贝叶斯分类器

贝叶斯分类器
贝叶斯分类器

贝叶斯分类器

一、数学知识 1)先验概率

根据以往经验和分析得到的概率,即人们在未知条件下对事件发生可能性的猜测。

2)后验概率

事情已经发生,求这个事情发生的原因是由某个因素引起的可能性大小。 若A 是结果,B 是原因 则)

().()().()().()()

()(22111111B P B A P B P B A P B P B A P A P A B P A B P +=

= 即

)

3().3()2().2()1().1()

1().1()1(原因原因结果原因原因结果原因原因结果原因原因结果结果原因P P P P P P P P P ++=

二、贝叶斯决策论【考虑如何基于所知概率和误判损失来选择最优的类别标记】

(一)贝叶斯分类器

)]

)(([)()

()()

(min arg )(1

i *x x h R E h R x c P x c R x c R x h x j N

j ij

y

c ==

=∑=∈λ

其中:

所产生的损失

的样本误标记为是将一个真实标记为上限

产生的模型精度的理论反映了通过机器学习所斯风险

为总体风险,称为贝叶为贝叶斯最优分类器其中

i j h R h R x h c c )(-1)()(ij ***λ

若目标为最小化分类错误率

P(x)

)c (c)P(x )()(max arg )(*),(1)(,1if 0ij P x c P x c P x h x c P x c R otherwise

j

i y

c =

=-=??

?==∈其中即则,λ 推到过程:

)

(max arg )(*))

(1(min arg )

(min arg )

(min arg )(*1

1

x X c y P x h x X c y P x X c y P x X c P x h k y

c k y

c k K

k y

c k K

k ij y

c ======-==≠===∈∈=∈=∈∑∑λ

① 先假定类条件概率具有某种确定的概率分布条件; ② 再基于训练样本对概率分布的参数进行估计

对于)(c P x 来说就是假设)(c P x 具有确定的形式并且被参数向量c Θ唯一确定,则任务就是利用训练集D 来估计参数c Θ,)(c P x 记为)(c x ΘP 参数c Θ的极大似然Λ

Θ;

)

x ()()x (log )(log )()(max arg c C C C D X C

C C c c P

D P P D P LL LL C

Θ∏=ΘΘ

=Θ=ΘΘ=Θ∑∈Λ

其中

注:这种参数化的方法估计结果的准确性依赖于所假设的概率分布形式是否符合潜在的

真实数据分布

三、朴素贝叶斯分类器【解决了后验概率)(x c P 难计算的问题】 采用了“属性条件独立性假设”,假设每个属性独立地对分类结果发生影响

)

(x c P

个属性上的取值

在第为为属性数目,其中则朴素贝叶斯表达式为)(i x d c x P c P x c x P x P c P x p c x P c P x P i i i nb i i x )

()(max arg )(h )()()()

()()(c d

1

d

1

==∏=∏==

其中

的样本组成的集合

个属性上取值为中在第表示类样本组成的集合

表示训练集中第)(,i C C C C i D D c D D

D P i x c x =

朴素贝叶斯算法:

拉普拉斯修正:

避免其它属性携带的信息被训练集中未出现的属性值“抹去”

i

c x C i C N D D x p N D D p i ++=

++=

Λ

Λ

1c 1c ,)()(

其中:

N 表示训练集D 中可能出现的类别

i N 表示第i 个属性的可能取值

四、半朴素贝叶斯分类器【放松了独立性假设条件】 独依赖估计

假设每个属性在类别之外最多依赖一个其它属性

i

P C x p

c ai i i ai i d

i N D D p c x P p c x P c P x c P ai i

ai

++=

∏==,,,1

1),(x )

,()(其父属性已知,则若对于)(

其中:

ai p 为属性x i 所依赖的属性,称为x i 的父属性

SPODE (超独依赖估计)

假设所有属性都依赖于同一个属性,然后再通过交叉验证等模型选择方法来确定该属性。 TAN 【保留了强相关属性之间的依赖性】

① 计算任意两个属性间的条件互信息

)

()(),(log

),(,;,c x P c x P c x x P c x x P y x x I j i j i y

c x x j i j i j i ∑∈=

)(

② 以任意属性为结点构建完全图,任意两个节点之间边的权重设为)(y x x I j i , ③ 构建此完全图的最大带权生成树,挑选根变量,将边设置为有向 ④ 加入类别节点y ,增加y 到每个属性的有向边 AODE

将每个属性作为超父来构建SPODE ,然后将具有足够训练数据支撑的SPODE 集成起来作为最终结果

),()(1

1

'

i j d

j i d

m D i x c x P x c P x c P i x =≥=∏=

,)(

其中:

i

x

D 是第i 个属性上取值为x i 的样本集合;

m ’

为阈值常数

j

x c x x c i j i

x c i N D D x c x p NN D D x c p i j i i ++=

++=

Λ

Λ

,,,1),(1)(

五、贝叶斯网

用有向无环图(DAG )来刻画属性间的依赖关系; 用条件概率表(CDT )来描述属性的联合概率分布 构成

一个贝叶斯网B 由结构G 和参数Θ两部分构成>Θ=<,G B

G 是一个有向无环图,每一个结点对应一个属性,若两个属性有直接依赖关系,由一条边

连接起来

Θ定量描述这些依赖关系

结构

贝叶斯网假设每个属性与它的非后裔属性独立,则属性x 1,x 2,....x d 的联合概率分布为

中的父结点集

在为)

(G x P x x x P i i i i d

i i i B d i d B x )(....,x 1

1

21πππΘ∏=∏===

三种结构

● 同父

给定父节点x1的值,则x2与x3独立 ● V 型结构

给定子节点x4的取值,x1和x2必不独立;x4的取值完全未知,x1和x2相互独立 ● 顺序结构

给定x 的取值,y 和z 条件独立

学习【在应用中通常不知道网络结构】

评分搜索【根据训练数据集找出结构是恰当的贝叶斯网】 定义一个评分函数,来估计贝叶斯网与训练数据的契合程度,来基于这个评分函数来寻找最

优的贝叶斯网。

MDL 准则(最小描述长度)

选择综合编码长度最短的贝叶斯网(包括描述网络与编码数据) 评分函数【目标是找到一个以最短编码长度描述训练数据的模型】

{}所需的字节数

)表示描述每个参数(是贝叶斯网的参数个数

的描述对所对应的概率分布计算所计算字结数计算编码贝叶斯网)(上的评分函数为:在贝叶斯ΘΘΘ-Θ=>Θ<=f B D P B D B LL B B f D B LL B f D B S D G B x x D B d )()()

()(,,, (1)

)(2

log log 2

1

)(1D B LL B m

D B BIC m f BIC D B LL B D B AIC f AIC -=

=Θ-==Θ)()(评分函数:)()(评分函数: 若B 中的网络结构G 确定,评分函数中第一项为常数

)

(i i D i x x P B S i ππΛ

=ΘΘΘ的极大似然估计)等价于(

推断

推断:通过已知变量观测值来推测待查询变量的过程

证据:已知变量的观测值,由于精确推断后验概率很难因此要进行‘近似推断’ 布尔斯采样算法

EM 算法(期望最大化)

解决训练样本是‘不完整’的问题 .x 表示已测量变量级 .z 表示隐变量级 .Θ表示模型参数 步骤:

1)利用当前估计的参数值来计算对数似然的期望值

2)最大化M 步,寻找能使E 步产生的似然期望最大化的参数值 3)得到新的参数值被用于E 步直至收敛到局部最优解。

(望似然步:寻找参数最大化期)(其中:)()(的期望)关于(并计算对数似然推断隐变量分布步:以当前参数t t x z t t t Q M z x P z LL z LL E Q Z z LL x P E t ΘΘ=ΘΘ=ΘΘ=ΘΘΘΘΘ+Θmax arg .),(ln ,x ,x ,x ),,z (.1,

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.360docs.net/doc/f74278763.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

Bayes分类器原理

贝叶斯分类器 一、朴素贝叶斯分类器原理 目标: 计算(|)j P C t 。注:t 是一个多维的文本向量 分析: 由于数据t 是一个新的数据,(|)j P C t 无法在训练数据集中统计出来。因此需要转换。根据概率论中的贝叶斯定理 (|)()(|)() P B A P A P A B P B = 将(|)j P C t 的计算转换为: (|)() (|)()j j j P t C P C P C t P t = (1) 其中,()j P C 表示类C j 在整个数据空间中的出现概率,可以在训练集中统计出来(即用C j 在训练数据集中出现的频率()j F C 来作为概率()j P C 。但(|)j P t C 和()P t 仍然不能统计出来。 首先,对于(|)j P t C ,它表示在类j C 中出现数据t 的概率。根据“属性独立性假设”,即对于属于类j C 的所有数据,它们个各属性出现某个值的概率是相互独立的。如,判断一个干部是否是“好干部”(分类)时,其属性“生活作风=好”的概率(P(生活作风=好|好干部))与“工作态度=好”的概率(P(工作态度=好|好干部))是独立的,没有潜在的相互关联。换句话说,一个好干部,其生活作风的好坏与其工作态度的好坏完全无关。我们知道这并不能反映真实的情况,因而说是一种“假设”。使用该假设来分类的方法称为“朴素贝叶斯分类”。 根据上述假设,类j C 中出现数据t 的概率等于其中出现t 中各属性值的概率的乘积。即: (|)(|)j k j k P t C P t C =∏ (2) 其中,k t 是数据t 的第k 个属性值。

其次,对于公式(1)中的 ()P t ,即数据t 在整个数据空间中出现的概率,等于它在各分类中出现概率的总和,即: ()(|)j j P t P t C =∑ (3) 其中,各(|)j P t C 的计算就采用公式(2)。 这样,将(2)代入(1),并综合公式(3)后,我们得到: (|)()(|),(|)(|)(|) j j j j j j k j k P t C P C P C t P t C P t C P t C ?=????=??∑∏其中: (4) 公式(4)就是我们最终用于判断数据t 分类的方法。其依赖的条件是:从训练数据中统计出(|)k j P t C 和()j P C 。 当我们用这种方法判断一个数据的分类时,用公式(4)计算它属于各分类的概率,再取其中概率最大的作为分类的结果。 改进的P(t | C j )的计算方法: 摒弃t(t 1, t 2 , t 3,)中分量相互独立的假设, P(t 1, t 2 , t 3,| C j ) = P(t 1 | C j ) * P(t 2 | t 1, C j ) * P(t 3| t 1, t 2 ,C j ) 注意: P(t 3| t 1, t 2 ,C j )

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

作业1-贝叶斯分类器

作业1、BAYES分类器 算法1. %绘图,从多个视角观察上述3维2类训练样本 clear all; close all; N1=440; x1(1,:)=-1.7+0.9*randn(1,N1); % 1 类440 个训练样本,3 维正态分布 x1(2,:)= 1.6+0.7*randn(1,N1); x1(3,:)=-1.5+0.8*randn(1,N1); N2=400; x2(1,:)= 1.3+1.2*randn(1,N2); % 2 类400 个训练样本,3 维正态分布 x2(2,:)=-1.5+1.3*randn(1,N2); x2(3,:)= 1.4+1.1*randn(1,N2); plot3(x1(1,:),x1(2,:),x1(3,:),'*',x2(1,:),x2(2,:),x2(3,:),'o'); grid on; axis equal; axis([-5 5 -5 5 -5 5]); xlabel('x ');ylabel('y ');zlabel('z '); %假定2类的类条件概率分布皆为正态分布,分别估计2类的先验概率、均值向量、协方差矩阵 p1=N1/(N1+N2); % 1 类的先验概率 p2=N2/(N1+N2); % 2 类的先验概率 u1=sum(x1')/N1; % 1 类均值估计 u1=u1' for i=1:N1 xu1(:,i)=x1(:,i)-u1;end; e1=(xu1*xu1')/(N1-1) % 1 类协方差矩阵估计 u2=sum(x2')/N2; % 2 类均值估计 u2=u2' for i=1:N2 xu2(:,i)=x2(:,i)-u2;end; e2=(xu2*xu2')/(N2-1) % 2 类协方差矩阵估计 %求解2类的BAYES分类器的决策(曲)面,并绘图、从多个视角观察决策面 %bayse 概率概率分布函数 w10=-(1/2)*u1'*(inv(e1))*u1-0.5*log(det(e1))+log(0.52); w20=-(1/2)*u2'*(inv(e2))*u2-0.5*log(det(e2))+log(0.48); W1=-(0.5)*inv(e1); W2=-(0.5)*inv(e2); w1=inv(e1)*u1; w2=inv(e2)*u2; temp=-5:0.1:5; [x1,y1,z1]=meshgrid(temp,temp,temp); val=zeros(size(x1)); for k=1:(size(x1,1)^3) X=[x1(k),y1(k),z1(k)]';

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

iris数据集的贝叶斯分类

IRIS 数据集的Bayes 分类实验 一、 实验原理 1) 概述 模式识别中的分类问题是根据对象特征的观察值将对象分到某个类别中去。统计决策理论是处理模式分类问题的基本理论之一,它对模式分析和分类器的设计有着实际的指导意义。 贝叶斯(Bayes )决策理论方法是统计模式识别的一个基本方法,用这个方法进行分类时需要具备以下条件: 各类别总体的分布情况是已知的。 要决策分类的类别数是一定的。 其基本思想是:以Bayes 公式为基础,利用测量到的对象特征配合必要的先验信息,求出各种可能决策情况(分类情况)的后验概率,选取后验概率最大的,或者决策风险最小的决策方式(分类方式)作为决策(分类)的结果。也就是说选取最有可能使得对象具有现在所测得特性的那种假设,作为判别的结果。 常用的Bayes 判别决策准则有最大后验概率准则(MAP ),极大似然比准则(ML ),最小风险Bayes 准则,Neyman-Pearson 准则(N-P )等。 2) 分类器的设计 对于一个一般的c 类分类问题,其分类空间: {}c w w w ,,,21 =Ω 表特性的向量为: ()T d x x x x ,,,21 = 其判别函数有以下几种等价形式: a) ()()i j i w w i j c j w w x w P x w P ∈→≠=∈→>,且,,,2,11 , b) ()()() ()i j j i w w i j c j w P w x p w P w x p ∈→≠=>,且,,,2,1i c) ()() () ()()i i j j i w w i j c j w P w P w x p w x p x l ∈→≠=>=,且,,,2,1 d) ()()() ()i j j i i w w i j c j w P w x np w P w x p ∈→≠=+>+,且,,,2,1ln ln ln 3) IRIS 数据分类实验的设计

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

贝叶斯分类器

实验报告 一. 实验目的 1、 掌握密度函数监督参数估计方法; 2、 掌握贝叶斯最小错误概率分类器设计方法。 二.实验内容 对于一个两类分类问题,设两类的先验概率相同,(12()()P P ωω=),两类的类条件概率密度函数服从二维正态分布,即 11(|)~(,)P N ω1x μΣ2(|)~(,)P N ω22x μΣ 其中,=[3,6]T 1μ,0.50=02???? ?? 1Σ,=[3,-2]T 2μ,20=02??????2Σ。 1) 随机产生两类样本; 2) 设计最大似然估计算法对两类类条件概率密度函数进行估计; 3) 用2)中估计的类条件概率密度函数设计最小错误概率贝叶斯分类器,实现对两类样本的分类。 三.实验原理 最大似然估计 1. 作用

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数θ作为真实* θ的参数估计。 2. 离散型 设X 为离散型随机变量, 12=(,,...,)k θθθθ为多维参数向量,如果随机变量 1,...,n X X 相互独立且概率计算式为 {}1(;,...) i i i k P x p x θθX ==,则可得概率函数为 {}1111,...,(;,...)n n n i k i P x x p x θθ=X =X ==∏,在 12=(,,...,)k θθθθ固定时,上式表示11,...,n n x x X =X =的概率;当 11,...,n n x x X =X =已知的时候,它又变成 12=(,,...,)k θθθθ的函数,可以把它记为12111(,,...,)(;,...,)n k k i L p x θθθθθ==∏,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值 11,...,n n x x X =X =,那么它出现的可能性应该是较大的,即似然 函数的值也应该是比较大的,因而最大似然估计就是选择使12(,,...,) k L θθθ达到最 大值的那个θ作为真实* θ的估计。 3. 连续型 设X 为连续型随机变量,其概率密度函数为1(;,...) i k f x θθ, 1,...n x x 为从该总体中 抽出的样本,同样的如果 1,...n x x 相互独立且同分布,于是样本的联合概率密度为12111(,,...,)(;,...,) n k k i L f x θθθθθ==∏。大致过程同离散型一样。 最大后验概率判决准则 先验概率 1() P ω和 2() P ω,类条件概率密度 1(|) P X ω和 2(|) P X ω,根据贝叶斯公 式1 (|)() (|)(|)() i i i c j j j p x P P X p X P ωωωωω== ∑,当 12(|)(|) P P ωω>x x 则可以下结论,在x 条件 下,事件 1ω出现的可能性大,将x 判定为1ω类。

贝叶斯分类器工作原理

贝叶斯分类器工作原理原理 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一 种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简 单很多。我们甚至可以把它归结为一个如下所示的公式: 其中实例用T{X0,X1,…,Xn-1}表示,类别用C 表示,AXi 表示Xi 的 父节点集合。 选取其中后验概率最大的c ,即分类结果,可用如下公式表示 () ()()() ()( ) 0011111 00011111 0|,, ,|,,, ,C c |,i i n n n i i X i n n n i i X i P C c X x X x X x P C c P X x A C c P X x X x X x P P X x A C c ---=---========= ===∝===∏∏()() 1 0arg max |A ,i n c C i i X i c P C c P X x C c -∈=====∏

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。6.选取其中后验概率最大的类c,即预测结果。 其流程图如下所示:

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

Bayes分类器设计

实验二 Bayes 分类器设计 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。 二、实验内容 设计Bayes 决策理论的随机模式分类器。 假定某个局部区域细胞识别中正常(a 1)和非正常(a 2)两类先验概率分别 为 正常状态:P (a 1)=0.9; 异常状态:P (a 2)=0.1。 三、方法手段 Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定。 四、Bayes 算法 1.实验原理 多元正太分布的概率密度函数由下式定义 1122 11()exp ()()2(2)T d p X X X μμπ-??=--∑-????∑ 由最小错误概率判决规则,可得采用如下的函数作为判别函数 ()(|)(),1,2,,i i i g x p X P i N ωω== 这里,()i P ω为类别i ω发生的先验概率,(|)i p X ω为类别i ω的类条件概率密度函数,而N 为类别数。 设类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p X ω,i=1,2,……,N 服从正态分布,即有(|)i p X ω~(,)i i N μ∑,那么上式就可以写为 1122() 1()exp ()(),1,2,,2(2)T i i d P g X X X i N ωμμπ-??=--∑-=????∑ 由于对数函数为单调变化的函数,用上式右端取对数后得到的新的判别函数替代原来的判别函数()i g X 不会改变相应分类器的性能。因此,可取 111()()()ln ()ln ln(2)222 T i i i i i i d g X X X P μμωπ-=--∑-+-∑- 显然,上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。这样,判别函数()i g X 可简化为以下形式

贝叶斯分类器MATLAB经典程序

function Bayes2 %为了提高实验样本测试的精度,故采用多次模拟求平均值的方法 N=input('实验模拟次数N(N最好为奇数)='); Result(1:3,1:3)=0; %判别矩阵的初始化 for k=1:N %控制程序模拟次数N %生成二维正态分布的样本2 X N 维的矩阵 X1=mvnrnd([1 2],[4 0;0 6],300)'; %2 X N X2=mvnrnd([5 3],[5 0;0 1],200)'; X3=mvnrnd([4 7],[2 0;0 9],500)'; %样本程序 %---------------------------------------------------% %测试样本 X10=mvnrnd([1 2],[4 0;0 6],100)'; %2 X N X20=mvnrnd([5 3],[5 0;0 1],100)'; X30=mvnrnd([4 7],[2 0;0 9],100)'; %先验概率 P(1)=length(X1)/(length(X1)+length(X2)+length(X3)); P(2)=length(X2)/(length(X1)+length(X2)+length(X3)); P(3)=length(X3)/(length(X1)+length(X2)+length(X3)); %计算相关量cov(X):协方差矩阵Ave:均值 %--------------------------------------------------------% W1=-1/2*inv(cov(X1')); W2=-1/2*inv(cov(X2')); W3=-1/2*inv(cov(X3'));% Ave1=(sum(X1')/length(X1))';Ave2=(sum(X2')/length(X2))'; Ave3=(sum(X3')/length(X3))';%计算平均值(2维列向量) w1=inv(cov(X1'))*Ave1;w2=inv(cov(X2'))*Ave2;w3=inv(cov(X3'))* Ave3;%2 w10=-1/2*Ave1'*inv(cov(X1'))*Ave1-1/2*log(det(cov(X1')))+log(P(1 ));

最小错误率贝叶斯分类器

硕士研究生专业课考试大作业 课程名称:模式识别 课程编号:063806 任课教师姓名:刘海波 职称:副教授 学生姓名:黄跃平 学号:S309060181 作业题目:最小错误率贝叶斯分类器 成绩: 二〇一〇年四月二十五日

最小错误率贝叶斯分类 摘要:统计决策理论是处理模式识别问题的基本理论之一,而贝叶斯决策理论方法又是统计模式识别中的一个基本方法,它可以有效地对大量数据进行分析,并生成相应的分类器,对于数据的分类识别有着重大的意义。本文把最小错误率的贝叶斯方法运用到男女性别的识别中,提高了分类的准确性和有效性。 关键词:贝叶斯统计决策;最小错误率;先验概率;条件概率 1 问题描述 模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。 有两种基本的模式识别方法,即统计模式识别方法和结构(句法)模式识别方法。统计模式识别是对模式的统计分类方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。与此相应的模式识别系统都是有两个过程(设计与实现)所组成。“设计”是指用一定数量的样本(训练集/学习集)进行分类器的设计。“实现”是指用所设计的分类器对待识别的样本进行分类决策。基于统计模式识别方法的系统主要由以下几个部分组成:信息获取、预处理、特征提取和选择、分类决策。 图1 统计模式识别系统 在本文中问题主要是通过提取人类身高和体重两个特征值,然后对样本集进行训练学习并设计分类器设计,最后对待识别的样本集进行男女性别的分类。 2 研究现状 贝叶斯(Reverend Thomas Bayes 1702-1761)学派奠基性的工作是贝叶斯的论文“关于几率性问题求解的评论”。或许是他自己感觉到他的学说还有不完善的地方,这一论文在他生前并没有发表,而是在他死后,由他的朋友发表的。著名的数学家拉普拉斯(Laplace,P.S )用贝叶斯的方法导出了重要的“相继律”,贝叶斯的方法和理论逐渐被人理解和重视起来。但由于当时贝叶斯方法在理论和实际应用中还存在很多不完善的地方,因而在十九世纪并未被普遍接受。二十世纪初,意大利的菲纳特(B.de Finetti )及其英国的杰弗莱(Jeffreys,H.)都对贝叶斯学派的理论作出重要的贡献。第二次世界大战后,瓦尔德(Wald,A.)提出了统计的决策理论,在这一理论中,贝叶斯解占有重要的地位;信息论的发展也对贝叶斯学派做出了新的贡献。1958年英国最悠久的统计杂志Biometrika 全文重新刊登了贝叶斯的论文,20世纪50年代,以罗宾斯(Robbins, H. )为代表,提出了经验贝叶斯方法和

简单朴素贝叶斯分类器的思想与算法分析

简单朴素贝叶斯分类器的思想与算法分析 在数据仓库和数据挖掘应用中,分类是一种非常重要的方法.分类的概念是在已有数据的基础上学会一个分类函数或构造出一个分类模型,即我们通常所说的分类器(Classifier).该函数或模型能够把数据集合中的数据记录映射到给定类别中的某一个值,从而可以应用于数据预测.目前,分类的主要算法有贝叶斯算法、决策树算法(如ID3、C4.5等)、规则推导、人工神经网络、最近邻算法、支持向量机等等.这些算法在许多现实数据集合上具有较好的预测精度.其中朴素贝叶斯算法具有良好的可解释性等,在实践中的应用最为广泛. 朴素贝叶斯算法是基于统计理论的方法,它能够预测所属类别的概率.简单朴素贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的.这一假设称为给定类别条件下的独立性(Class Conditional Independence)假设,它可以有效减少在构造分类器时所需要的计算量. 简单朴素贝叶斯算法的分类模型是基于Bayes 定理的,下面就简单介绍一下Bayes 定理.设X 为一个类别未知的数据样本,H 为某个假设,C 表示类别集合,若数据样本X 属于一个特定的类别c ,那么分类问题就是决定P (H /X ),即在获得数据样本X 时,H 假设成立的概率.由于P (H ) , P (X ), P (X /H )的概率值可以从(供学习使用的)数据集合中得到,Bayes 定理描述了如何根据P (H ) , P (X ), P (X /H )计算获得的P (H /X ),有关的具体公式定义描述如下: (/)() (/)() P X H P H P H X P X = (1) 简单朴素贝叶斯分类器进行分类操作的步骤说明如下: 1. 每个数据样本均是由一个n 维特征向量X ={x 1,x 2, ……, x n }来描述其n 个属性(A 1, A 2, ……, A n )的具体取值. 2. 假设共有m 个不同类别,{C 1, C 2, ……, C n }.给定一个未知类别的数据样本X ,分类器在已知样本X 的情况下,预测X 属于事后概率最大的那个类别.也就是说,朴素贝叶斯分类器将未知类别的样本X 归属到类别C i ,当且仅当:P (C i /X )> P (C j /X ) 其中1≤j ≤m ,j ≠i . 也就是P (C i /X )最大.其中的类别C i 就称为最大事后概率的假设,根据Bayes 定理可知, (/)() (/)() i i i P X C P C P C X P X = (2) 3. 由于P (X )对于所有的类别均是相同的,所以,要使公式(2)取得最大值,只需要P (X /C i )P (C i )取最大即可.类别的事前概率P (C i )可以通过公式P (C i )=s i /s 进行估算,其中s i 为训练样本集合类别C i 的个数,s 为整个训练样本集合的大小.

Bayes分类器设计说明

实验二 Bayes分类器设计 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes分类器性能的因素,掌握基于Bayes决策理论的随机模式分类的原理和方法。 二、实验容 设计Bayes决策理论的随机模式分类器。 假定某个局部区域细胞识别中正常(a 1)和非正常(a 2 )两类先验概率分别 为正常状态:P(a 1)=0.9;异常状态:P(a 2 )=0.1。 三、方法手段 Bayes分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定。 四、Bayes算法 1.实验原理 多元正太分布的概率密度函数由下式定义 由最小错误概率判决规则,可得采用如下的函数作为判别函数 度函数,而N为类别数。

由于对数函数为单调变化的函数,用上式右端取对数后得到的新的判别函数 显然,上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会 2.实验步骤 1、求出两类样本的均值 2、求每一类样本的协方差矩阵 式中,l 代表样本在类中的序号,其中 l 个样本,第j 个特征值; j 个特征的平均值 l 个样品,第k 个特征值; k 个特征的平均值。

3 4、求出每一类的先验概率 5、将各个数值代入判别函数 判别边界为 五、Bayes分类器实验结果 已知(图1)数据a=[0.3760 0.0240 0.2440 -0.1740 0.0460 -0.3940 0.3760 0.7720 0.2660 0.5080 -0.4380 -0.0640 0.8160 0.5960 0.1120 0.3540 0.8380 -0.7680 0.4200 -0.7900];其满足正态分布(图2)。 1. 最小错误率贝叶斯决策

基于朴素贝叶斯分类器的文本分类算法

基于朴素贝叶斯分类器的文本分类算法(上) 2010-02-21 10:23:43| 分类:Lucene | 标签:|字号大中小订阅 转载请保留作者信息: 作者:phinecos(洞庭散人) Blog:https://www.360docs.net/doc/f74278763.html,/ Email:phinecos@https://www.360docs.net/doc/f74278763.html, Preface 本文缘起于最近在读的一本书-- Tom M.Mitchell的《机器学习》,书中第6章详细讲解了贝叶斯学习的理论知识,为了将其应用到实际中来,参考了网上许多资料,从而得此文。文章将分为两个部分,第一部分将介绍贝叶斯学习的相关理论(如果你对理论不感兴趣,请直接跳至第二部分<<基于朴素贝叶斯分类器的文本分类算法(下)>>)。第二部分讲如何将贝叶斯分类器应用到中文文本分类,随文附上示例代码。 Introduction 我们在《概率论和数理统计》这门课的第一章都学过贝叶斯公式和全概率公式,先来简单复习下: 条件概率 定义设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A下发生的条件事件B发生的条件概率。 乘法公式设P(A)>0 则有P(AB)=P(B∣A)P(A) 全概率公式和贝叶斯公式 定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。 定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。 定理设试验俄E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则 P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(A|Bj)P(Bj)=P(B|Ai)P(Ai)/P(A) 称为贝叶斯公式。说明:i,j均为下标,求和均是1到n 下面我再举个简单的例子来说明下。 示例1 考虑一个医疗诊断问题,有两种可能的假设:(1)病人有癌症。(2)病人无癌症。样本数据来自某化验测试,它也有两种可能的结果:阳性和阴性。假设我们已经有先验知识:在所有人口中只有0.008的人患病。此外,化验测试对有病的患者有98%的可能返回阳性结果,对无病患者有97%的可能返回阴性结果。 上面的数据可以用以下概率式子表示:

贝叶斯分类器

贝叶斯分类器 一、数学知识 1)先验概率 根据以往经验和分析得到的概率,即人们在未知条件下对事件发生可能性的猜测。 2)后验概率 事情已经发生,求这个事情发生的原因是由某个因素引起的可能性大小。 若A 是结果,B 是原因 则) ().()().()().()() ()(22111111B P B A P B P B A P B P B A P A P A B P A B P += = 即 ) 3().3()2().2()1().1() 1().1()1(原因原因结果原因原因结果原因原因结果原因原因结果结果原因P P P P P P P P P ++= 二、贝叶斯决策论【考虑如何基于所知概率和误判损失来选择最优的类别标记】 (一)贝叶斯分类器 )] )(([)() ()() (min arg )(1 i *x x h R E h R x c P x c R x c R x h x j N j ij y c == =∑=∈λ 其中: 所产生的损失 的样本误标记为是将一个真实标记为上限 产生的模型精度的理论反映了通过机器学习所斯风险 为总体风险,称为贝叶为贝叶斯最优分类器其中 i j h R h R x h c c )(-1)()(ij ***λ 若目标为最小化分类错误率 P(x) )c (c)P(x )()(max arg )(*),(1)(,1if 0ij P x c P x c P x h x c P x c R otherwise j i y c = =-=?? ?==∈其中即则,λ 推到过程:

) (max arg )(*)) (1(min arg ) (min arg ) (min arg )(*1 1 x X c y P x h x X c y P x X c y P x X c P x h k y c k y c k K k y c k K k ij y c ======-==≠===∈∈=∈=∈∑∑λ ① 先假定类条件概率具有某种确定的概率分布条件; ② 再基于训练样本对概率分布的参数进行估计 对于)(c P x 来说就是假设)(c P x 具有确定的形式并且被参数向量c Θ唯一确定,则任务就是利用训练集D 来估计参数c Θ,)(c P x 记为)(c x ΘP 参数c Θ的极大似然Λ Θ; ) x ()()x (log )(log )()(max arg c C C C D X C C C c c P D P P D P LL LL C Θ∏=ΘΘ =Θ=ΘΘ=Θ∑∈Λ 其中 注:这种参数化的方法估计结果的准确性依赖于所假设的概率分布形式是否符合潜在的 真实数据分布 三、朴素贝叶斯分类器【解决了后验概率)(x c P 难计算的问题】 采用了“属性条件独立性假设”,假设每个属性独立地对分类结果发生影响 ) (x c P

相关文档
最新文档