TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册
TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册(诺西主设备)

V0.1

中国移动通信集团浙江有限公司

2014年3月

目录

第一章前言

对于移动通信网络,保证业务质量的前提是使用干净的频谱,即该频段没有被其他系统使用或干扰。否则,会使受干扰系统的性能以及终端用户感受都会产生较大的负面影响。

随着4G LTE基站的逐步建设,目前已形成了2/3/4G基站共存的局面,系统间干扰的概率也大幅提升,在目前已建设的基站中,已发现大量的TD-LTE基站受到上行干扰。这些干扰主要包括2/3G小区对TD-LTE小区的阻塞、互调和杂散干扰,此外还有其他无线电设备,如PHS基站带来的外部同频干扰,具体如下表:TD-LTE频段容易受到的干扰

F频段

(1880~1900MHz)①GSM900/GSM1800系统和PHS系统带来的阻塞干扰

②GSM900系统带来的二阶互调干扰

③GSM1800系统带来的杂散干扰

④PHS系统和其他电子设备带来的外部干扰

D频段

(2575~2635MHz)①GSM900/GSM1800系统带来的阻塞干扰

②800M Tetra系统和CDMA800MHz系统带来的三阶互调干扰

③其他电子设备带来的外部干扰

E频段(2320~2370MHz)①GSM900/GSM1800系统带来的阻塞干扰

②WLAN AP带来的杂散和阻塞干扰

③其他电子设备带来的外部干扰

表1:TD-LTE各频段上行容易受到的干扰

从上表可以看出,由于F频段与干扰源系统的频率比较接近,因此F频段受到的干扰最多,本文侧重于实际操作,因此对于TD-LTE各频段所受干扰的分析具体可见中国移动研究院编撰的《TD-LTE系统间干扰排查与规避指导手册》。

按照诺西提出的要求,NPI全频段20M>=-109,认为存在干扰,需要处理。

本TD-LTE干扰排查指导手册以诺西宏站为排查对象,通过诺西的小区级RSSI话统筛选出上行RSSI>-89dBm且持续5天时间出现10次的小区,并通过NPI 上行干扰跟踪功能,NPI>=-109dbm定位为干扰小区,结合2/3G基站工参信息,采用上下行分离的PC-Tel扫频仪现场进行干扰排查,并与2/3G网管配合对干扰进行网管确认,最后进行现场确认并进行干扰整治,总体流程如下图所示:

筛选出RSSI 指标大于-89且出现次数大于10次

的小区进行后台NPI 跟踪监控

针对NPI 异常小区进行现场排查并输出整治方

干扰小区现场整治和后台NPI 跟踪确认干扰是否消除

输出单站干扰排查整改报告

网管提取RSSI 指标(24小时X5天)

第二章 TD-LTE 高干扰小区筛选方法

目前,诺西后台没有PRB 功能,对LTE 干扰统计全部是全频段20M 的,存在有如下3种干扰值统计模式:

1) RSSI& NPI ;

定义:

RSSI :上行全频段接收功率; NPI :20M 带宽的上行干扰电平; 阈值:

RSSI>-89dBm & NPI>=-109dBm ; 统计方法:

每周统计一次全网所有小区的RSSI ,每次统计时间为5天,每天统计24个小时,每小时输出一个采样平均值,则每个小区每周输出5*24=120个采样数据,将采样数据中RSSI>-89dBm 超过10次的小区筛选出来,列为每周干扰小区,取截止目前所有周的并集做为干扰备选小区。在忙时对通过RSSI 统计出来的干扰小区进行trace (RSSI Top 小区优先trace ),时长为20分钟(实际有效时长约5分钟,有效采样点约500个),进一步筛选NPI>=-109dBm 为干扰小区;

2) ISCP ;

阈值:ISCP>=-100dBm;

统计方法:对RRU支持F频段,但尚未开启LTE的小区,在1880-1920MHZ频率内的所有频点进行轮询及数据采集,每个频点的统计时长至少3个小时,在规定时间内统计TS1和TS2的平均及最大ISCP。

此方法统计出来与现场排查结果出现干扰小区占比偏低原因:一方面可能数据较旧;

另一方面可能设备替换后性能提升。

3)路测拉网数据;

阈值:THR_UL<5mbps;

统计方法:在17个ATU网格拉网测试中,上行平均速率<5mbps,列为干扰小区;

4)KPI Top小区;

TOPN小区筛选条件:

掉线率:掉线率大于20%,掉线次数RB_REL_REQ_RNL+RB_REL_REQ_OTHER 大于70次;

接通率:SIGN_EST_F_RRCCOMPL_MISSING 或SIGN_CONN_ESTAB_FAIL_RRMRAC 大于100;

切换率:INTER_ENB_HO_FAIL 或INTER_ENB_S1_HO_FAIL 大于100,或

INTRA_HO_FAIL_NB大于100;

2.1 RSSI统计指标提取步骤

?第一步:登录诺西话务统计平台

?第二步:点击REPORT

?第三步:点击PEPORT SUIT

?第四步:点击TOOL-CONNECT BROWSER

?第五步:CONTENT BROWSER查找已建立的模板

?第六步:设置查询日期时间、REPROT LEVEL等

?第七步:查询并导出文件

2.2 NPI干扰跟踪操作步骤

?第一步:远程桌面连接-10.212.193.74服务器执行 Remote.exe 程序

菜单栏点击 Config —》ConfigBBU —》输入要监控的enodeB IP地址

EnablePort

BBUCommon-→

Configuration on BTSLOG tool(设置基站IP地址)

In menu Tools - Setup - Tracing: enable "Receive SysLog over TCP instead of UDP".

?第三步:检查“nodes.ini”配置文件,主要是修改基站IP设置参数,点击下图红色框按钮

[WAM_10]

Connection=TCP

IPAddress=192.168.254.1 // 把IP改成要跟踪NPI的基站IP

?第四步:检查R&D configurations(修改基站IP地址+ 修改65和68行参数)

选择

[WAM_10] under "Target node" and change "Domains" to "Ccs".

点击按钮上图窗口 "Get Current" to 获得当前配置信息. Index 65 and 68 should be 3 and 269550365(Demical).

ERadCcs_AaSysLogOutputMode (RAD_CCS 65) = 3

ERadCcs_AaSysLogSicAddress (RAD_CCS 68) = 0x1011031D(Hex)

修改65和68行参数后记得点击 Set-New 应用参数改动设置

点击 GET Current 查看65和68行参数是否修改成功

?第五步:检查R&D configurations(修改基站IP地址+ 修改416行参数)

Domain选择LteMac,板号设置1x(小区对应1小区12、2小区13、3小区14),CPU 设置34,任务号设置110d。

172.27.2.137

GETUP----修改:将第416个参数设置为4

修改416行参数后记得点击 Set-New 应用参数改动设置

点击 GET Current 查看416行参数是否修改成功

?第五步:以上这些步骤完成后,就可以点击下图“Start”按钮开始跟踪了。

点击 REAL TIME VIEWS “1”按钮,查收LOG跟踪情况。

最后在btslog里面过滤NPI就可以了,IOT值抬升就是看npisystem值的抬升。

2.3 RSSI统计数据输出呈现

?RSSI干扰小区的定义及统计方法:

取小区级5天60分钟粒度的话统,按照条件“(RSSI_PUSCH_AVG>-89dBm)且次数>10次”过滤出RSSI干扰统计列表。

注:诺西不支持RB级别的干扰信号RSSI统计,仅支持全频带RSSI统计(有用信号+干扰信号),故目前的统计结果达不到预期的效果,无法初步定为干扰类型。

?结果输出示例如下:

2.4 NPI干扰跟踪输出呈现

?NPI干扰小区的定义及统计方法:

通过RSSI>-89dBm且次数>10次统计出来的小区进行NPI trace,时长为15分钟,进一步筛NPI>=-109dBm为干扰小区;

?结果输出示例如下:

第三章TD-LTE高干扰小区干扰分析和确认

获取到小区的5×24小时小区级RSSI统计和NPI级干扰跟踪数据后,就可以结合地图、天线的工参进行初步判断是外干扰还是系统内干扰,但由于没有PRB功能,无法定位具体的干扰类型。

3.1干扰分析准备工作和排查指导

?干扰排查分析准备工作

●天面上GSM(900MHz和1800MHz)基站的BCCH、TCH频点等信息。

●同一天面上各基站功率、天线高度、天线方位角和俯仰角。

●TD-SCDMA基站小区扰码和功率。

●需要去现场进行确认时,需要准备以下仪器设备:

仪表类型仪表型号数量用途PCTEL MX扫频仪PCTEL MX 2.6.5.0 1 干扰定位扫频软件Rainbow Scanner 1 扫频

DCS1800滤波器带通1710-1880带验证口滤波器 3 DCS1800杂散测试

F频段滤波器1880-1920MHZ 频段带通滤波器 1 接八木天线,防饱合失真八木天线1880-1920MHZ频段 1 干扰定位

跳线N 接主设备、滤波器、八木

天线等

罗盘DL-1 1 定位天线方位角

工具大力钳、斜口剪、工具刀、十字

螺丝刀、一字螺丝刀、防水胶布

N 拆主设备

?TD-LTE F频段干扰原因分析-干扰类型:

?TD-LTE F频段干扰原因分析-干扰原因:

LTE干扰分为系统内与系统间干扰,我们重点讲述系统间干扰。

系统内干扰的产生:TD-LTE系统,虽然同一个小区内的不同用户不能使用相同频率资源(多用户MIMO除外),但相邻小区可以使用相同的频率资源。这些在同一系统内使用相同频率资源的设备间将会产生干扰,也称为系统内干扰。

系统间干扰的产生:系统间干扰通常为异频干扰。发射机在指定信道发射

的同时将泄漏部分功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。系统间干扰类型有:

●杂散干扰:是指干扰源在被干扰接收机工作频段产生的加性干扰,包括干

扰源的带外功率泄漏、放大的噪底、发射谐波产物等等,使被干扰接收机的信噪比恶化。

●阻塞干扰:接收机通常工作在线性区,当有一个强干扰信号进入接收机时,

接收机会工作在非线性状态下或严重时导致接收机饱和,称这种干扰为阻塞干扰,阻塞干扰可以导致接收机增益的下降与噪声的增加。

●互调干扰:当两个或多个不同频率的发射信号通过非线性电路时,将在多

个频率的线性组合频率上形成互调产物。当这些互调产物与受害接收机的有用信号频率相同或相近时,将导致受害接收机灵敏度损失。

●谐波干扰:由于发射机有源器件和无源器件的非线性,在其发射频率的整

数倍频率上将产生较强的谐波产物。当这些谐波产物正好落于受害系统接收机频段内,将导致受害接收机灵敏度损失。

●外部干扰:由于私装天线或其它设备如对讲机、小灵通、无线卫星接收机

等,由于频率与LTE相同或相近时,产生对LTE造成干扰。

?TD-LTE F频段干扰原因分析-干扰原因:

●移动公司部分2G网络天馈系统无源互调指标较差容易带来TD-LTE系统的互

调干扰。

●在F频段杂散指标较差的DCS1800基站,对F频段TD-LTE系统低端频率产生

杂散干扰。

●F频段的TD-LTE设备对工作在靠近1880MHz的DCS1800信号的抑制能力较

差,受到一定阻塞干扰。

●部分TD-LTE天面与联通基站DCS较近,尤其当天线方向角较小时,会受到联

通DCS干扰。

●F频段小灵通未完全退频,可能会对TD-LTE产生一定的干扰。

?TD-LTE F频段干扰整治方法:

●针对GSM900谐波或二阶互调干扰整治方法:

1)调整频点;

2)更换GSM900天馈线;

3)天线隔离度整改。

●针对DCS1800杂散干扰整治方法:

1)在DCS1800基站加装杂散抑制滤波器;

2) 天线隔离度整改。

●针对DCS1800阻塞干扰整治方法:

1)在TD-LTE基站加装抗阻塞滤波器或整体更换RRU ;

2)进行TD-LTE 软件升级;

3)天线隔离度整改;

4)调整DCS1800频点为低频点。

●针对DCS1800互调干扰整治方法:

1)调整DCS1800频点;

2)天线隔离度整改;

3)更换DCS1800天馈线。

●各种干扰类型对应空间隔离度距离要求,如下:

3.2 后台排查流程

1)通过诺西NPI跟踪筛查出干扰小区(NPI>-109定为存在干扰小区);

2)后台人员在上站前查询排查站点是否有告警,并配合前台排查组进行NPI trace (trace时间为15min):

?步聚一:关闭DCS1800站点,后台trace NPI的变化情况,前台排查组安装滤波器进行DCS1800主设备杂散干扰测试;后台人员分析NPI变化情况,如果NPI改善,且前台测试到杂散现象,则初定干扰源为杂散干扰;否则,

?步聚二:关闭GSM900,trace NPI,观察NPI变化情况,如果有改善,且前台排查到谐波、互调等干扰,则初定干扰源为GSM900或外部干扰引起的干扰;

否则,

?步聚三:关闭TDS,trace NPI观察NPI变化情况,如果NPI有改善,则初定

为TDS干扰引起或外部干扰引起;否则,

?步聚四:将LTE三个小区轮流关闭其中两小区进行trace NPI,初步判定干扰源小区。

以上每一步操作都得结合前台排查到的干扰源进行结合分析。

3.3 前台排查流程

3.4 系统内干扰分析和确认

3.4.1系统内干扰分析

系统内干扰主要是同频干扰,现阶段主要为LTE TDD帧失步(GPS失锁)造成的系统内干扰。其干扰特点:

?帧失步(GPS失锁):对于LTE TDD系统,因为是时分双工,这对系统的时钟同步要求很高。如同一个网络中的某基站A与周围其他基站的时钟不

同步,这就造成基站A的DL信号被周围的基站接收到,故而干扰到了

周围基站的上行接收。GPS也会造成同样的问题,但是GPS时钟不同步

造成的干扰,通常影响范围比较严重,且范围很广。

?20M频段内干扰呈现的特点是整个LTE- F频段凸起。

?越空旷的地方、越靠近施扰源干扰越强,影响范围较广。

如某小区小区级干扰曲线图如下图所示:

从扫频频谱图可以很明显的看到该小区的干扰特点,整个F频段

(1801~1899M)受到干扰,且周边小区均出现相同的干扰特征,可以确认

为LTE系统内干扰。

3.4.2系统内干扰确认

通过网管检查LTE基站是否有GPS失锁或时钟模块告警,并采用关闭施

扰源LTE小区站点,对受干扰LTE小区进行NPI跟踪对比或现场扫频来确认。

关闭施扰源LTE基站前扫频频谱图

TD-LTE干扰分析、排查及解决措施(1001)--经典

TD-LTE干扰分析、排查及解决措施(1001)--经典

江西TD-LTE干扰分析进展及排除思路 目录 一、背景 (3) 二、TDD-LTE系统间干扰情况 (3) 三、干扰分类 (5) 3.1阻塞干扰 (5) 3.2杂散干扰 (9) 3.3GSM900二次谐波/互调干扰 (12) 3.4系统自身器件干扰 (14) 3.5外部干扰 (16) 四、排查方法 (17) 4.1资源准备 (17) 4.2数据采集 (18) 4.3制作RB干扰曲线分布图 (18) 4.4现场排查方法 (19) 五、江西LTE现网情况 (20) 5.1各地市干扰统计情况 (20) 5.2各地市干扰分布情况 (20) 六、新余现场干扰排查整治 (22) 6.1干扰样本站点信息 (23) 6.2样本站点案例 (24) 七、九江FDD干扰专题 (37) 7.1九江现网情况 (37) 7.2干扰样本点信息 (38) 7.3受干扰站点与电信FDD站点分布情况 (39) 7.4九江彭泽县FDD干扰排查 (39) 7.5抽样排查处理 (40) 7.6电信FDD干扰解决建议 (46) 八、后续计划 (46)

一、背景 ●使用频率:工信部批准电信和联通混合组网试点开展,随着1875~1880MHz保护带推移至1880~1885MHz,不排除电信不加滤波器提前使用1880频段; ●设备能力:我司早期采购设备抗阻塞能力不满足559号文要求导致TDS升级TDD的部分双模站点现网使用存在阻塞干扰; ●工程施工:现场施工问题导致各制式/系统间隔离度不够带来的干扰。 二、TDD-LTE系统间干扰情况 TD-LTE频 段容易受到的干扰

2012上行干扰处理流程及案例

2012遵义上行干扰处理流程及案例 根据省公司“工兵行动”专项干扰优化要求,各分公司将按照自查自纠展开工作。干扰问题一直是属于优化的重点,干扰会造成后台指标恶化,同时用户感到呼叫困难、通话质量差、异常掉话等。因此,处理干扰刻不容缓。 目前,遵义全网存在三种类型干扰:一是直放站干扰(设备稳定性较差)。二是网内干扰(谐振腔、馈线头、避雷器、天线等)。三是外部干扰(如电信CDMA、私装天线等)。处理起来比较繁琐、较为复杂,网优室结合现场处理经验。梳理了排查步骤和案例如下,各公司要进行认真学习,强化干扰处理能力,着实提升网络质量。 一、排查步骤 1、带直放站干扰小区 若接直放站,则将直放站全部甩开,将直放站合路器一同拆下,保持基站天馈原有状态。 (切忌不可只关直放站电源),联系机房人员查看上行干扰是否消失或减弱(让机房工作人员多刷新几次)。 若上行干扰消失,则需联系直放站厂家对直放站设备进行处理。处理完成后,维护人员 应打机房电话确认干扰是否消除,并且到直放站远端覆盖区域检查覆盖是否减弱。 若上行干扰没有任何变化,需要做如下步骤。 2、若无直放站小区存在上行干扰 排查该干扰小区100米内是否存在电信基站,若存在电信基站,建议首选协调电信关闭 电信基站后联系机房查看干扰小区的上行干扰情况。若无法协调电信关闭基站,建议将干扰小区天线方位角转向背向电信基站方向,联系机房查看上行干扰情况,判断是否减弱或消失。若干扰减弱或消失,则该小区的干扰源为电信基站,建议协调电信整改或者安装滤波器。若不是电信干扰,需要做如下步骤。 3、网内干扰处理 该小区无电信站在附近,无直放站,基本可以判断为基站网内干扰,涉及到的部件有: ANC、ANY、1/2跳线头、避雷器、7/8馈线头、天线。首先检查1/2跳线头是否老化、松

最新tdlte干扰分析、排查及解决措施(1001)经典资料

江西TD-LTE干扰分析进展及排除思路 目录 一、背景 (2) 二、TDD-LTE系统间干扰情况 (2) 三、干扰分类 (3) 3.1阻塞干扰 (3) 3.2杂散干扰 (5) 3.3GSM900二次谐波/互调干扰 (6) 3.4系统自身器件干扰 (8) 3.5外部干扰 (9) 四、排查方法 (9) 4.1资源准备 (9) 4.2数据采集 (10) 4.3制作RB干扰曲线分布图 (10) 4.4现场排查方法 (10) 五、江西LTE现网情况 (11) 5.1各地市干扰统计情况 (11) 5.2各地市干扰分布情况 (11) 六、新余现场干扰排查整治 (13) 6.1干扰样本站点信息 (14) 6.2样本站点案例 (14) 七、九江FDD干扰专题 (24) 7.1九江现网情况 (24) 7.2干扰样本点信息 (25) 7.3受干扰站点与电信FDD站点分布情况 (26) 7.4九江彭泽县FDD干扰排查 (26) 7.5抽样排查处理 (27) 7.6电信FDD干扰解决建议 (32) 八、后续计划 (33)

一、背景 ●使用频率:工信部批准电信和联通混合组网试点开展,随着1875~1880MHz保护带 推移至1880~1885MHz,不排除电信不加滤波器提前使用1880频段; ●设备能力:我司早期采购设备抗阻塞能力不满足559号文要求导致TDS升级TDD的 部分双模站点现网使用存在阻塞干扰; ●工程施工:现场施工问题导致各制式/系统间隔离度不够带来的干扰。 二、TDD-LTE系统间干扰情况

上行干扰影响 干扰对TD-LTE上行性能影响如下表: 三、干扰分类 根据射频特性和频谱关系分析出F 频段TD-LTE 基站会受到电信与联通FDD-LTE、DCS1800、GSM900 和PHS基站的干扰,按照干扰类型又分为阻塞干扰、杂散干扰、谐波/互调干扰等。 注:F 频段TD-LTE 终端也会对DCS1800 终端造成干扰。经分析由于DCS 终端抗阻塞能力较强且终端间相对位置随机性较大,因此干扰强度不高。 3.1 阻塞干扰(注:全频段干扰) 由于TD-LTE 基站接收滤波器的非理想性,在接收有用信号的同时,还将接收到来自邻频的1800-1880MHz 频段基站的发射信号,造成TD-LTE 基站接收机灵敏度损失,严重时甚至将无法工作,称为阻塞干扰。 DCS1800、友商FDD-LTE均工作在以上频段中,可能F 频段TD-LTE 基站的抗阻塞能力不足时,将产生严重的阻塞干扰。 (注: 阻塞干扰:问题出在我们接收机滤波器性能不好,没有滤除掉带外强干扰信号,导致接收机性能下降,出现阻塞干扰 杂散干扰:问题出在对方发射机滤波器性能上,干扰信号落到我们接收机频带内,造成杂散干扰) 阻塞干扰示意图

高干扰小区排查方法全解

高干扰小区排查方法 1.概述 目前GSM干扰主要来自网内和网外的干扰。网内干扰主要是频率资源有限,频率复用越紧密,网络容量越大,复用距离越小,干扰就越大;网外干扰主要来自GSM往外的干扰,如干扰器、雷达等产生影响。干扰的大小是影响网络的关键因素,对通话质量、掉话、切换、拥塞均有显著影响。 经筛选,目前石家庄网络共177个小区存在4-5级干扰,如下: 目前7个小区存在外部干扰,需要用相关的扫频设备进行扫频;134个宏站存在频点或者互调干扰,可修改频点或者携带相关设备仪器进行天馈排查;另外36个室分小区存在互调干扰,需要排查室分干放设备,小区列表如下: 干扰小区列表.xls 2.干扰排查 目前干扰发现主要是测试和华为OMC操作台。上行干扰是BTS在空闲时可以利用一幀中的空闲时隙对其TRX所用频点的上行频率进行扫描,并统计到五个等级干扰带中,通过WEB LMT可实时观察目前载频干扰带分布和等级,在话统可以提取出五个等级的干扰带的统计。石家庄现网中统计4-5级干扰带所占比例,4-5级干扰带比例越高,则小区的干扰越强。

3.干扰处理流程 根据上图,在OMC的操作台的话统统计中统计4-5级干扰带比例,确定小区是否存在上行干扰。在凌晨时段定时发空闲的Burst后,根据干扰带变化和最近一段时间中全天的走势和强度,以及所有干扰小区的分布区域,初步确定是否存在外部干扰,如果确定外部干扰,则要对外部干扰区域进行扫频。 如果确定不是外部干扰,可通过iManager Nastar检查该小区的频点,从频点的干扰程度和复用程度判定是否修改频点。确定不是频点干扰后,可将干扰定位为设备的互调干扰,根据互调干扰定位方法进行分析。 3.1.外部干扰小区排查 观察话统统计,SJGH0115师大图书馆在早忙时8点干扰突然上升,通过对比前天的干扰带指标,干扰是突发出现,对用户的通话质量造成了一定的影响,该站掉话次数明显增加。下图为造成干扰的区域:

联通FDD-LTE干扰排查案例

武汉联通FDD-LTE干扰排查案例 红光社区保障房 一、问题现象 在8月4日LTE的日常网络优化问题跟踪中,发现在L石洋污水处理厂_2等13个小区

二、优化分析 1.针对小区异常情况,我们首先在华为网管对该小区进行告警查询,结果发现这些站未出现有影响业务的告警,并未发现其与影响业务的重大告警,可以排除由于基站硬件原因。 2.查看采集到通过收集这13个小区的上行PRB干扰数据,统计干扰出现规律。经统计发现13个小区的干扰一直存在,且干扰波形类似,持续的时间都很长,基本是24小时,出现时间为7月26日晚,初步确定干扰源为外部有源固定干扰源,而且长时间不间断供电。 可以看出干扰主要集中在前40个RB上,为此详细分析了前40个RB值的干扰情况: 可以看出干扰波形走势类似,可以认定为同一个干扰源影响,并且在第13个RB上的干扰有突增,对应频率段为1747.4MHz。 3.假定干扰为外部干扰:分析采用扫频仪(美国泰克YBT-250),并配备八木天线,

现场频谱扫描,设定频率1745-1750MHz。 A、从基站小区受干扰的轻重程度、基站的部分受干扰扇区覆盖区域入手,初步判断干扰源可能存在的大致区域。 B、在初步认定的干扰源区域附近选取测试点多个合适的测试点,检测出干扰源的最强方向,并在图层上作出射线,通过多条射线的方向汇合点,进一步确定干扰源位置。 C、在确定的干扰源位置上用过观测附近环境和扫频测试精确找到干扰源。 最终确定干扰源为红光社区保障房3栋3201的业主私装手机信号放大器。 三、干扰排除 通过联系业主当面沟通后发现为移动用户因为手机信号不好私自加装了手机信号放大器。了解到该业主是7月26日搬到这所新租的房子内,并使用了房东留下的手机信号放大

LTE干扰处理

LTE干扰处理_ 王楠 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 交叉时隙干扰:上下行时隙干扰 远距离同频干扰:站A和站B间距>GP传播距离 GPS失步:失步基站与周围基站上下行收发不一致,相互干扰 小区间同频干扰:同PCI同mod3 设备故障:RRU故障;天馈故障 2)外部干扰 同频干扰:杂散干扰,互调干扰,谐波干扰 异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

上行干扰排查

上行干扰排查 近年来,各移动网络规模发展非常迅速,一方面,为了应对由于市场资费调整带来的话务压力,在某些人口密集地区(如商业区、大学城)出现了较多的大配置基站,基站分布变密;另一方面,为了解决网络弱覆盖以及投诉,网络中建设了大量的分布系统和直放站。这样,在解决网络覆盖和话务的同时也带来了其他一些问题,其中上行干扰问题显得较为突出,直接导致了网络质量的下降和用户投诉量的增加。本文基于干扰的排查提出一些方法及总结。 1.1 干扰分类 GSM系统的干扰按照频段有上行干扰和下行干扰之分,此次项目主要针对上行干扰进行排查和处理。根据我们目前在实际工作中所遇到的干扰类型,主要有以下几种情况: 直放站干扰 直放站干扰是网络优化过程中最常见的干扰之一。直放站有宽频直放站和选频直放站。宽频直放站实际上是一个宽频放大器,它将整个移动上行或下行频带放大,实现信号覆盖。宽频直放站有合法直放站和非法直放站之分,合法直放站由于设置不好,造成对基站干扰,但较多的宽频直放站干扰为非法私自安装的直放站,这是因为劣质宽频直放站价格便宜,在人口密度大,信号覆盖不好的场所经常私自安装。宽频直放站的干扰特点是频带宽,占据整个上行,且幅度不稳定。 选频直放站也是放大上行信号的放大器,但与宽频直放站不同,选频直放站仅工作在某一频率或几个频率上,因此产生的干扰比宽频直放站产生的干扰小。有些选频直放站仅在有手机业务信号时才存在,形成的干扰是间歇的。从频谱上看,选频直放站具有与正常手机信号相同的频谱,只是手机信号是瞬间信号,选频直放站信号相对停留时间比较长。选频直放站一般价格较高,通常不是非法直放站,而是运营商自身或运营商之间的直放站设置不好造成的。 CDMA基站及其直放站的干扰 从运行频段上看,CDMA的下行频段与GSM的上行频段比较接近,在站址选择及网络规划中如果做得不恰当,势必造成对GSM的干扰,造成GSM系统接收性能的下降(干扰是相互的,但由于GSM的发射频段与CDMA的接收频段相差较远,且CDMA是自扩频通信系统,抗干扰性能较好,所以GSM对CDMA系统所造成的干扰可以忽略)。三种主要的CDMA干扰为杂散干扰、阻塞干扰和互调干扰。其中,杂散干扰与CDMA直放站(或基站)目前在890MHz附近的带外发射有关,这是接收方(GSM系统)自身无法克服的,将导致GSM系统信噪比下降,

108.上行干扰排查之隐性故障干扰优化

VOLTE上行干扰排查之隐性故障干扰 优化 目录 上行干扰排查之隐性故障干扰优化 (2) 一、问题描述 (2) 二、分析过程 (11) 三、解决措施 (14) 四、经验总结 (16)

VOLTE 上行干扰排查之隐性故障干扰优化 【摘要】对于上行干扰TOP 小区从干扰时间和干扰特征入手进行分析,同时结合话统指标和扫频仪频谱分析,界定系统内外部干扰类型,并通过RRU 通道指标识别射频硬件故障问题,最终通过更换RRU 解决此干扰问题。 【关键字】上行干扰、指标恶化、RRU 隐性故障 【业务类别】优化方法、参数优化 一、 问题描述 1.1 上行干扰小区情况 日常指标监控中发现TOP 小区福永天佑第二工业园-800_1小区存在较强的干扰,从而导致接通率和掉线率偏高,下面将对该小区进行干扰排查。 1.2 上行干扰分类介绍 阻塞干扰 阻塞干扰一般为附近的无线电设备发射的较强信号被LTE 设备接收导致的,现阶段发现的阻塞干扰主要为其他频段基站系统带来的。其干扰特点如下: ① 小区级平均干扰电平跟干扰源话务关联大,干扰源话务忙时LTE 干扰越大。 ② 干扰基站天线与LTE 小区天线隔离度越小,干扰越严重。当然仅仅通过工参信息无 法得知系统间天线隔离度大小,但可以从天线高度和天线水平方位角大致了解天线隔离度。 ③ PRB 级干扰呈现的特点是PRB10之前有一个明显凸起,凸起的PRB 后没有明显的干扰波形。 日期基站名称 eNodeB 名称 小区双工模式 小区名称 本地小区标识 系统上行每个PRB 上检测到的干扰噪声的平均值(毫瓦分贝) 2019-07-01FO_福永天佑第二工FO_福永天佑第二工CELL_FDD FO_福永天佑第二工业园-800_14-922019-07-01FO_松岗恒兆商务大FO_松岗恒兆商务大CELL_FDD FO_松岗恒兆商务大厦-800_25-922019-07-01FS_田寮机楼1号综FS_田寮机楼1号综CELL_FDD 田寮村长塘路四巷9号15-92.28572019-07-01FM_宝安嘉兆花园FM_宝安嘉兆花园CELL_FDD FM_宝安嘉兆花园_2 2-92.42862019-07-01FS_四号线上梅林站FS_四号线上梅林站CELL_FDD X J-FR_四号线上梅林站到莲花北站44-92.57142019-07-01FS_福田滨海深长石FS_福田滨海深长石CELL_FDD 福田深圳高尔夫俱乐部常胜鲍鱼酒楼10-92.57142019-07-01FO_固戍上围园FO_固戍上围园CELL_FDD FO_固戍上围园_480-92.57142019-07-01FO_固戍福荣路FO_固戍福荣路CELL_FDD FO_固戍福荣路_1(CA)4-92.57142019-07-01FO_南湾满庭芳FO_南湾满庭芳CELL_FDD FO_南湾满庭芳_491-92.7143 2019-07-01FS_罗湖蔡屋围新八FS_罗湖蔡屋围新八CELL_FDD 罗湖蔡屋围丽晶大厦10-932019-07-01FM_福田中天元FM_福田中天元CELL_FDD FM_福田中天元-800_1 7-932019-07-01 FM_西乡华创达工业FM_西乡华创达工业CELL_FDD FM_西乡华创达工业园-800_0 3 -93.1429

干扰-MR不处理分析报告案例

MR不处理分析报告 1 现象描述 C国LTE项目,做上行拉网测试时,UE从M站点FE2切换到N站点FE2,切换成功后,N站点FE2测量控制消息还没有下发,UE又上报测量报告,基站不处理,导致掉话。 前台信令截图 2 告警信息 无 3 原因分析 【问题结论】 UE从A小区成功切换到B小区后,如果B小区测量控制消息还没有下发,UE就上报测量报告要求切换到C小区,此时UE上报的测量报告中的measId是沿用A 小区下发给它的测量控制消息中的measId(因为没有收到B小区下发的测量控制消息,故无法更新),因为测量报告中的measld与B小区预期的不一致,故B小区不处理测量报告。

【原因分析】 (1)UE 从M 站点FE2(A 小区)切换至N 站点FE2(B 小区),M 站点FE2(A 小区)作为目标小区时下发的测量控制消息中预期的measIdObjectId=1,之后上报的测量报告中measId=1,两者一致,故M 站点FE2(A 小区)处理测量报告,UE 成功切换到N 站点FE2(B 小区)。 (2)UE 成功切换到N 站点FE2(B 小区)后,从前台信令可以看出,N 站点FE2(B 小区)还没有下发测量控制消息,UE 就上报测量报告。 从后台虚拟用户跟踪信令可以看出,在UE 上报多个测量报告(measId=1)后, N 站点FE2(B 小区)才下发测量控制消息(预期measIdObectId=2),两者不一致,故之前的测量报告,基站不处理,导致切换失败。 A 站点FE2作为目标小区下发 的测量控制消息

(3)该问题是在切换时出现了RRC重配置流程与MR测量报告嵌套,正常情况下,在测量控制还未下发前,UE是不会上报MR测量报告的,一般情况下,有两个原因会导致该问题发生: 1、终端UE问题,终端设计不符合协议; 2、上行信号质量较差,干扰严重。 4 处理过程 调整M站点FE2功率,降低干扰。测试发生切换失败时,区域的SINR<-5dB,RSRP为-100dbm左右,调整完M站点FE2功率后,区域的SINR>-3dB,RSRP 为-95dbm左右,复测未出现该问题; 5 学习心得 切换过程中,如果基站没有下发测量控制消息,或者UE没有收到测量控制消息,UE就无法更新其上报MR的内容,这样将导致UE想切换时,基站侧预期的MR 与实际的MR不一致,基站不处理MR,最终导致切换失败。 这种问题发生的频率不高,出现问题时应先排除上行干扰。

关于LTE干扰处理

关于LTE干扰处理 一、TD-L TE干扰概述 1.TD-LTE频段分析 目前TD-LTE主要使用三个频段,F、D、E。

2.TD-LTE内外干扰分析 1)内部干扰 ?交叉时隙干扰:上下行时隙干扰 ?远距离同频干扰:站A和站B间距>GP传播距离 ?GPS失步:失步基站与周围基站上下行收发不一致,相互干扰?小区间同频干扰:同PCI同mod3 ?设备故障:RRU故障;天馈故障 2)外部干扰 ?同频干扰:杂散干扰,互调干扰,谐波干扰 ?异频干扰:阻塞干扰

3)干扰表现 上行底噪≥=105db ping包延时大于正常小区,或无法ping成功KPI:切换、接通、掉线 4)外部干扰分频段分析

①F频点干扰状况 ?DCS1800阻塞干扰:16~30dB底噪抬升,UL吞吐量损失严重,甚至无法建立连 接 ?DCS1800杂散干扰:5dB的底噪抬升, UL吞吐量损失约10% ?DCS1800互调干扰:8~16dB的底噪抬升, UL吞吐量损失超过30% ?GSM900谐波干扰:约5dB的底噪抬升 ?PHS杂散:一般情况下轻微干扰,严重时TD-S或TD-L无法建立连接

②E频段干扰状况 ?E频段和Wifi相隔30MHz,比较近,且Wifi不遵循3GPP协议,射频指标比较差?普通室分系统下,80dB的合路器基本可以消除干扰,两者频率越远,受到的影响 越小。 ?外挂情况下,空间隔离需1m以上 ③D频段干扰状况 ?从频谱状况来说,存有各运营商TD-LTE间的干扰、与雷达间、射频天文、北斗、 Wifi以及MMDS、Wimax间的干扰 ?MMDS和WiMAX对D频段的同频干扰,可使底噪抬升20dB以上,严重时更会 导致TD-LTE业务无法建立连接

LTE干扰

TD-LTE系统干扰分析 随着新技术的不断出现以及移动通信理念的变革,为了把握新一轮的技术浪潮,保持在移动通信领域的领导地位,2004年底3GPP启动了关于3G演进,即LTE的研究与标准化工作。随着LTER8、R9标准的冻结,LTE正日益成为业界的热点。 LTE系统同时定义了频分双工(FrequencyDivisionDuplexing,FDD) 和时分双工(Time Division Duplexing, TDD) 两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTE FDD 支持阵营更加强大,标准化与产业发展都领先于LTE TDD。2007年11月,3GPP RAN1会议通过了27家公司联署的LTE TDD融合帧结构的建议,统一了LTE TDD的两种帧结构。融合后的LTE TDD帧结构是以TD-SCDMA 的帧结构为基础的,这就为TD-SCDMA成功演进到LTE乃至4G标准奠定了基础。 在工信部TD-LTE工作组的领导下,规范制定、MTNet测试和6城市试验网正在紧张有序地进行。随着技术标准不断完善、产业链不断成熟、系统能力不断提高,TD-LTE将很快进入商用时代。 众所周知,干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞以及网络的覆盖、容量等均有显著影响。如何降低或消除干扰是TD-LTE网络性能能否充分发挥的重要环节,同时也是网络规划、优化的重要任务之一。 TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。本文将重点分析系统内的同频和异频干扰,以及系统间与TD-SCDMA的干扰。 1. 系统内干扰 TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。但是对各子信道之间的正交性有严格的要求,否则会导致干扰。对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。 1.1.同频组网 1.1.1. 小区内干扰 由于OFDM的各子信道之间是正交的,这种特点决定了小区内干扰可以通过正交性加以克服。如果由于载波频率和相位的偏移等因素造成子信道间的干扰,可以在物理层通过采用先进的无线信号处理算法使这种干扰降到最低。因此,一般认为OFDMA系统中的小区内干扰很小。 1.1. 2. 小区间干扰 对于小区间的同频干扰,可以采用干扰抑制技术,主要包括干扰随机化、干扰消除和干扰协调。干扰随机化和干扰消除是一种被动的干扰抑制技术,对网络的载干比并无影响。 干扰随机化通过比如加扰、交织,跳频、扩频、动态调度等方式,使系统在时间和频率两个维度的干

上行干扰小区的有效解决办法(原创)

避免上行干扰的主要措施 1、降低基站输出功率 降低基站输出功率有利于减少由于耦合器性能不良,或接头接触不良等原因造成的交调杂散干扰,而基站一般不作覆盖,因此降低基站输出功率到37dBm或39dBm不但有利于减少干扰,还可以起到节能的目的。 2、减少近端下行输入电平 近端输入功率过大会造成设备起控,产生的交调杂散也会较大;而且在近端下行输入前加装衰减器有利于加大上行链路损耗,有利于减少上行噪声。所以一定要保证近端下行输入总功率不能超过-2dBm,测试方法在前面有说明(不要只看我们在本地调测软件上看到的数值,我们调测软件上的数值是总功率,与话务量有关,波动较大,话务量高时则高,话务量低时则低,该数值不准,用频谱仪测试较准)。 3、减少远端下行输出功率 由于我们GRRU设备采用共用功放,因此产生的交调和杂散也会比基站大,因此在满足覆盖的情况下可以尽量减少远端下行输出功率,下行输出功率不要开满,回退2dB较好,测试方法在前面有说明(不要只看我们在本地调测软件上看到的数值,我们调测软件上的数值是总功率,与话务量有关,波动较大,话务量高时则高,话务量低时则低,该数值不准,用频谱仪测试较准)。 4、设置合理的关断门限 关断门限有利于限制外界噪声,因此将关断门限设置在“上行干扰信号强度≦上行关断门限≦上行边缘场强”之间是最好,既可限定噪声,也可以保证通话,上行干扰信号强度可以大概估计为:(ICMBAND=2级时上行干扰强度为-106dBm,ICMBAND=3级时上行干扰强度为-102dBm,ICMBAND=4级时上行干扰强度为-95dBm,ICMBAND=5级时上行干扰强度为-85dBm),而室内覆盖边缘场强一般都在-85dBm以上,如果ICMBAND 在3级以下时关断门限设为-100dBm即可。 5、避免时间色散 时间色散会认为是同频干扰,因此尽量避免时间色散问题,一般建议基站不作覆盖,在多台远端重叠覆盖时也要将时延调整为一致。 6、避免邻区同邻频干扰 近几年话务量高涨,频率复用太密,因此很多区域(特别是高层或城市道路)都存在同邻频干扰,同邻频干扰无法滤除,只能采用降低天线高度(采用墙体阻挡)、在上行输入端加衰减器等方式抑制。7、加装抗干扰滤波器 对于CDMA或GSM-R的阻塞干扰(靠近CDMA基站或铁路时),可以在上行输入端采用加装抗干扰滤波器的方式抑制干扰信号,具体型号可问欧工。 8、更换跳线 如果跳线接头做得不好或接触不良时(包括基站)也会产生较大的交调和杂散信号,因此更换跳线也是一个消除干扰的手段。

GSM上行干扰排查指导书

GSM上行干扰排查指导书

1 概述 本文通过XXX上行干扰排查,对造成上行干扰的原因和排查方法进行总结,指导现场用服人员,合作方督导,维护人员对上行干扰的排查工作。 2 上行干扰表现及原因 2.1 上行干扰判断 上行干扰带是话统中判别上行干扰的一项重要指标。它是利用载频RSSI电平上报这一功能,在空闲时隙上统计机顶口功率电平来判别上行信号受干扰的程度。因为空闲时隙是没有业务的,此时检测到任何电平都可以认为是对有用信号的干扰,这种干扰可能来自网内同频干扰、外界干扰或基站内部的互调干扰等。在无干扰的情况下,上行干扰带的统计等级都为1。 上行干扰带等级的定义如下: 如下图所示,TRX9和TRX12 4级干扰带占绝大部分,这时即存在上行干扰现象。

2.2 上行干扰因素 产生上行干扰的主要原因有: 1)无源互调 2)直放站干扰 3)C网干扰 4)网内同临频干扰 5)载频问题 6)其它外部干扰 其中无源互调属于基站及天馈系统内部干扰,直放站干扰和C网干扰属于外部干扰。 3 上行干扰原因及排查方法 3.1 无源互调 上行干扰最多的就是基站和天馈系统(包括天线)的无源互调。无源互调特性(PIM)是指接头、馈线、天线和滤波器等无源部件在多个载波的大功率信号条件下,由于部件本身存在非线性而引起的互调效应。通常认为无源部件是线性的,但是随着基站功率和载波数的增加,无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不 同材料的金属的接触;相同材料的接触表面不光滑;连接处不紧密;存在磁性物质,器件功

率容量不足等。 互调产物会对通信系统产生干扰,特别是落在接收带内的互调产物将对系统的接收性能产生严重影响。 无源互调判断方法:凌晨话务较少时,先统计小区的干扰带,然后小区所有载频发送空闲burst,再统计小区干扰带,如果干扰带有明显上升,比如原先为1,发射后出3级或以上干扰带,则可证明存在上行互调干扰。这里发送空闲BURST是为了让多个载波大功率信号作用于天馈系统,把隐藏的上行互调问题暴露出来。 3.1.1 无源互调排查方案一: 上图为基站系统结构图,基站发射信号通道中的所有无源器件,都可能产生无源互调,包括基站系统中的双双工器DDPU和DDPM;合路单元DCOM和DFCU;室内天馈部分的滤波器,避雷器和下跳线;室外天馈部分的上跳线和天线;馈线等。系统产生的无源互调无法直接判断出是哪一个部件出的问题,只能进行分段排查,排查每一段时观察干扰带变化(比较空闲时隙测试前后频谱)。 在确定存在互调现象后可采用如下排查方法: 步骤-:检查基站设备及天馈系统基本情况 1)进入机房后,请先检查基站设备及天馈系统的基本情况。 2)检查载频和空腔的射频连线是否正确; 3)检查基站空腔发射口的接头、跳线与馈线的接头是否松动;检查利旧部件各个接头 是否锈蚀,接头是否存在碎屑等制作不良。

无线网络上行干扰排查规范及典型案例

无线网络上行干扰排查方法及典型优化案例 湖南移动网优中心 2012年7月

目录 一、前言 (3) 二、干扰排查分析大致流程 (3) 三、典型干扰分析鉴别方法 (5) (一)、通用干扰分析方法 (5) 1、无源互调干扰 (5) 2、网内同邻频干扰 (5) 3、直放站干扰 (5) 4、外部干扰 (6) (二)、华为设备干扰分析方法(利用burst测试辅助分析) (7) 1、无源互调干扰 (7) 2、CDMA网干扰 (7) 3、网内同邻频干扰 (8) 4、上行网外干扰 (8) 四、典型干扰排查优化方法 (10) (一)、CDMA干扰排查 (14) 1、CDMA干扰排查方法 (17) 2、CDMA干扰优化方法 (19) (二)、直放站干扰排查 (14) 1、直放站干扰小区排查方法 (14) 2、直放站干扰优化方法 (16) (三)、天馈系统互调干扰排查 (10) 1、无源互调干扰对通信系统的影响 (10) 2、互调干扰初步筛选定位 (12) 3、非现场式的互调干扰定位方法 (12) 4、互调干扰现场测试与定位 (13) (四)、保密器干扰排查 (22) 1、内部排查 (22) 2、外部扫频 (22) 五、典型干扰优化案例 (23) 1、天馈互调干扰优化案例 (23) 2、同邻频干扰优化案例 (24) 3、直放站干扰优化案例 (24) 4、CDMA干扰优化案例 (24) 5、外部强干扰优化案例 (24)

一、前言 通过对上行干扰小区进行定位,有针对性的对现网产生上行干扰的直放站类设备和天线、无源器件等天馈系统设备进行排查,实现全网上行干扰的降低; 二、干扰排查分析大致流程 上行干扰可通过小区的干扰数据予以分析,进行初步定位。上行底噪为信道在空闲状态下接收到的噪声电平值,反映了整个系统上行干扰水平。在话务网管中以干扰频带1-5方式进行统计,方法如下: 当干扰带4和干扰带5的占比之和大于30%时,即判定该小区为高干扰小区。 常见干扰类型归纳主要有互调干扰、网内同邻频、直放站干扰以及其它外部干扰四类。大体分析优化思路如下:

掉话处理案例总结完整版

掉话处理案例总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

路测掉话的原因分析及解决 1. 关于掉话的描述 在 GSM 系统中掉话从统计角度讲分为两大类:RF_LOSS 和 HO_LOSS 即射频掉话和切换掉话。考虑到2层信令的接续等问题,我们把掉话作如下描述。 1) 射频掉话 ●下行原因:Radio_link_timeout 计数器减至 0 ●上行原因:BSS 在 link_fail 的设定时间内未能接收到 UL SACCH 消息,使link_fail 计数器减至 0。BSS 下行功率停止发射 ●在 Layer 2 上: BSS/MS 每 T200 时间发送 N200+1 次 SABM/DISC 消息,但未从接收端收到回应 2) 切换掉话 ●MS 未能成功切换至目标小区, 但未能回到源小区 ●MS 发送 HO FAILURE 和 UL-SABM 消息给源小区,但未得到回应 2. 在路测时发现的掉话问题时,我们应从哪些方面进行考虑 在路测中,如果我们发现了掉话,我们应该如何入手建议根据不同的现象作出一些初步的判断,可以尽量减少不必要的周折,提高工作效率。归纳起来初步判断有以下几点: ●带内、外干扰 ●无可切换的小区(拥塞、无邻区)

●覆盖问题(overshooting/poor coverage) ●有线口的信道释放 ●基站硬件故障(时钟、CTU 低功、信道盘的收发功率不平) ●天线错误(下倾角、方位角等错误) ●由于切换失败造成的掉话 ●参数设置不当 ●其它特殊原因(手机问题、交换机参数设置问题) 3. 对掉话现象进行分析以及可能的原因 在这一节中我们对每种造成掉话的可能原因进行具体的研究。在每一种原因中,我们尽可能的举出实际例子来进行说明。 1) 频率干扰 干扰会导致误码率升高,通信质量下降,是造成掉话的一个重要的原因。干扰可以分为带内干扰和带外干扰,也可以叫做系统内部干扰和系统外部干扰。 带外干扰:随着科技的进步,空中的无线电波越来越多,有些系统如 TCS 系统与 GSM 系统工作在同一频段,如果频率设置不当,会造成严重的频率干扰。在发射设备的非线性单元由于载波与通过天线进入的干扰信号产生互调干扰,会引起通话质量下降,产生掉话。另外一种情况就是人为的加建 GSM 频段的直放站,对功率以及天线方向不进行控制,对系统会造成上下行的干扰。一般有这

干扰问题的定位流程与基本处理方法

干扰问题的定位流程与基本处理方法 干扰问题定位流程 我们一般将干扰大致分为三类:硬件设备导致的干扰,网内干扰,网外干扰。 当通过分析怀疑某小区可能存在干扰时,首先应该检查该小区所在基站是否正常工作。在远端应检查有无天馈告警,有无关于TRX的告警,有无基站时钟告警等;在近端则应检查有无天线损坏、进水;馈线(包括跳线)损坏、进水;CDU故障、TRX故障、基站跳线接错、时钟失锁。然后再判断是否频率计划、数据配置错误导致的网内同邻频干扰,最后再确定是否是网外干扰。 基站干扰可以分为上行干扰和下行干扰。 对于上行干扰可以采用上行频点扫描,结合话务统计信令进行分析,对于下行干扰可以利用Mobile Show 和测试手机的SCAN RF功能观察下行各频点电平。 如果有频谱仪和定向天线则可以利用其进一步查找干扰源。 我们可以从无线信号的各个环节入手,逐步排除,找出产生干扰的原因。基站射频信号路径如下: 外界->天线->馈线->CDU ->TRX 这当中任何一个环节都可能产生干扰,我们可以利用频谱仪由下至上逐步测试,确认干扰的来源。关于测试方法下一节将详细介绍。 干扰问题定位流程图

注:上述流程的排查思路是:网内干扰->硬件问题->网外干扰,只是提供一种思路,请现场根据实际情况由易到难,灵活考虑排查步骤。

基站内部干扰现场处理的基本步骤: 如果该干扰带一直存在,或者干扰带随话务量增加而增强,并且通过更换频点等方法排除了基站外部干扰,就可以初步判断为基站内部干扰。可采取如下措施: 1、首先检查是否是载频或者CDU故障导致内部干扰,处理比较简单,主要是闭塞和更换单板进行处理。 2、其次检查机顶输出口与跳线,以及跳线与馈管的连接。如果端口匹配不好的话,有可能导致基站前端电路刚好处于不稳定的状态,导致电路自激振荡形成对接收带内的宽带干扰。 3、最后检查天馈系统是否产生无源互调,主要方法是关闭部分TCH载频或互换小区天馈系统,来判断是否是由于天馈互调导致的干扰问题。 这里着重介绍最常见的上行干扰的基本定位步骤,以BTS3X基站为例: (1) 登记话务统计,主要是TCH性能测量,小区性能测量,上行频点扫描,上下行平衡测量。话务统计周期可以设置为30分钟或更短。 (2) 只开一个TRX,把该基站其余的全部关掉,观察话务统计结果,此步骤目的查看是否为互调干扰,如果干扰带消失,说明为互调干扰,则进行步骤(6)。如果干扰带没有消失,则进行步骤(3)。 (3) 将TRX的主/分集接收两个输入电缆旋下,接上假负载,一般CDU未使用的接收端口处都有,观察Abis 接口上报的干扰带(现场主导,请机房同事配合观察),如果干扰带很高,说明干扰来自TRX,更换TRX,如果干扰带全在干扰带一中说明干扰来自TRX以上环节进行步骤(4)。 (4) 将TRX的接头和电缆还,将CDU连接输入处TX/RX,接功率计假负载,吸收其输出功率的同时使主集接受支路的输入信号为0,同时将CDU分集接收电缆也断开,接上匹配负载,使其输入信号也为0。观察Abis接口上报的干扰带,如果干扰带很高,说明干扰来自CDU,更换CDU;如果更换CDU和TRX均不起作用,则可能基站时钟有问题,检查TMU13MHz时钟,检查TMU至TRX之间的时钟总线,检查时钟匹配拨码开关,检查机顶时钟匹配头,如果干扰带全在干扰带一中,说明干扰来自CDU以上环节,进行步骤(5) (5) 将CDU的接头和电缆还原,将机顶该小区TX/RX和RXD的射频软跳线断开,在机顶TX/RX和RXD端口接上匹配负载。观察Abis接口上报的干扰带,如果干扰带很高,说明干扰来自CDU至机顶端口的射频电缆,更换之;如果干扰带全在干扰带一中,说明干扰来自机顶以上环节,进行步骤(6) (6) 打开所有TRX,在机顶将该小区和邻近小区该邻近小区无干扰天馈互换,观察Abis接口上报的干扰带,

D上行干扰检测数据采集指导书PEACV

TDD-LTE上行干扰检测数据源获取指导书 本指导书主要是针对TDD射频通道上行干扰分析所需要的数据源的获取进行一个基础指导。 TDD的总体介绍: 目前我们PEAC平台针对TDD射频干扰排查需要的数据源一共有四类: 1、现网工程参数表。 2、现网配置文件(.XML结尾和格式) 3、现网原始话统数据(NORMAL.mrf.gz结尾的格式) 4、带有反向频谱的CHR(主要是前三个数据源的基础上筛选出问题小区后,进行对 应问题小区的反向频谱的采集) 1工参表 Action01 针对工参表,一般我们现场的人员基本都是人手一份。下面附件是模板,供参考。 备注:主要关注必选参数就行。 2 配置文件XML和原始话统 这两种数据源的提取主要分为两种:NIC提取与网管提取两种方式。 Action02 方法1:NIC自定义采集项(NIC的采集方式,可以同时将XML和原始话统的数据采集上来) 图表1 NIC采集话统和配置方法示意图(1) ?任务命名 图表2 NIC采集话统和配置方法示意图(2) ?数据时间范围 图表3 NIC采集话统和配置方法示意图(3)

?选择网元对象 图表4 NIC采集话统和配置方法示意图(4) ?选择数据采集项 采集话统和配置时,需选择“获取U2000话统数据”和“基站配置”。 图表5 NIC采集话统和配置方法示意图(5) ?最后Next——>Next——>Finish。 待任务完成之后保存数据并提取即可。 图表6 NIC采集话统和配置方法示意图(6) 最终点击下载即可获得包含了话统以及XML配置文件 Action02 方法2:配置数据采集(网管提取) ?在U2000移动网元管理系统,选中维护/备份管理/网元备份。 图表 1 从服务器提取XML配置文件示意图(1) ?在网元备份标签页左侧的区域(1)勾选网元,点击区域(2)“备份”按钮,配置文件开始备份,在(3)区域显示备份进度,备份完成的文件信息在区域(4)显示,备份完成后,点击区域(5)的“下载到OSS客户端”按钮,选择路径完成下载。 图表 2 从服务器提取XML配置文件示意图(2) Action02 方法2:话统数据采集(网管服务器提取) 使用FTP软件登陆到U2000服务器如下目录/export/home/sysm/ftproot/nbi/,查看网元文件夹中是否有有效话统数据,若数据存在,则选择所需网元对应的文件夹,拷贝到本地即可。 如路径/export/home/sysm/ftproot/nbi/NE270/gz,其中NE270表示某网元的FDN。 文件包括如下两种, (1)gz 上面的文件包含15分钟粒度的话统信息。 (2)gz 上面的文件包含60分钟粒度的话统信息。 目前PEAC平台只支持是60分钟颗粒度的话统分析。

华为上行干扰处理流程

华为上行干扰处理流程浅谈 目录 一、概述........................... 错误!未定义书签 二、G SM现网干扰类型分析 .................... 错误!未定义书签 三、干扰排查步骤....................... 错误!未定义书签 四、干扰案例处理流程..................... 错误!未定义书签 隔离度干扰处理....................... 错误!未定义书签 直放站干扰处理....................... 错误!未定义书签 外部干扰处理......................... 错误!未定义书签 互调干扰处理......................... 错误!未定义书签 频率干扰处理......................... 错误!未定义书签 隐性故障干扰处理....................... 错误!未定义书签 五、给研发人员的一点思路................... 错误!未定义书签 六、总结........................... 错误!未定义书签 、概述 无线通信干扰的危害非常大,干扰将导致呼叫困难、杂音、掉话等问题,是导致网络质 量下降的非常关键问题。干扰分上行干扰和下行干扰,下行干扰主要是网内的频率干扰,而 上行干扰的类型较多,处理尤其困难。本文主要针对GSM网络的上行干扰的类型及定位方法进行介绍,并通过案例对每种干扰类型的定位处理进行了详细介绍。

二、GSM现网干扰类型分析

干扰带统计: BTS在时隙空闲时将不断对当前所用频点的上行干扰信号的情况进行扫描并通过资源 指示消息按照干扰带的方式进行统计上报。华为BSC中干扰带的缺省设置是: 实时干扰带显示: 与干扰带统计原理一样,BSC将空闲时隙的上行干扰情况实时显示出来,可以直观的反 映小区的实时干扰变化情况,干扰图例如下图: 不支持:是指有用户占用或者数据信道、主B信道。 三、干扰排查步骤 因发射空闲Burst受时间限制,互调小区筛选法主要目标是通过后台话统数据,从前述五类干扰中,筛选出受到互调干扰的小区。在通过其他手段来区分其

相关文档
最新文档