铁株式会社曾对其企业内部包括干熄焦、高炉炉顶煤气压差发电等所有节能项目效果进行过分析,结果干熄焦装置节能占总节能的50%。 b)减少环境污染 干熄焦的这个优点体现在两个方面: 1) 炼焦车间采用湿法熄焦,每熄一吨红焦炭就要将0.5t含有大量酚、氰化物、硫化物及粉尘的蒸汽抛向天空,严重地污染了大气及周围的环境。这部分污染占炼焦对环境污染的三分之一,且很难找到比较好的治理方法。干熄焦则是利用惰性气体,在密闭系统中将红焦熄灭,并配备良好的除尘设施,基本上不污染环境。 2) 由于干熄焦能够产生蒸汽(5-6t蒸汽需要1吨动力煤),并可用于发电,可以避免生产相同数量蒸汽的锅炉对大气的污染,尤其减少了SO2、CO2向大气的排放。对规模为100万t/a焦化厂而言,采用干熄焦,每年可以减少8-10万t动力煤燃烧对大气的污染。 c)改善焦碳质量 干熄焦与湿熄焦相比,焦炭M40提高3~8个百分点,M10改善0.3~0.8百分点。这对降低炼铁成本,提高生铁产量极为有利,尤其对采用喷煤粉技术的大型高炉效果更加明显。国际上公认:大型高炉采用干熄焦焦炭可使其焦比降低2%,使高炉生产能力提高1%。 在保持原焦炭质量不变的条件下,采用干熄焦可以降低强粘结性的焦、肥煤配入量10~20%,有利于保护资源,降低炼焦成本。

焦化行业工艺流程图

关键词:焦化行业烧结行业矿冶行业解决方案 焦化行业工艺流程1. 焦从焦炉底孔吹入燃烧室燃烧(焦炉煤气(贫煤气或高炉煤气)焦化行业工艺流程如图1。,对相邻炭化室进行加热,并采用交换机进行分时段炉煤气下喷,高炉煤气混合煤气侧喷)℃左右炭化室进行隔绝空气加热,1000<3mm送气切换;将粒度为的配合煤料经加煤车送入推焦机将成熟的焦炭从炭化室经高温干馏结焦形成焦炭,入炉煤在相邻燃烧室高温加热下,拉到熄)1000℃左右(中推出,经过拦焦车,落到熄焦车的车箱中,熄焦车将炽热的焦炭约%的5±2℃左右,同时控制焦炭水分在焦塔下,用水喷洒熄焦,使红焦熄灭,温度降到300再经皮带运走,干熄焦则由电机车范围内,熄完焦后,熄焦车将焦炭拉走并放至晾焦台上,冷却后的焦炭由将灼热焦炭运往干熄焦炉,用氮气置换热能,经锅炉换热,带汽轮机发电,℃左右的荒煤气,进入上升管,经桥700旋转密封阀排除,由皮带运出;高温干馏出来的约并与其他℃,~,使荒煤气迅速冷却至80100)(75管氨水喷嘴连续不断地喷洒热氨水℃左右经产品回炭化室的荒煤气汇集一起经集气管排吸气管、气液分离器、初冷器、鼓风机加压、收工段净化后送给用户,另外还有煤焦油及苯等副产品。焦化行业控制方案2. a. 顺序控制方案

主要为设备顺序控制,用于实现整个机组中各主要设备的监视操作、顺序启停和联锁保护等功能。焦炉加热系统换向工艺:焦炉煤气加热换向都要经历3个基本过程即:关煤气—空气与废气进行交换—开煤气;两次换向时间间隔根据加热制度、煤气种类、格子砖的清洁程度等具体情况而定;焦炉公用一个煤气总管时,为防止煤气压力变化幅度太大,影响焦炉正常加热,故几座焦炉不能同时加热,一般需相隔5min以上。 b. 联锁控制方案 在焦化行业中主要的设备联锁有鼓风机联锁,油泵联锁,电捕箱联锁等,具体的联锁方案如图2所示。 c. 模拟量控制方案 主要是完成整个机组的参数控制,将所有需要调整的模拟量参数稳定在运行所需要的范围内,减轻操作员的劳动强度,从而实现系统的自动控制。 (1)入初冷器煤气总管压力控制:通过调节鼓风机转速或煤气系统大循环翻板阀调节。压力设定值通过集气管压力修正。 (2)集气管压力控制:常规的PID调节方法,调节作用较强易引起超调,并容易破坏其他炉和吸力系统的平衡,相互影响相互干扰,导致整个系统控制不能达到要求;调节作用较弱则在装煤结束和用气量发生变化后达到平衡时间较长;同时采用变PID的控制方法效果也不佳,超调和振荡依然不能很好克服。 为了解决上述问题,我们采用了变PID和模糊控制器相结合的方案,使用结果证明,该方案能较好地克服装煤结束后气压突变的状况。方案的主要原理是根据状态和趋势在偏差较大和变化趋势较快的情况下采用模糊控制器快速输出,根据集气管压力变化自动调节荒煤气管道上的翻板开度,从而稳定集器管压力。根据状态和趋势在偏差较小和变化趋势较慢的情况下根据控制器判断选择控制器的PID参数来微调。 (3)初冷器吸入压力自动控制:目的是保证煤气吸力稳定,从而保证集气管压力稳定,进一步保证鼓风机后续工段的压力稳定。针对不同形式的鼓风机,该控制可通过调节鼓风机转速,或控制风机旁路(大循环)等方法来实现。压力信号可取自初冷器入口,引入DCS,由DCS输出4~20mA信号完成自动控制。 当多炉共用一总管时,鼓风机吸入压力的设定值,通过集气管压力测量,去自动修正,把压力控制在适合集气管调节的范围内。作为修正的多个集气管压力,可由人工手动选择。 当采用鼓风机调速时,通过设定的鼓风机吸入压力值,调节鼓风机转速。如采用离心风机,须考虑喘振和共振控制范围较小。 (4)分烟道压力控制:目的是保证烟道的吸力稳定,达到合理的空气过剩系数,从而减少热损失,提高热效率。根据分烟道压力变化自动调节烟道翻板的开度,稳定分烟道压力。燃烧控制系统采用以加热煤气量作为前馈参数调节烟道吸力的方案,需考虑到废气含氧量受诸多方面因素影响。 (5)气液分离器液位控制:目的是防止冷凝液溢槽。冷凝液含有轻质焦油和氨水,一旦该控制通过调节至初冷器前荒煤气管道上的调很难用常规方法清除。溢出会造成环境污染, 节阀来实现。 (6)主煤气流量控制:目的是将焦炉温度控制在1250~1350℃。根据主煤气流量变化自动调节主煤气管道上的翻板开度,稳定主煤气流量,保证焦炉温度。在炼焦煤性质稳定的情况下,加热温度的变化会对炼焦化学产品的质量和产率产生影响。在煤气性质稳定的前提下,通过控制燃烧室煤气流量来保证焦炉加热。加热系统控制采用前馈控制结合炉温修正的方案,即将影响焦炉加热的主要因素如加热煤气特性、配合煤的特性和焦炉操作等纳入流量控制模块。 二烧结行业自控解决方案 随着我国冶金工业技术的迅速发展,要求冶金企业在技术装备水平方面有较大的突破,目前

济钢干熄焦技术的研究与应用

济钢干熄焦技术的研究与应用 温燕明 蔡漳平 徐文胜 卢元俭 (济南钢铁集团总公司) 摘 要 介绍了济钢干熄焦技术的引进消化、联合设计,实现国产化的情况,可供目前老焦化厂改造、节能降耗、改善工艺装备水平借鉴。济钢干熄焦的建成消除了由于湿熄焦对环境的污染,取得明显的环保效益。干熄焦使焦炭质量提高,对降低焦比有重要作用,经济效益显著。 关键词 干熄焦技术 节能降耗 应用α STUDY AND APPL I CAT I ON OF COKE D RY QUENCH ING TECHN IQUE AT J INAN STEEL W EN Yanm ing CA I Zhangp ing XU W en sheng LU Yuan jian (J inan Iron and Steel Group Co1) ABSTRACT T he techn ical tran sfer,jo in t design and dom estic m anufactu re of coke dry quench ing techn ique and equ i pm en t to be adop ted to local conditi on s at J inan Steel is in troduced in the p ap er1T he p ro ject becam e a m odel fo r energy saving,con sum p ti on reducti on and environm en t p ro tecti on effect1T he coke rate of B F operati on is reduced due to better coke quality1T he good econom ic resu lts m ake coke dry quench ing techn ique w o rth sp reading1 KEY WOR D S coke dry quench ing techn ique,energy saving and con sum p ti on reducti on app licati on 1 概述 济南钢铁集团总公司干熄焦技术(简称济钢干熄焦)是国家经贸委、国家冶金局和山东省重点支持的节能示范项目,经过两年多的施工,1、2号干熄炉分别于1999年3月2日和4月8日相继投入运行。同年10月通过了国家经贸委、国家冶金局组织的工程验收。济钢干熄焦技术的应用对“十五”期间重点推广节能降耗项目具有十分重要的意义。 干法熄焦技术是国际上先进的焦化节能技术,国内上海宝钢和浦东煤气厂是从国外全套引进,投资高,很难在国内推广。为掌握该技术并实现国产化,国家经贸委要求济钢干熄焦节能项目采用国内外共同设计、合作制造、技贸结合的方式,引进国外干熄焦技术,并配套引进部分关键设备。凡国内能生产制造的设备由国内加工配套解决。济钢干熄焦主要工艺设备由乌克兰设计,国内转化制造,其他由济钢设计院设计,国内制造。另外,济钢设计院与乌克兰哈尔科夫焦化设计院和斯拉文斯克焦化设备设计局进行了多次技术交流,基本掌握了干熄焦技术,为在现有炼焦工艺条件下建设干熄焦打下了基础。 济钢焦化厂现有42孔413m焦炉4座,设计年产焦炭110万t。4座焦炉配有两组湿熄焦装置,布置在焦炉两端。湿法熄焦在生产过程中产生大量蒸汽排放到大气中,白白浪费掉宝贵的余热资源。1000℃左右的炽热焦炭所包含的余热,按年产焦炭110万t计,可产生蒸汽55万t。济钢的干熄焦装置,由二套处理焦炭70t h的干熄焦装置,配备2台产汽35t h的余热锅炉及1台6100k W的背压发电机组组成。全年可回收余热蒸汽47万t,发电3920万k W?h。工程包括干熄焦主体工艺设备,汽 第35卷 第8期钢 铁V o l.35,N o.8 2000年8TRONAND ST EEL A ugust2000α联系人:蔡漳平,高级工程师,济南(250101)济南钢铁公司技术中心

国内外干熄焦技术状况和发展趋势

国内外干熄焦技术状况及发展趋势1.国外干熄焦最新技术及发展趋势 1.1干熄焦工艺的发展概况 干法熄焦(Coke Dry Quenching)简称干熄焦(CDQ),是相对于湿熄焦而言的采用惰性气体熄灭赤热焦炭的一种熄焦方法。干熄焦能回收利用红焦的显热,改善焦炭质量,减轻熄焦操作对环境的污染。 干熄焦起源于瑞士,最早的干熄焦装置是1917年瑞士舒尔查公司在丘里赫市炼焦制气厂采用的。20世纪30年代起,前苏联、德国、日本、法国、比利时等许多国家,也相继采用了构造各异的干熄焦装置。干熄焦装置经历了罐室式、多室式、地下槽式、地上槽式的发展过程,由于处理能力都比较小,发生蒸汽不稳定、投资大等因素,这一技术长期未得到发展。到了20世纪60年代,前苏联在干熄焦技术工业化方面取得了突破性进展,在切列波维茨钢铁厂建造了带预存室的地上槽式干熄焦装置,处理能力达到52~56t/h。这种带预存室地上槽式于熄焦工业装置解决了过去干熄焦装置发生蒸汽不稳定等问题,实现了连续稳定的热交换操作。该装置的技术先进性得到了世界焦化界的公认,并陆续在焦化厂推广建设。20世纪70年代,全球范围内的能源危机,进一步推动了干熄焦技术的发展。日本首当其冲,在能源短缺、节能呼声高涨的背景下,从前苏联引进干熄焦技术和专利实施许可,经过消化移植,在大型化、自动化和环境保护措施等方面有所发展。到了20世纪90年代,日本建成投产了单槽处理能力为56~200t/h 的多种规模的干熄焦装置39套,干熄焦率约占日本高炉焦用量的80%,是干熄焦装置使用最多的国家之一。 目前,日本新日铁、NKK、德国蒂森·斯梯尔·奥托公司在于熄焦技术上处于领先水平。这些公司在扩大干熄焦装置能力、改善冷却室特性、热平衡、物料平衡、自动化、环保等方面实现了最佳化设计,其处理能力和装置的先进性远远超过了前苏联,并形成了各自的特点,见表1。 巴西、土耳其、尼日利亚和我国都相继建成了干熄焦装置。

大型干熄焦技术探讨与应用

大型干熄焦技术分析与应用实效 朱长军 (首钢京唐钢铁联合有限公司) 摘要:本文主要结合首钢京唐西山焦化有限公司投用的世界最大型干熄焦装置,对实现大型化的新技术新设备进行全面分析,并对应用效果进行简单介绍。 关键词:干熄焦新技术大型化 根据国家对建设首钢京唐钢铁联合有限公司高标准、高起点的要求,并结合京唐钢铁公司焦化作业部的实际情况,京唐焦化在科学论证和试验的基础上应用了最前沿的干熄焦技术,使新建成的干熄焦装置在节能、环保和自动化控制等方面均达到了干熄焦装置的国际先进水平,特别是在干熄焦处理能力方面更是世界第一。 一、京唐干熄焦工程介绍 京唐焦化部现有四座7.63m焦炉,每座为70孔,2座焦炉小时全焦产量246t/h。京唐西山焦化根据目前世界上干熄焦技术的发展状况,以及NSC-ENG在大型化干熄焦方面的技术开发、技术积累和国内外的实际运用经验,采用了NSC-ENG的干熄焦的技术,并尽可能采用国产设备,降低工程投资。最终配套建设了处理能力2×260t/h的干熄焦装置及配套设施,湿熄焦系统作为备用。一期一步干熄焦工程于2009年5月份投产,一期二步干熄焦工程于2010年4月份投产。 就干熄焦技术本身而言其原理部分是一致的,所不同的是京唐公司所投用的干熄焦装置通过新设备、新技术的大量优化改进,解决了制约干熄焦处理能力大型化的难点,最终通过大型化达到减少成本投入增加效益产出的企业效益目标。 京唐干熄焦主要设备规格参数指标见表1。 表1·京唐干熄焦主要设备规格参数 干熄焦主体设备构成如图一所示。

二、京唐干熄焦技术特点 1.沿用及优化技术 京唐公司与设计安装单位(中日联合节能环保有限公司)基于干熄焦多年稳定运行经验和技术发展现状,对已用的各项干熄焦技术进行分析比较,对稳定成熟的设备设施继续沿用,并对绝大部分设备设施进行优化。 1.1干熄槽 1.1.1 形状比例优化 设计单位都对冷却能力(干熄槽各部位构造、尺寸、物料平衡,热平衡)进行了计算, 确定了适应260T/H 干熄槽(冷却段)采用矮胖型并做进一步优化。干熄槽冷却段高度与直径之比由一般的0.78降至0.72。冷却段高度的进一步降低可减小干熄炉内循环气体的阻力,降低循环气体量,使设备费、运营费及生产成本降低,相应配套的提升机钢桁架和一、二次除尘器钢结构的高度也可降低,节省工程投资。 预存段与冷却段高度之比较一般干熄焦低,预存段高度的降低可减小斜道砖承重负

170t干熄焦车间操作规程22

目录 一、生产工艺简介及流程图 (1) 二、生产岗位 (2) 1. 干熄焦主控岗位 (2) 1.1 工艺流程 (2) 1.2 原料及产品的技术要求 (2) 1.3 工艺设备 (3) 1.4 工艺操作 (4) 1.5 特殊操作 (15) 1.5.7 异常天气的处理 (17) 2.筛运焦岗位 (17) 2.1 工艺流程 (17) 2.2 原料、产品技术条件及质量标准 (18) 2.4 工艺操作 (18) 2.5 皮带特殊操作 (19) 2.6 工艺事故的分类和责任划分 (19) 4.除尘岗位 (19) 4.1 工艺流程 (19) 4.2 工艺技术指标 (19) 4.3 工艺设备 (20) 4.4 工艺操作 (20) 4.5 特殊操作 (22)

一、生产工艺简介及流程图 干熄焦工艺是利用冷的惰性气体(氮气),在干熄炉内与炽热红焦进行换热,从而冷却焦炭,吸收了红焦热量的惰性气体,将热量传递给干熄焦锅炉产生高温高压蒸汽,蒸汽送至汽轮机进行发电(蒸汽冷凝成水后,打入除盐水箱循环使用)。冷却后的循环气体再由风机加压,鼓入干熄炉内循环使用。干熄焦系统主要由焦炭物流系统(干熄炉、装入装置、排焦装置、提升机、电机车及焦罐台车、焦罐)、气体循环系统(循环风机、干熄炉、一次除尘器、二次除尘器、锅炉)、干熄炉系统、除尘地面站、自动控制系统、发电系统等部分组成。干熄焦工艺流程如图1.1所示: 图1.1 170t/h干熄焦系统工艺流程图

二、生产岗位 1. 干熄焦主控岗位 1.1 工艺流程 1—干熄炉;2—1DC;3—锅炉;4—2DC;5—循环风机;6—给水预热器;7—旋转密封阀 图2.1 干熄焦锅炉系统工艺流程图 1.2 原料及产品的技术要求 1.2.1 原料产品、技术条件及质量标准: 每孔炭化室产干全焦量:31.26t 红焦温度:950~1050℃ 1.2.2 质量标准: 排焦温度:≤200℃ 干熄炉出口循环气体温度:900~980℃ 1.2.3 岗位工艺技术指标: 干熄炉熄焦风料比:≤1350Nm3/t红焦,干熄炉最大风量:2230000Nm3/h. 锅炉出口循环气体温度:160~180℃ 循环气体成分:CO:4-6 % H2:0-3 % O2:0-1 % CO2:<8-15 % N2>66 % 焦炭烧损率:≤2% 干熄炉预存段压力:0~±50Pa 干熄炉入口循环气体温度:115℃~130℃ 除盐水箱水位: 有发电回水时:5.5~6.5m;仅有动力供水时: 6.5~7.0m 除氧器水位:0±100 mm 汽包水位:0±50 mm 副省煤器入口水温≥60℃,副省煤器出口水温≤120℃

相关文档
最新文档