消除焊接应力热处理工艺守则精选文档

消除焊接应力热处理工艺守则精选文档
消除焊接应力热处理工艺守则精选文档

消除焊接应力热处理工艺守则精选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1总则

本守则适用于本公司碳素钢及低合金钢压力容器及受压元件的焊后热处理。

本守则规定了钢制压力容器热处理通用工艺要求,具体实施应按图纸设计的要求和专业工艺文件的规定执行。

2要求

人员及职责

热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。

焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。

热处理操作人员应严格按照焊后热处理工艺进行操作,并认真填写原始操作记录。

设备及装置

能满足焊后热处理工艺要求;

在焊后热处理过程中,对被加热件无有害的影响;

能保证被加热件加热部分均匀热透;

能够准确地测量和控制温度;

在整个热处理过程中应当连续记录;

炉外加热时,热电偶的布置应满足工艺标准的要求;

被加热件经焊后热处理之后,其变形能满足设计及使用要求。

3焊后热处理方法

炉内热处理

焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。

被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。

为了防止拘束应力及变形,对薄壁大直径容器,内部应加支撑。卧式容器底部应放鞍式支座,支座间距不大于2米且底部应垫平。

有密封面和有高精度螺孔的部位应加以保护,可用机油和石墨粉膏剂涂于被保护面,然后用石棉布包扎。

分段热处理

焊后热处理允许在炉内分段进行。对于超出炉子长度需要分段热处理的大件,其重复加热长度应不小于米;露在炉外靠近炉门处应采取合适的保温措施,保温长度不得小于1米。

炉外热处理

产品整体炉外热处理热处理时,在满足的基础上,还应注意:

a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施;

b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形

局部热处理

B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。

局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不得小于钢材厚度δs的6倍。

靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。

4热处理工艺规范

工件装炉温度和出炉温度应低于400℃。但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。

焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。

升温时,加热区内任意5000mm长度内的温差不得大于120℃。

保温时,加热区内最高与最低温度之差不宜超过65℃。

升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。

炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h.

焊件按出炉温度出炉后应在静止空气中继续冷却。

常用钢号推荐的焊后热处理保温温度和保温时间见表1

表1常用钢号焊后热处理规范

V加——加热速度(℃/h)

V冷——冷却速度(℃/h)

δS —焊接接头处钢材的较大厚度(mm)

当碳素钢、强度型低合金钢焊后热处理温度低于表1规定温度的下限值时,最短保温时间按表2进行。

表2焊后热处理温度低于规定值的保温时间

不同钢号相焊时,焊后热处理规范按温度较高的钢号执行,但温度不应超过两者任一钢号的下临界点AC1。

非受压元件与受压元件相焊时,应按受压元件的焊后热处理规范执行。

对有再热裂纹倾向的钢,在焊后热处理时应注意防止产生再热裂纹。

5质量记录

热处理温度—时间曲线自动记录

热处理原始记录

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

热处理--消除焊接应力

1总则 1.1本守则适用于本公司碳素钢及低合金钢压力容器及受压元件的焊后热处理。 1.2本守则规定了钢制压力容器热处理通用工艺要求,具体实施应按图纸设计的要求和专业工艺文件的规定执行。 2要求 2.1人员及职责 2.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 2.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 2.1.3 热处理操作人员应严格按照焊后热处理工艺进行操作,并认真填写原始操作记录。 2.2 设备及装置 2.2.1能满足焊后热处理工艺要求; 2.2.2在焊后热处理过程中,对被加热件无有害的影响; 2.2.3 能保证被加热件加热部分均匀热透; 2.2.4能够准确地测量和控制温度; 2.2.5在整个热处理过程中应当连续记录; 2.2.6炉外加热时,热电偶的布置应满足工艺标准的要求; 2.2.7被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3焊后热处理方法 3.1炉内热处理 3.1.1 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。3.1.2 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 3.1.3为了防止拘束应力及变形,对薄壁大直径容器,内部应加支撑。卧式容器底部应放鞍式支座,支座间距不大于2米且底部应垫平。 3.1.4有密封面和有高精度螺孔的部位应加以保护,可用机油和石墨粉膏剂涂于被保护面,然后用石棉布包扎。

3.2分段热处理 焊后热处理允许在炉内分段进行。对于超出炉子长度需要分段热处理的大件,其重复加热长度应不小于1.5米;露在炉外靠近炉门处应采取合适的保温措施,保温长度不得小于1米。 3.3炉外热处理 产品整体炉外热处理热处理时,在满足2.2的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.4局部热处理 3.4.1 B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。 3.4.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不得小于钢材厚度δs的6倍。 3.4.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 4热处理工艺规范 4.1工件装炉温度和出炉温度应低于400℃。但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。 4.2 焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。 4.3 升温时,加热区内任意5000mm长度内的温差不得大于120℃。 4.4 保温时,加热区内最高与最低温度之差不宜超过65℃。 4.5 升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。 4.6 炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h. 4.7 焊件按出炉温度出炉后应在静止空气中继续冷却。 4.8 常用钢号推荐的焊后热处理保温温度和保温时间见表1

消除应力热处理作业指导书

消除应力热处理作业指导书 1.范围 1.1 本守则规定了膨胀节产品的消除应力热处理基本程序和要求。 1.2 本守则适用于膨胀节压制简体和成形的膨胀节消除应力热处理工序。 2.规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款,凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用本规程。 质技监局锅发[1999]154号《压力容器安全技术监察规程》 GBl50-1998《钢制压力容器》 JB/T4709-2000《钢制压力容器焊接工艺规程》 GBl6749《压力容器波形膨胀节》 3.工艺规范 3.1 工艺曲线 3.2 常用材料消除应力热处理温度及保温时间参见相关材料标准的推荐温度。 3.3 焊件进炉时炉内温度不得高于400℃。焊件出炉时,炉温不得高于400℃,出炉后应在静止的空气中冷却。 3.4 升温速度最大不得超过PWHT 5000 δ℃/h ,且不得超过200℃/h ,最小可为50℃/h 。降温速度最大不 得超过PWHT 6000 δ℃/h ,且不得超过260℃/h ,最小可为50℃/h 。 4.工艺操作 4.1 消除应力热处理应在焊接工作全部结束并检测合格后,于压制成形或在压力试验前进行。奥氏体不锈钢压制的波纹管、膨胀节一般不进行焊后消除应力热处理,工艺或客

户有特殊要求的按工艺处编制的热处理工艺卡执行。 4.2 消除应力热处理应尽可能采取整体热处理。 4.3 装炉时,工件距炉门不得小于****毫米,距炉墙不得小于****毫米,加热炉对炉温应能控制,对工件不得产生过度氧化和有害影响。 4.4 装炉时需要将工件垫平、垫稳。工件之间保持一定距离,不要靠紧。若需垛装时,上下工件之间要用垫板垫起。垫板厚度要大于*******毫米,上下垫板必须平行对正。 4.5 对于直径较大、壁厚较薄的筒体,内部没有支承圈或固定塔板时,应适当在内部支承,以防加热时变形。 4.6 产品焊接试板应随同工件同炉热处理,试板须放在能代表工件的适当位置。试板应有钢印标记,经核对并经检查员认可。 4.7 焊件升温期间,加热区内任意长度为*******毫米内的温差不得大于*****℃。焊件保温期间,加热区内最高与最低温度之差不宜大于*****℃。升温和保温期间应控制加热区气氛,防止焊件表面过度氧化。 5. 测温与记录 5.1 热处理炉应配有自动记录温度时间曲线的测温仪表。 5.2 热电偶应安装在能反映工件实际温度的适当位置。补偿导线的线径及长度要合适,并经常检查热电偶的老化情况。 5.3 测温仪表和热电偶必须定期检定,保证合格准确。 5.4 工件热处理曲线记录和检验记录应存档保管,且保存不得少于***年。

焊后热处理基本知识

焊接接头焊后热处理基本知识培训 一、焊后热处理的概念 1.1后热处理(消氢处理):焊接完成后对冷裂纹敏感性较大的低合金钢和拘束度较大的焊件加热至200℃~350℃保温缓冷的措施。 目的、作用:减小焊缝中氢的有害影响、降低焊接残余应力、避免焊缝接头中出现马氏体组织,从而防止氢致裂纹的产生。 后热温度:200℃~350℃ 保温时间:即焊缝在200℃~350℃温度区间的维持时间,与后热温度、焊缝厚度有关,一般不少于30min 加热方法:火焰加热、电加热 保温后的措施:用保温棉覆盖让其缓慢冷却至室温 NB/T47015-2011关于后热的规定: 1.2焊后热处理(PWHT):广义上:焊后热处理就是在工件焊完之后对焊接区域或焊接构件进行的热处理,内容包括消除应力退火、完全退火、固熔、正火、正火加回火、回火、低温消除应力等。狭义上:焊后热处理仅指消除应力退火,即为了改善焊接区的性能和消除焊接残余应力等有害影响。 1.3压力容器及压力管道焊接中所说的焊后热处理是指焊后消除应力的热处理。焊后消除应力热处理过程:将焊件缓慢均匀加热至一定温度后保温一定的时间,然后缓慢降温冷却至室温。

目的、作用: (1)降低或消除由于焊接而产生的残余焊接应力。 (2)降低焊缝、热影响区硬度。 (3)降低焊缝中的扩散氢含量。 (4)提高焊接接头的塑性。 (5)提高焊接接头冲击韧性和断裂韧性。 (6)提高抗应力腐蚀能力。 (7)提高组织稳定性。 热处理的方式:整体热处理、局部热处理 1.4焊接应力的危害和降低焊接应力的措施 焊接应力是在焊接过程中由于温度场的变化(热涨冷缩)及焊件间的约束而产生的滞留在焊件中的残余应力。 1.4.1焊接应力只能降低,不可能完全消除,焊接残余应力形成的的危害:1)影响构件承受静载的能力;2)会造成构件的脆性断裂;3)影响结构的疲劳强度;4)影响构件的刚度和稳定性;5)应力区易产生应力腐蚀开裂;6)影响构件的精度和尺寸的稳定性。 1.4.2降低焊接应力的措施 1)设计措施: (1)构件设计时经量减少焊缝的尺寸和数量,可减少焊接变形,同时降低焊接应力 (2)构件设计时避免焊缝过于集中,从而避免焊接应力叠加 (3)优化结构设计,例将如容器的接管口设计成翻边式,少用承插式 2)工艺措施

压力容器焊接应力的消除(谷风资料)

压力容器焊接应力的消除 前言 压力容器是工业生产过程中必不可少的重要设备,它广泛应用于化工、炼油、机械、动力、核能以及运输等工业部门。随着工业不断发展, 压力容器的操作条件越来越苛刻,压力从高真空到几万个大气压,温度从超低温到几千度,尺寸也越来越大,某反应堆容器内径达6m多,结构也越采越复杂。同时,压力容器所处理的介质往往又是易燃易爆或有毒的,一旦发生事故,将给国家财产和人民生命带来不可估量的损失。所以加强压力容器的制造质量控制是非常必要的。 1、焊接应力产生的机理及危害 压力容器制造中,焊接和热处理是制造工艺中的关键工序。在焊接过程中,存在着三种附加的内应力,即焊接接头各部位受热及冷却速度不同产生的热应力;金相组织变化产生的组织应力和施焊时容器结构本身的约束产生的拘束应力.如果焊接工艺控制不当,这些应力过大将导致裂纹萌生。另外,由于材料的冷热加工成型工艺不当,将使受压部件韵成型尺寸超差,若 再采用强制组装焊接的方法,还将引起附加的强制组装应力。这些应力在一定条件下,影响着焊接结构的性能。同时,对于某些结构件,所采用的焊接方法、焊接位置和焊接工艺的不同,往往会引起焊接时产生轻微的空冷硬化现象.如效果。 据报导,美国1984年发生的一起单乙醇胺(MEA)吸收器容器焊接接头破坏事故,导致17人死亡,财产损失超过一亿美元。该容器为圆筒形,直径为

2.6m,长度为16M,壁厚为25.4mm,是按照美国机械工程师学会(ASME) 规程中的部分规定设计制造的,该容器主要充装丙烷和硫化氢,工作温度为37.8'C,内压为10PMa。据198S年发表的研究报告中公布的结果,其中一个原因就是因为该容器焊后来经热处理(这是因为ASME规程中没有规定),结果,焊接热影响区存在潜在的对裂缝敏感的冶金组织、硬度变化和残余应力,三种因素在不同化学介质和操作温度下,共同产生不同类型的、由使用诱发的裂缝。该报告的建议中提出必须对可能产生热影响区硬化的焊接接头进行预热和焊后热处理,使将来出现问题的几率减到最小。由此可见,焊后残余应力的消除是至关重要的。 长期以来,传统的消除残余应力方法是采取焊后热处理方法,因为它是改进焊接接头质量的重要方法之一,但并不是唯一的方法。下面对几种方祛加以介绍分析。 2、焊后热处理 焊后热处理,也称消除应力热处理或消除应力退火。这一方法早巳被用来作为提高焊接产品质量的手段,并在世界各国标准和技术规程里作了具体规定。然而对此使用的术语并不统一;以前一般称之为退火,近十年来,“焊后热处理的叫法巳在世界上得到确认。焊后热处理可分为整体焊后热处理和局部焊后热处理。 2.1 整体焊后热处理 整体焊后热处理分为整体炉内焊后热处理和整体炉外焊后热处理。 2.1.1 整体炉内焊后热处理 当条件许可时,可将整个容器放入加热炉内进行整体热处理。一般采说,

焊后热处理(PWHT)和焊后消除应力热处理的区别

焊后热处理(PWHT)和焊后消除应力热处理的区别 内容来源网络,由深圳机械展收集整理! 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热

处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。 焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

去应力和完全退火工艺

去应力和完全退火工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

钢的退火工艺完全退火去应力退火工艺曲线及操作规程 退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。 一. 完全退火 完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。 完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。 完全退火工艺曲线见图1.1。 1. 工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。 2. 保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止加热开始降温时的全部时间。工件堆装时,主要根据装炉情况估定,一般取2~3h。 3. 工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500℃即可出炉空冷。对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等温冷却方法,即在650℃附近保温2~4h后再炉冷至500℃。 二. 去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1. 去应力退火工艺曲线见图1-3。

2. 不同的工件去应力退火工艺参数见表C。 3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。 4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。 5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。 表C 去应力退火工艺及低温时效工艺 类别加热速度加热温 度 保温时 间/h 冷却时间 焊接件 ≤300℃装炉 ≤100~150℃/h 500- 550 2-4炉冷至300℃出炉空冷 消除加工应力到温装炉400- 550 2-4炉冷或空冷 高精轴套、膛杆(38CrMoAlA)≤200℃装炉 ≤80℃/h 600- 650 10-12 炉冷至200℃出炉 (在350℃以上冷速 ≤50℃/h) 精密丝杠(T10)≤200℃装炉 ≤80℃/h 550- 600 10-12 炉冷至200℃出炉 (在350℃以上冷速 ≤50℃/h) 主轴、一般丝杠(45、40Cr)随炉升温 550- 600 6-8炉冷至200℃出炉 量检具、精密丝杠 (T8、T10、CrMn、 GCr15)随炉升温 130- 180 12-16 空冷 (时效最好在油浴中进 行)

钢制管道焊后热处理工艺规程完整

锅炉管焊接热处理工艺规程 1 总则 本工艺规程适用于低碳和低合金钢锅炉管道焊接接头消除残余应力的焊后热处理,不涉及发生相变和改变金相组织的其他热处理方法。 2 、引用标准及参考文献 NB/T47015—2011 《压力容器焊接规程》 SH3501—2011 《石油化工有毒可燃介质管道工程施工及验收规》 GB50236—2011 《现场设备、工业管道焊接工程施工及验收规程》 3、焊前预热 3.1材料性能分析 部分锅炉管道采用低合金耐热钢,材料具有良好的热稳定性能,是高温热管道的常用材料,由于材料中存在铬、钼合金成分,材料的淬硬倾向大,施工中采用焊前预热、焊后热处理的工艺措施,来获得性能合格的焊接接头。 3.2管道组成件焊前预热应按表1的规定进行,中断焊接后需要继续焊接时,应重新预热,焊接是保持层间温度不小于150℃。 3.3 当环境温度低于10℃时,在始焊处100mm围,应预热到50℃以上。 表1 管道组成件焊接前预热要求

4 设备和器材 4.1焊后热处理必须采用自动控制记录的“热处理控制柜”控制温度。4.2“热处理控制柜”需满足下列要求: 4.2.1能自动控制、记录热处理温度。 4.2.2控制柜、热电偶和补偿导线组合后的温度误差≤±10℃。 4.2.3柜所有仪表、仪器需经法定计量单位校验合格,使用时校验合格证须在有效期。 4.3热电偶 4.3.1焊接接头焊后热处理须采用热电偶测温控温。 4.3.2热电偶需满足如下要求: 4.3.2.1量程为热处理最高温度的1.5倍,精度等级为1.0;控温柜和补偿导线的组合温差波动围≤±10℃。 4.3.2.1按校验周期进行强制校验,使用时校验合格证须在有效期。 4.4加热器 4.4.1焊后热处理必须采用可实现自动指示控制记录的电加热绳或履带加热板加热。 4.4.2管壁厚大于25mm的焊接接头宜采用感应法加热。 4.5热处理设备由经培训合格的专人管理和调试,使用时应放置在防雨防潮的台架上。 4.6保温材料 热处理所用保温材料应为绝缘无碱超细玻璃棉或复合硅酸盐毡,且应有质量证明及合格证。

焊前预热与焊后热处理的重要性

焊前预热与焊后热处理的重要性 焊前预热 焊前预热及焊后热处理对于保证焊接质量非常重要。重要构件的焊接、合金钢的焊接及厚部件的焊接,都要求在焊前必须预热。焊前预热的主要作用如下:(1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。 (2)预热可降低焊接应力。均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。 (3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。 预热温度和层间温度的选择不仅与钢材和焊条的化学成分有关,还与焊接结构的刚性、焊接方法、环境温度等有关,应综合考虑这些因素后确定。另外,预热温度在钢材板厚方向的均匀性和在焊缝区域的均匀性,对降低焊接应力有着重要的影响。局部预热的宽度,应根据被焊工件的拘束度情况而定,一般应为焊缝区周围各三倍壁厚,且不得少于150-200毫米。如果预热不均匀,不但不减少焊接应力,反而会出现增大焊接应力的情况。 2焊后热处理 焊后热处理的目的有三个:消氢、消除焊接应力、改善焊缝组织和综合性能。

焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。 在焊接过程中,由于加热和冷却的不均匀性,以及构件本身产生拘束或外加拘束,在焊接工作结束后,在构件中总会产生焊接应力。焊接应力在构件中的存在,会降低焊接接头区的实际承载能力,产生塑性变形,严重时,还会导致构件的破坏。 消应力热处理是使焊好的工件在高温状态下,其屈服强度下降,来达到松弛焊接应力的目的。常用的方法有两种:一是整体高温回火,即把焊件整体放入加热炉内,缓慢加热到一定温度,然后保温一段时间,最后在空气中或炉内冷却。用这种方法可以消除80%-90%的焊接应力。另一种方法是局部高温回火,即只对焊缝及其附近区域进行加热,然后缓慢冷却,降低焊接应力的峰值,使应力分布比较平缓,起到部分消除焊接应力的目的。 有些合金钢材料在焊接以后,其焊接接头会出现淬硬组织,使材料的机械性能变坏。此外,这种淬硬组织在焊接应力及氢的作用下,可能导致接头的破坏。如果经过热处理以后,接头的金相组织得到改善,提高了焊接接头的塑性、韧性,从而改善了焊接接头的综合机械性能。

焊接、热处理工艺卡

焊接热处理工艺卡 精品

工艺曲线图: 注意事项: 1. 在加热范围内任意两点的温差应小于 50℃; 2. 保温厚度以40~60mm 为宜; 3. 升、降温时,300℃以下可不控温; 4. 焊后热处理必须在焊接完毕后24h 内进行。 编制 日期 审批 日期 焊接施工工艺卡 企业名称:安徽电力建设第二工程公司 设计卡编号:APCC-GD-WPS-001 产品名称:P91中大口径管焊接工艺卡 所依据的工艺评定报告编号:APCC-PQR-115 焊接位置:2G 、5G 、6G 自动化程度:手工焊 母 材 坡 口 简 类号 B 级号 Ⅲ 与 类号 B 级号 Ⅲ 钢号 SA335-P91 与 母材厚度范围:√对接接头 角接接头 70mm 焊缝金属厚度范围:δ≤h ≤δ+4mm 管子直径范围:√对接接头 角接接头 φ406 其 他: / 坡口检查 √外观检查VT √着色PT 磁粉MT 装配点焊 √手工焊Ds 氩弧焊Ws 二氧化碳气体焊Rb 焊材要求 √焊丝清洁 √焊条烘焙 焊剂温度 焊前预热: 火焰预热 √电阻预热 预热温度:150~200℃ 层间温度:200~300℃ 焊嘴尺寸: M10×L65×φ6 钨极型号/尺寸: Wce-20,φ2.5 焊接技术: 导电嘴与工件距离: / 清理方法: 机械法清理 无摆动或摆动焊: 略摆动 焊接方向: 由左至右、由下至上 工 艺 参 数 层 道 次 焊接方法 焊材 极 性 焊接参数 焊剂或 气体 保护气体流量L/Min 背面保护气体流 量L/Min 气体后拖 保护时间S 牌号 规 格 (mm ) 电流(A ) A 电压 (V ) 焊速 mm/Min 150~250 200~300 ≤300℃ 温度(℃) 时间 6(h ) 80~100℃/2 ≤90℃/h ≤90℃/h 750~770℃

焊后消除应力处理

焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。 另外还有爆炸消除应力。 2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100~200mm。 3、机械拉伸、水压试验、温差拉伸、振动法等这几种方法只能消除20~50%的残余应力,前两种方法在生产上广泛应用。 焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%左右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。 采用大型燃油退火炉,进行焊后退火处理。采用多点加热、多点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了焊接件的氢脆。 在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。 传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。后两种方法应用较少,这里不作介绍 自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,在温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。 热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。 振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。 振动时效艺具有耗能少、时间短、效果显著等特点。与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。因此,目前对长达几米至几十米和桥梁、船舶、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。生产周期短。自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。使用方便。振动设备体积小、重量轻、便于携带。由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。节约能源,降低成本。在工件共振频率下进行时效处理,耗能极少,能源消耗仅为热时效的3~5%,成本仅为热时效的8~10%。其他。振动时效操作简便,易于机械化自动化。可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷。是目前唯一能进行二次时效的方法

锻造及锻后热处理工艺规范

目录 1.钢质自由锻件加热工艺规范 2.钢锭(坯)加热规范若干概念 3.加热操作守则 4.锻造操作守则 5.锻件锻后冷却规范 6.锻件锻后炉冷工艺曲线 7.锻件锻后热装炉工艺曲线 8.冷锻件校直前加热、校直后(补焊后)回火工艺曲线 9.锻件各钢种正火(或退火)及高温回火温度表 10.锻件有效截面计算方法

钢质自由锻件加热工艺规范 一.范围: 本规范规定了钢质自由锻件的通用加热技术条件。 本规范适用于碳素钢、合金钢、高合金钢、高温合金钢(铁基、镍基)的冷、热、半热钢锭(坯)的锻造前加热 二.常用钢号分组和始、终锻加热温度范围: 组别钢号 始锻温度 ℃ 终锻温度 ℃ 钢锭钢坯终锻精整 ⅠQ195~Q255,10~30 1250 1220 750 700 35~45,15Mn~35Mn,15Cr~35Cr 1220 1200 750 700 Ⅱ50,55,40Mn~50Mn,35Mn2-50Mn2,40Cr~55Cr,20SiMn~35SiMn, 12CrMo~50CrMo,34CrMo1A,30CrMnSi,20CrMnTi,20MnMo, 12CrMoV~35CrMoV,20MnMoNb,14MnMoV~42MnMoV, 38CrMoAlA,38CrMnMo 1220 1200 800 750 Ⅲ34CrNiMo~34CrNi3Mo,PCrNi1Mo~PCrNi3Mo,30Cr1Mo1V, 25Cr2Ni4MoV,22Cr2Ni4MoV,5CrNiMo,5CrMnMo,37SiMn2MoV 30Cr2MoV,40CrNiMo,18CrNiW,50Si2~60Si2,65Mn,50CrNiW, 50CrMnMo,60CrMnMo,60CrMnV 1200 1180 850 800 T7~T10,9Cr,9Cr2,9Cr2Mo,9Cr2V,9CrSi,70Cr3Mo, 1Cr13~4Cr13,86Cr2MoV,Cr5Mo,17-4PH 0Cr18Ni9~2Cr18Ni9,0Cr18Ni9Ti,Cr17Ni2,F316LN 1200 1180 850 800 50Mn18Cr4,50Mn18Cr4N,50Mn18Cr4WN,18Cr18Mn18N GCr15,GCr15SiMn,3Cr2W8V,CrWMo,4CrW2Si~6CrW2Si 1200 1180 850 800 Cr12MoV1,4Cr5MoVSi(H11),W18Cr4V 1180 1160 950 900 ⅣGH80,GH901,GH904,GH4145,WR26, NiCr20TiAl,incone1600,incone1800 1130 1100 930 930 注1:始锻温度为锻前加热允许最高炉温,由于钢锭的铸态初生晶粒加热时过热倾向比同钢号钢坯小,故两者的锻前加热温度相差20℃~30℃; 注2:根据产品的特性、锻件技术条件、变形量等因素,始锻温度可以适当调整;注3:本规范未列入的钢种,可按化学成分相近的钢号确定; 注4:重要的、关键产品的、特殊材质的钢号,其加热工艺曲线由技术部编制;注5:几种不同的钢种,不同尺寸的钢锭(或坯料),在同一加热炉加热时,要以合金成分高的,尺寸大的钢锭(或坯料)为依据编制加热工艺曲线。

1、范围本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺

1、范围本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺。 本标准适用于锅炉、压力容器的碳钢、低合金钢产品,以改善接头性能,降低焊接残余应力为主要目的而实施的焊后热处理。其他产品的焊后热处理亦可参照执行。 2、引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB9452-1988 热处理炉有效区测定方法。 3、要求 3.1 人员及职责 3.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 3.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 3.1.3 热处理工应严格按焊后热处理工艺进行操作,并认真填写原始操作记录。 3.1.4 热处理责任工程师负责审查焊后热处理原始操作记录(含时间-温度自动记录曲线),核实是否符合焊后热处理工艺要求,确认后签字盖章。 3.2 设备 3.2.1 各种焊后热处理及装置应符合以下要求: a)能满足焊后热处理工艺要求; b)在焊后热处理过程中,对被加热件无有害的影响; c)能保证被加热件加热部分均匀热透; d)能够准确地测量和控制温度; e)被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3.2.2 焊后热处理设备可以是以下几种之一: a)电加热炉; b)罩式煤气炉; c)红外线高温陶瓷电加热器; d)能满足焊后热处理工艺要求的其他加热装? 3.3 焊后热处理方法 3.3.1 炉内热处理 a)焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。在积累了炉温与被加热件的对应关系值的情况下,炉内热处理时,一般允许利用炉温推算被加热件的温度,但对特殊或重要的焊接产品,温度测量应以安置在被加热件上的热电偶为准。 b)被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 c)为了防止拘束应力及变形的产生,应合理安置被加热件的支座,对大型薄壁件和结构、几何尺寸变化悬殊者应附加必要的支撑等工装以增加刚性和平衡稳定性。 3.3.2 分段热处理焊后热处理允许在炉内分段进行。被加热件分段进行热处理时,其重复加热长度不小于1500mm.被加热件的炉外部分,应采取合适的保温措施,使温度梯度不致影响材料的组织和性能。 3.3.3 整体炉外热处理进行整体炉外热处理时,在满足 3.2.1的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.3.4 局部热处理B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺

消除残余应力的方法

消除残余应力的方法(金属)——时效处理 消除残余应力的方法(金属)——时效处理 金属工件(铸件、锻件、焊接件)在冷热加工过程中都会产生残余应力,残余应力值高者(单位为Pa)在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。因此降低和消除工件的残余应力就十分必要了,特别是在航空航天、船舶、铁路及工矿生产等应用的,由残余应力引起的疲劳失效更不容忽视。 目前的针对残余应力的不同处理方法有:自然时效方法和人工时效方法(包括热处理时效、敲击时效、振动时效、超声冲击时效) 1、自然时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 自然时效是最古老的时效方法。它是把构件露天放置于室外,依靠大自然的力量,经过几个月至几年的风吹、日晒、雨淋和季节的温度变化,给构件多次造成反复的温度应力。再温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。 自然时效降低的残余应力不大,但对工件尺寸稳定性很好,原因是工件经过长时间的放置,石墨尖端及其他线缺陷尖端附近产生应力集中,发生了塑性变形,松弛了应力,同时也强化了这部分基体,于是该处的松弛刚度也提高了,增加了这部分材质的抗变形能力,自然时效降低了少量残余应力,却提高了构件的松弛刚度,对构件的尺寸稳定性较好,方法简单易行,但生产周期长.占用场地大,不易管理,不能及时发现构件内的缺陷,已逐渐被淘汰。 2、热处理时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 热时效处理是传统的消除残余应力方法。它是将构件由室温缓慢,均匀加热至550℃左右,保温4-8小时,再严格控制降温速度至150℃以下出炉。 热时效工艺要求是严格的,如要求炉内温差不大于±25℃,升温速度不大于50℃/小时,降温速度不大于20℃/小时。炉内最高温度不许超过570℃,保温时间也不易过长,如果温度高于570℃,保温时间过长,会引起石墨化,构件强度降低。如果升温速度过快,构件在升温中薄壁处升温速度比厚壁处快的多,构件各部分的温差急剧增大,会造成附加温度应力。如果附加应力与构件本身的残余应力叠加超过强度极限,就会造成构件开裂。 热时效如果降温不当,会使时效效果大为降低,甚至产生与原残余应力相同的温度应力(二次应力、应力叠加),并残留在构件中,从而破坏了已取得的热

现场管道焊缝热处理施工工艺标准

现场管道焊缝热处理施工工艺标准 QB-CNCEC J22303-2006 1 适用范围 本施工工艺标准仅适用于碳素钢、合金钢金属管道焊缝现场热处理作业。 2 施工准备 2.1 技术准备 2.1.1施工技术资料 设计资料(管道施工图、材料表、设计说明及技术规定等)。 2.1.2 现行施工标准规范 GB50235《工业金属管道工程施工及验收规范》 GB50236《现场设备、工业管道的焊接工程施工及验收规范》 HG20225《化工金属管道施工及验收规范》 SY0401《输油输气管道线路工程施工及验收规范》 SY0402《石油天然气工艺管道工程施工及验收规范》 SH3501《石油化工剧毒可燃介质管道工程施工及验收规范》 SH/T3517《石油化工钢制管道工程施工工艺标准》 DL5007《电力建设施工及验收技术规范》(火力发电厂焊接篇) JGJ46《施工现场临时用电安全技术规范》 2.1.3 热处理施工方案 根据管道施工图、设计说明及不同材质的管道焊缝热处理要求,以及工期、工程量等现场实际状况,编制管道焊缝现场热处理施工方案。热处理施工方案应明确:热处理工艺流程、施工方法、劳动力组织、施工机具、材料、质量目标、质量通病预防、职业健康安全环保技术措施。 2.2 作业人员 2.3 材料的验收与保管 2.3.1管道焊缝现场热处理主要材料见下表:

2.3.2材料的验收及保管 2.3.2.1 一般材料的验收及保管 ⑴脚手架钢管及扣件应检查确认符合质量要求并有序堆放; ⑵保温用铁丝、防雨用的移动棚(罩)妥善保管存放。 2.3.2.2 特殊材料的验收及保管。 ⑴用选定的保温材料、铁丝网、石棉布、细铁丝缝制保温毡;保温毡应保持干燥,存放在室内,或室外垫高的排架上,并应覆盖不得受潮。 ⑵电加热器、热电偶端点焊接良好、接线柱螺栓完好,补偿导线无脱皮并整齐盘绕,均存放在室内。 2.4主要施工机具 2.4.1 主要机械设备 变压器(或交流焊机)、温控柜、履带式电加热器、绳式电加热器、指型电加热器等。 2.4.2主要工具 钢丝钳、活动扳手、剪子、锯弓、手锤、扁錾、台虎钳、大锤、剥线钳、螺丝起、万能表等。 2.5 计量器具 温度自动记录仪、数字显示式表面测温仪、数字显示式硬度仪。 2.6 作业条件 2.6.1所有需要热处理的管道焊缝全部施焊完毕,并经检验合格。 2.6.2编制热处理方案已经批准并已进行技术交底。 2.6.3 现场电源、环境条件等均符合要求,并已采取防风、防雨、防火、防停电等措施;寒冷雨雪天气,室外管道焊缝热处理应搭设可靠的防护棚。 2.6.4 现场应准备充足的保温材料、细铁丝及自制的保温毡。 2.6.5 管道端口封闭,焊缝附近孔板、温度计、压力表等仪表已拆除,拆除口已保护。 2.6.6 确保热处理设备、仪表性能良好,电加热器、热电偶、测温点布置合理,热电偶、补偿导线与记录仪相配,现场接电、接线安全可靠。 2.6.7 所有热电偶、补偿导线、长图记录仪等仪器均已调试。 2.6.8外电源网压相对稳定。 2.6.9热处理前,热处理责任人员及质量检查人员应对管道焊接及检验记录、热处理加热区布置、测温点布置及热电偶安装可靠性、热处理设备、保温措施等进行全面检查并合格。 3 施工工艺 3.1 工艺流程

热处理应力及其影响

热处理应力及其影响 热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状, ;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时, ;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀, ;工件各部位先后相变,造成体积长

大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。 实践证明,任何工件在热处理过程中, ;只要有相变,热应力和组织应力都会发生。;只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果, ;就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。;组织应力占主导地位时的作用结果是工件心部受压表面受拉。 二、热处理应力对淬火裂纹的影响 存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内( ;尤其是在最大拉应力下)才会表现出来, ;若在压应力场内并无促裂作用。 淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临

相关文档
最新文档