农业土壤成分分析标准物质

农业土壤成分分析标准物质
农业土壤成分分析标准物质

国家质量监督检验检疫总局批准

(He;

GBW(E)070041-GBW(E)070046

标准物质证书

农业土壤成分分析标准物质

样品编号:

定值日期:1996年7月

地球物理地球化学勘查研究所中国廊坊

中国科学院南京土壤研究所中国南京本系列农业土壤成分标准物质计6个,主要用作农业土壤全量成分分析的量值标准和测试的质

量监控,其样品类型与土壤有效态成分分析标准物质GBW07412 —GBW07417相同,两套标准可配

套使用。

一、样品制备

样品晾干、去除杂物,于105C烘24小时去水、灭活,用高铝瓷球磨机研磨至-200目占98%以上。每种样品制备重量300kg。样品概况列于下表:

样品编号名称采样地点-200 目% 简述

GBW(E)070041 棕壤辽宁开源98.7 棕色粉砂质壤土,母岩为花岗岩

GBW(E)070042 潮土河南安阳99.3 石灰性浅褐色粉砂壤土,母质为洪、冲积物

GBW(E)070043 紫色土四川简阳99.4 紫褐色粘性壤土,母岩为砂页岩

GBW(E)070044 水稻土湖北黄梅99.5 灰色粉砂质粘性壤土,母质为湖积物

GBW(E)070045 红壤江西鹰潭98.8 红色粉砂质粘性壤土,母质为第三系沉积物

GBW(E)070046 赤红壤广州花县98.9 褐黄色含砂粘性壤土,母岩为花岗岩、均匀性和稳定性

样品的均匀性检验,随机抽取30瓶样品,每瓶分取双份,用X-射线荧光光谱法测试Cu Zn Mn P

Ti K2O TFe2O3等代表性成分,根据测试结果的变异系数和方差分析检验,证明样品是均匀的。

样品的稳定性经三年跟踪分析检验,并依据已有同类标准物质GBW07401-GBW07408十余年的

稳定性考察,量值未发现变化,证明样品是稳定的。有效期至2015年。

三、标准值及不确定度

本系列标准物质定值成分除烧失量外,均采用两种或两种以上不同原理的可靠方法、由多个实

验室合作分析定值。实验室方法平均值不少于6组、测试精度较高者定为标准值。数据离散度较大,

但数据不少于4组者定为参考值,以带括号的数值表示。定值成分的标准值、定值分析数据的标准偏差及测量数据组数列于表1,定值分析方法列于表2。

四、样品包装、储存及分析最小取样量

样品的包装:70克/瓶。

样品的储存:用后密封保存。

样品分析最小取样量为0.1g。

五、研制及定值分析单位

本系列标准物质由地球物理地球化学勘查研究所和中国科学院南京土壤研究所负责研制,参加测试的单位有:地矿部岩矿测试技术研究所、地矿部武汉综合岩矿测试中心、地球物理地球化学勘查研究所、中科院南京土壤研究所、中国生态系统研究网络土壤分中心等。

表1农业土壤成分分析标准物质标准值(%)

编号项目SiO2 Al 2O3 TFe2O3 MgO CaO Na2O K2O TiO2 标准值65.37 15.06 4.98 1.62 1.68 2.48 2.72 0.74 GBW(E)070041 标准偏差(S) 0.20 0.17 0.14 0.04 0.03 0.10 0.11 0.04 测量组数(N) 6 6 7 7 7 7 7 6

标准值63.06 12.76 4.49 2.01 4.57 1.69 2.43 0.68

GBW(E)070042 标准偏差(S) 0.30 0.23 0.11 0.11 0.05 0.07 0.09 0.03 测量组数(N) 6 6 7 7 7 7 7 6

标准值53.72 14.74 5.72 2.09 7.93 0.99 2.72 0.65 GBW(E)070043 标准偏差(S) 0.09 0.21 0.17 0.01 0.10 0.05 0.10 0.03 测量组数(N) 6 6 7 7 7 7 7 6

标准值61.03 16.21 6.20 1.90 0.84 0.99 2.45 0.92

GBW(E)070044 标准偏差(S) 0.52 0.34 0.16 0.11 0.06 0.04 0.10 0.05 测量组数(N) 6 6 7 7 7 7 7 6

标准值69.68 14.58 5.21 0.54 (0.22)(0.09) 1.08 0.96

GBW(E)070045 标准偏差(S) 0.28 0.21 0.10 0.06 0.06 0.05 测量组数(N) 6 6 7 8 7 6

标准值83.34 8.89 1.34 (0.20)(0.16)(0.038)0.65 0.22 GBW(E)070046 标准偏差(S) 0.22 0.17 0.03 0.02 0.02 测量组数(N) 6 6 7 6 6

编号项目MnO P2O5 S LOI Cu* Zn* B* Mo* 标准值0.094 0.120 (0.013)4.83 24 67 34 0.80 GBW(E)070041 标准偏差(S) 0.006 0.006 0.32 3 5 3 0.22 测量组数(N) 8 7 8 8 8 8 7

标准值0.077 0.162 (0.017)7.71 25 68 54 (0.82)

GBW(E)070042 标准偏差(S) 0.003 0.010 0.24 4 3 9

测量组数(N) 8 7 8 7 6 8

标准值0.106 0.197 (0.019) 11.17 29 96 75 1.53 GBW(E)070043 标准偏差(S) 0.007 0.016 0.46 4 9 14 0.15 测量组数(N) 8 7 8 8 8 9 7

标准值0.050 0.098 (0.033)9.01 42 93 65 0.73 GBW(E)070044 标准偏差(S) 0.004 0.006 0.35 4 9 9 0.15 测量组数(N) 8 7 8 8 8 9 6

标准值0.029 0.122 (0.014)7.52 32 81 71 1.47

GBW(E)070045 标准偏差(S) 0.004 0.007 0.33 3 6 9 0.25 测量组数(N) 8 7 8 7 7 9 7

标准值0.015 0.124 (0.014)4.86 2.8 22 (20) 1.15 GBW(E)070046 标准偏差(S) 0.002 0.011 0.16 0.7 5 0.19 测量组数(N) 8 7 8 8 7 7

说明:*单位为卩g/g括号内的数值为参考值。

表2 定值分析方法及方法数据组数

成分分析方法与数据组数成分分析方法与数据组数Si0 2 GR4-5 XRF 1-2 MnO AAS 4 COL1 ICP-AES 1 XRF 2

Al 2O3 VOL 4 XRF 2 P2O5 COL4 XRF3

TFe2O3 AAS 2 COL 2 ICP-AES 1 XRF 2 S IC1 VOL 3

MgO AAS 3-4 VOL 2 XRF 2 LOI GR8

CaO AAS 2-3 VOL 3 XRF 2 Cu AAS 3-4 COL0-1 ICP-AES 2-3 XRF1 Na2O AAS1 FP3 ICP-AES 1 XRF 1-2 Zn AAS 2-4 ICP-AES 3 XRF0-1

KO AAS1 FP3 ICP-AES 0-1 XRF 2 B AES4-5 COL1 ICP-AES 2 POL1 TiO 2 COL4 XRF 2 Mo COL1 POL 5-6

说明:AAS火焰原子吸收分光光度法,AES电弧发射光谱法,COL分光光度法,FP火焰光度法,

GR重量法,IC离子色谱法;ICP-AES电感耦合等离子发射光谱法,POL极谱法,VOL容量法,

XRF X-射线荧光光谱法。

分析方法符号下标数值为方法数据数。

物质的组成和分类

物质的组成和分类 能力解读 1.认识:物质的多样性。 2.识别:混合物与纯净物,化合物与单质,有机物和无机物,常见的酸、碱、盐和氧化物。 3.懂得:元素的简单分类。4.知道:物质由元素组成。 知识梳理 1.物质分类及典型实例体系总图 2.物质的定义 ⑴ 组成混合物, ⑵ 组成纯净物 ①单质: 的纯净物... 。 ②化合物: 组成的纯净物... 。 ⅰ氧化物: 组成的化合物... 。 酸性氧化物:能与 ,如 CO2、SO2。 中性氧化物: 碱性氧化物:能与 ,如:CaO 。 。 ⅱ酸:水溶液中电离出的阳离子 的化合物...。 ⑼有机物:含 元素的化合物... 。 ⅲ碱:水溶液中电离出的阴离子 的化合物... 。 ⅳ盐:由 和金属离子或铵根离子组成的化合物。 非金属单质 稀有气体单质:如:He 、Ne 、Ar 等 金属单质:如Mg 、Al 、Zn 、Fe 、Cu 、Hg 、Ag 等 气态:H 2、O 2、N 2、Cl 2 固态:C 、S 、P 、Si 、I 2 物质 纯净物 如:空气、自然界中的水、化石燃料、溶液、合金、盐酸等 单质 化合物 CH 4、C 2H 5OH 、CH 3COOH 、C 6H 12O 6等 如(C 6H 10O 5)n 等相对分子质量大于1万的,为有机高分子化合物 碱 NaCl (中性)、Na 2CO 3(碱性)、CuSO 4(酸性)等 酸 碱性氧化物:如CuO 、MgO 等 酸性氧化物(酸性):如CO 2、NO 2、SO 2、SO 3、等 含氧酸:如H 2SO 4、H 2CO 3、HNO 3等 无氧酸:如HCl 、H 2S 等 可溶:如NaOH 、KOH 等 难溶:如Mg(OH)2、Fe(OH)3、Cu(OH)2等 微溶:Ca(OH)2等 中性氧化物(中性):如H 2O 、CO 等 混合物

科学初中二年级 土壤的成分(一)

4.1土壤的成分(一) 学习目标: 1、知道土壤中有大量的生物; 2、知道土壤中水分、空气等非生命物质; 3、学习用科学观察的方法探究土壤的组成; 4、知道土壤中空气和水分的体积分数的测量方法。 重点和难点: 重点:土壤的成分。 难点:土壤中空气和水体积分数的测量。 教学流程: 一、设置情境,引入新课 招贤纳士(展示照片):以学校葫芦基地为题材,之前葫芦产量很高,但近几年产量越来越低,且葫芦不长个,这是什么原因呢? 学生猜测可能原因是水、肥料、土壤…… 从学生的猜测中选择触手可及的土壤进行研究。 二、探究土壤中的生命物质 (一)活动:寻找土壤中有哪些生命物质? 组织学生观察从葫芦基地取样来的土壤,并寻找土壤中的生物物质? 学生:有蚯蚓、蚂蚁、蝼蛄、草…… 通过舒肤佳的广告,引导学生土壤中还有肉眼看不到的,需要借助显微镜才能看到的生物——微生物 (二)总结土壤中的生命物质 动物 土壤生物植物 微生物 (三)思考:(1)参照土壤取样器,自制简单的土壤取样工具(PVC管)(2)为什么要将土壤样本恢复原样? 三、探究土壤中的非生命物质 (一)活动:进一步观察土壤,土壤生物要生存,根据生活经验或现有知识,你觉得土壤中还存在哪些物质。请写下这些物质,并写出相应的判断依据。(1)______________,我的判断依据_______________________________________________ (2)______________,我的判断依据_______________________________________________(3)______________,我的判断依据_______________________________________________ (4)______________,我的判断依据_______________________________________________

木薯粉的成分分析有毒物质的危害

(十)以干木薯粉作为饲料配料的全价饲料配方 1、关于木薯干粉用于饲料的有关毒素问题。 新鲜的木薯根茎含有一种生氰糖苷,名为亚麻苦苷,当根茎损坏或破碎成小块时,其中的亚麻苦苷就会在亚麻苦苷酶的作用下被水解为葡萄糖和氢氰酸。释放出来的氢氰酸会蒸发到空气之中,因而木薯制品中的氢氰酸水平是很低的。 木薯植株中含有的亚麻苦苷等本身并不表现出毒性,但含有亚麻苦苷的木薯植株,在被破坏(如切碎打碎等)、被动物采食、咀嚼后,在适宜的条件(温度湿度)下,亚麻苦苷(即氰苷)与木薯植株中共存的糖苷酶的分解作用下,水解而产生氢氰酸,并从而引起毒性。 据chen(1934)报道:氰化物的致死量为每千克体重0.5~3.5毫克(成年人的致死剂量为50毫克)。例如人如果采食即使是甜味品种的木薯,当然是指没有经过任何脱毒处理的鲜木薯,则采食量达到500克时,即有可能有生命危害。 牛食下0.5-0.6克时,就有可能会在0.5-24小时内致死。所以,我们无论是食用、作饲料或工业原料,都应该进行对木薯去毒的处理,切不可掉以轻心。 中国饲料卫生标准中规定:氰化物(以氢氰酸计)的允许量为木薯干中≤100mg/kg;胡麻饼粕中≤350mg/kg;鸡混合饲料、猪配、混合饲料中≤50mg/kg。 2、木薯薯干粉的加工过程,及毒素的脱除。 木薯薯干就是将采收的鲜木薯切片后晒干的物质,要求至少晒三天以上,这样的生产方法会使木薯中的氢氰酸水平极大地降低到对动物无毒的程度。Khajarern等(1982就已证明,木薯片经6天日晒干燥后,其中的氢氰酸就从原来的111.63ppm降低到了22.97ppm(ppm=百万分之一)。干木薯片的贮存还会进一步降低其中的氢氰酸含量。Khajarern等(1982)证明,将干木薯片贮存5天,其中的氢氰酸含量从87.14ppm降到了36.95ppm(表2)。通过蒸汽处理对木薯进行制粒可使产品中的氢氰酸含量降低到11.82ppm(Khajarern等,1979)。 可以得出结论认为,木薯片在生产过程中经3-6天晒干又贮存数天后运输到饲料厂时,其中的氢氰酸含量已经降到了无毒的程度。木薯在饲料厂中再经过数天的贮存,其中的氢氰酸含量还会进一步降低,从而为用户提供了更大的安全系数。而如果采用木薯粒,可以排除动物氢氰酸中毒的任何危险。 现已证明,泰国生产的含水量不高于14%的优质木薯片对于动物决不存在氢氰酸中毒的问题。木薯制品中的氢氰酸平均含量低于30ppm。

中国土壤系统分类检索表

中国土壤系统分类检索表 https://www.360docs.net/doc/f77269603.html,/course2/trfl/show.asp?id=341&TypeId=69 一、绪论 土壤分类是土壤科学发展水平的标志,是土壤调查制图的基础,是因地制宜推广农业技术的依据之一,也是国内外土壤科学信息交流的媒介。随着有关学科和土壤科学的进步,土壤分类也在迅速发展。 (一)土壤分类的发展 19世纪俄国土壤发生学派的建立,开始了划时代的近代土壤分类的阶段。经过各国的实践和探索多20世纪50年代,出现了苏联地理发生学派、西欧形态发生学派和美国马伯特分类学派三派鼎立的局面.在此基础上,美国农业部组织了1500多位土壤学家,经过长年努力,进行反复的修改验证,于60年代初提出了以诊断层、诊断特性为基础的土壤系统分类。假如说,在此以前,土壤分类多少是定性的话,那么土壤系统分类,无疑在分类定量化方面向前进了一大步。它在世界上引起强烈反响;至今已有80多个国家以此作为自己的第一或第二分类。 我国土壤分类有着悠久的历史和丰富的经验。近代土壤分类是30年代开始的。当时,吸取美国Marbut 土壤分类的经验,结合我国情况,引进了大土类的概念,并建立了2000多个土系。新中国成立后,在学习苏联地理发生分类基础上进行变革。其间还可细分若干时期:第一个时期是结合土地资源综合考察、流域规划和荒地调查等,开始运用发生学观点进行分类,1954年拟订的中国土壤分类,是我国第一个按苏联土壤发生学理论所作的分类,对我国以后土壤分类有重要影响;第二个时期是通过第一次土壤普查和土壤改良实践,对耕地土壤给予前所未有的注意,在总结群众经验的基础上,进行科学的论证二提出了潮土、绵土、绿洲土土类,对耕作上壤的研究产生深远的影响,同时开展了西藏高原和西沙群岛的考察,提出了一系列的高山土壤和磷质石灰土等土类;第三个时期是70年代中期以后,由于第二次土壤普查、国土整治和农业现代化的推进,土壤分类资料更为丰富,内容更为广泛,基本上涉及了我国实际存在的土壤类型,对耕种土壤的研究更为详尽,同时,我国也开始吸取美国土壤系统分类的某些原则和方法,我国土壤分类向着定量化方向前进。 30年代以来,特别是近40年来,通过实践,我国土壤分类的基础不断扩大,理论水平不断提高,出现了兴旺的局面。但土壤分类是不断发展的。没有各有关学科的进步,就没有土壤分类的发展;没有前一阶段的基础,就没有后一阶段的前进。我国今天土壤分类的成就是一代又一代土壤学家集体智慧的结晶,但是70年代前后,是国际上土壤分类大发展的时代,而我们却停滞了10年。虽然,纵向来看,我们的土壤分类有了巨大的进步,但横向来看,却跟不上土壤分类的前进步伐,主要是在土壤分类定量化方面。这不仅影响了国际交流,也限制了土壤分类在生产上的应用。在此形势下,我们和全国17个大学、研究所一起,研究了国际土壤分类的趋势,博采众长,从我国实际出发,走土壤分类定量化的道路,经历2年的预研究和3年主要土纲的研究,一次又一次地进行修改(中国土壤系统分类初拟、二稿和三稿草案),这里提出了《中国土壤系统分类(首次方案)》,这在土壤分类研究长河中仅仅是一个微小的进展,但毕竟标志着一个阶段的开始。 (二)土壤分类的特点 作为一个系统都有本身认识论的基础。建国40年来,我们基本上沿用与诊断分类不同的地理发生分类的原则和方法。因此,在介绍土壤系统分类以前有必要就本系统所依据的若干基本认识问题加以阐述。 I.以诊断层和诊断特性为基础

土壤成分分析标准物质(GSS1-8)解读

暗棕壤栗钙土黄棕壤石灰岩土黄红壤黄色红壤砖红壤黄土 Ag 0.35 ±050.054 (±007 0.091 ± 0.007 0.070 ± 0.011 4.4±.40.20 ±020.057 ± 0.011 0.060 ±.009 As 34 ±413.7 土.24.4 0.658 6412 出6220 岀44.8 1.312.7 仕1 Au -0.00055-0.0017 0.00550.260 ± 0.007 -0.009-0.0008-0.0014 B 50 336 戈23 ±97 均53 ±557 ±-1054 ± Ba 590 ±2930 ±21210 ±5213 ±0296 ±6118 ±4180 ±7480 ±3 Be 2.5±.31.8 (±21.4 (±21.85 (±342.0 0.44.4 0.72.8 ±61.9 (±2 Bi 1.2±.10.38 0040.17 ±031.04 (±1341 449 ±50.20 ±.040.30 (±04 Br 2.9 0.64.5 0.74.3 0^4.0 0.7-1.58.0 0.75.1 052.5 05 Cd 4.3 ±40.071 0014 0.060 ± 0.009 0.35 ±.060.45 0060.13 ±030.08 0020.13 002

Ce 70 ±4402 出639 ±4136 出191 岀066 ±698 出166 龙C170 =962 出057 岀1-39- 7695 ^100 =668 ±12 Co 14.2 1±8.7 (±95.5 0.722 ±12 坐7.6 ±.197 ±12.7 ±.1 Cr 62 ±47 ±432 ±4370 ±6118 ±75戈410±368 ± Cs 9.0 ±.74.9 0.53.2 ±421.4 ±015 ±10.8 ±.62.7 0.87.5 ±7 Cu 21 ±16.3 ±.911.4 ±140 ±144^6390 ±1497 =624.3 ±2 Dy 4.6±.34.4(±32.6(±26.6(±63.7(±53.3(±36.6 (±64.80.4 Er 2.6±.22.1 ±41.5 (±34.5 ±72.4 0.32.2 032.7 (±52.8 (±2 Eu 1.0 ±13.0 (±20.72 ±040.85 0070.82 0040.66 ±043.4 021.2 ±1 F 506 ±22240 ±12246 =26540 ±5603 =28906 ±15321 ±9577 ±4 Ga 19.3 ±112 ±13.7 ±.931 ±32 ±30 出39 ±514.8 ±.1 Gd 4.60.37.8 062.9 0.44.7 053.5 0.33.4 039.6 0.9 5.4 05 Ge 1.34 ±.201.2 (±21.16 0.131.9 03 2.6 0.4 3.2 0M1.6 (±31.27 (±20 Hf 6.8 ±.85.8 (±96.8 (±814 28.1 ±.7 7.5 0.87.7 (±57.0 0.8 Hg 0.032 ±004 0.015 ± 0.003 0.060 ± 0.004 0.59 ±.050.29 0030.072 ± 0.007

土壤成分测定实验报告

土壤成分测定实验报告 Prepared on 22 November 2020

土壤有效成分速测 土壤有效养分待测液的制备 1、取相当2g风干土壤于三角瓶中,加入1mol(NaCl)L1‐—(HCl)L1‐浸提液20ml,大力摇1分钟。 2、过滤到干燥洁净的三角瓶或试管中,滤液即为待测液,用于测定铵态氮,磷及钾。 一、铵态氮的测定 1、测定原理 土壤待测液中的铵离子,与纳氏离子作用时,会生成碘化汞铵合氧化汞 的橙黄色络合物,铵离子愈多,生成的橙黄色就越深,通过与已知的铵 态氮含量的标准色阶比较,便可求出土壤铵态氮的含量,在强碱性条件 下,其反应式如下: 值得注意,水田在浸水情况下,会出现Fe2﹢,它会干扰铵的测定, 另外,待测液中存在的Fe2﹢,Al3+,Ca2+,Mg2+等离子,也会干扰铵的 测定,故在测铵前,必须先加入碳酸钠,使它们产生沉淀,以消除干 扰。 NH4++4OH‐+2HgI4‐→碘化汞铵合氧化汞(橙黄色)↓+7I-+H2O 碘化汞离子 2、测定步骤 ①取待测液约5ml,放入试管中,加入固体碳酸钠(约3粒黄豆大 小),摇匀,使溶解静置15min,等溶液澄清后,再吸取上层清液进 行测定(测定有效钾,亦用此清液)。

二、有效磷的测定 1、测定原理 土壤待测液中的有效磷,与钼酸铵作用,生成钼酸杂多酸,在一定酸度范围内,磷钼杂多酸被氯化亚锡或金属锡还原为兰色的磷酸络合物,其反应如下: H3PO4+10MoO4-+2Sn2++24H+ → (MoO4·4MoO4-)2·H3PO4·4H2O+2Sn++8H2O 待测液的有效磷越多,兰色就越深,将其与标准比色阶比较,就可求出土壤有效磷的含量。 2、测定步骤:

十种常用成分分析方法—科标检测

十种常见的成分分析方法介绍 成分分析是运用科学方法分析产品的成分,并对各个成分进行定性定量分析的一个过程。科标检测研究院有限公司,设有专业的分析实验室,成分分析检测领域有:化学品成分分析、金属成分分析、纺织品成分分析,水质成分分析,颗粒物成分分析,粉末成分分析,异物成分分析等。 常见的成分分析方法有以下10种。 一、成分分析-化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 1.1重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。检测采用的仪器设备如:电子天平。 1.2容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物。检测采用的仪器设备如:滴定管。 二、成分分析-原子吸收光谱法 原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态。检测采用的仪器设备如:AAS原子吸收光谱仪。 三、成分分析-原子发射光谱法 原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。 其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。原子发射光谱法(AES, atomic emission spectroscopy),是根据处于激发态的待测元素原子回到基态时发射的特征谱线,对元素进行定性与定量分析的方法,是光谱学各个分支中最为古老的一种。检测采用的仪器设备如:ICP-OES。 四、成分分析-原子荧光分析法 原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。 其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而

GBW07101超基性岩成分分析标准物质

超基性岩成分分析标准物质 【产品ID号】2348 【产品编号】GBW07101 【英文名称】Ultrabasic Rocks 【产品规格】150g 【特征形态】固态 【介质基体】岩石 【定值日期】 【产品类别】国家标准物质 >> 地质矿产成分分析标准物质 【主要用途】校准仪器和装置;评价方法;工作标准;质量保证/质量控制;其他 【保存条件】阴凉干燥处 【注意事项】防止沾污,最小取样量为:铂族元素10克;H2O、S、CO2和痕量元素0.5克;其余组份0.1克 【分析方法】原子荧光法、比色法、极谱法等多种方法

Na 2 O 0.008 0.003 质量分数(10-2) K 2 O 0.010 0.001 质量分数(10-2) H 2 O+14.17 0.20 质量分数(10-2) CO 2 0.58 0.02 质量分数(10-2) S 0.051 0.001 质量分数(10-2) NiO 0.32 0.01 质量分数(10-2) CoO 0.012 0.001 质量分数(10-2) V 2O 5 0.007 0.001 质量分数(10-2) Cl 0.57 0.02 质量分数(10-2) 全铁Fe 2O 3 6.90 0.06 质量分数(10-2) Pt 0.004 0.001 质量分数(10-6) Pd 0.005 0.001 质量分数(10-6) Rh 0.0006 0.0001 质量分数(10-6) Ir 0.003 0.001 质量分数(10-6) Os 0.006 0.001 质量分数(10-6) Ru 0.010 0.001 质量分数(10-6) Ag 0.031 0.012 质量分数(10-2) As 0.82 0.23 质量分数(10-2) Au 0.0014 0.0005 质量分数(10-2) B 5.9 1.2 质量分数(10-2) Ba 6.4 2.8 质量分数(10-2) Cu 5.5 0.8 质量分数(10-2) F 21.4 7.3 质量分数(10-2) Ga 1.2 0.6 质量分数(10-2) Ge 0.66 0.25 质量分数(10-2) Hg 0.046 0.004 质量分数(10-2) Li 1.3 0.5 质量分数(10-6) Pb 2.8 0.3 质量分数(10-6) Sc 4.9 0.2 质量分数(10-6) Sr 2.3 0.6 质量分数(10-6) Zn 45.4 7.3 质量分数(10-6) Br (24.7) 质量分数(10-6) Cd (0.024) 质量分数(10-6) Sb (0.12) 质量分数(10-6) Ce 0.34 +0.04,-0.02 质量分数(10-6) Dy 0.02 +0.011,-0.001 质量分数(10-6) Eu 0.0043 +0.0021,-0.0003 质量分数(10-6) Gd 0.024 +0.004,-0.003 质量分数(10-6) Ho 0.0049 +0.0025,-0.0003 质量分数(10-6) La 0.20 +0.05,-0.01 质量分数(10-6)

中国土壤系统类型(土纲)

土壤类型特征 20世纪50年代初到80年代末,苏联的土壤发生学分类对我国土壤学发展影响很深,不足之处是缺乏定量标准。从2世纪60年代兴起、70年代广为应用的土壤系统分类成为当今世界土壤分类的主流。中国土壤系统分类以诊断层和诊断特性为基础,是一个定量化、标准化和国际化的分类,该系统分类把中国土壤划分出14个土纲:有机土、人为土、灰土、火山灰土、铁铝变性土、干旱土、盐成土、潜育土、均腐土、富铁土、淋溶土、雏形土和新成土。 一、有机土 1.土纲定义与成土环境 有机土是在地面积水或长期土壤水分饱和,生长水生植物的条件下,以泥炭化成土过程为主,富含有机质的土壤,相当于土壤发生分类中的有机水成土,全球地势低洼地区都有分布。有机土虽属非地带性土壤,但也有其特殊的成土环境。首先是只要有潮湿潴水低地,无论寒带或温带都可发育有机土。我,国有机土集中分布于东北的大小兴安岭、长白山地,青藏高原的江河源区,川西北的若尔盖盆地及祁连山地和巴颜喀拉山地。通常所在地形为相对低洼、地表潴水,或具有不透水的冻土层的高寒滩地坡麓,河流宽谷低阶地,山麓潜水渗溢地段,湖滨平地,古冰碛洼地。地下水位高,地表积水,多数地区为高寒沼泽化草甸,生长耐寒湿,中生、多年生,或混生湿生多年生草本植物,生长茂密,覆盖度80%~95%以上。有机土发育地区年平均气温-2~-5℃,土壤冻结时间较长,年降水量400~600mm,蒸发量小,湿度大。 2.成土过程 包括泥炭积累过程和潜育化过程。 (1)泥炭积累过程。有机土发育于潮湿环境中,植物生长繁茂,覆盖度大,根系发达,入土深,每年有大量有机残体补给土壤,在长期低温和季节性冻结过湿条件下,增强了厌氧还原过程的作用土壤中几乎缺少纤维分解细菌,使不同时期产生的有机残体以未分解、半分解和部分腐殖化形式积累于土体表层,形成暗色调的泥炭层。有机质含量200~500g/kg,泥炭层厚50~200cm。 (2)潜育化过程。有机土As层之下,长期渍水处于厌氧环境,土壤中高价铁、锰的氧化物还原为低价形态,溶解度较大,可随水在土壤中移动并参与某些次生矿物的形成,生成蓝铁矿[Fe3(PO4)4·2H2O],硫铁矿(FeS2)、菱铁矿(FeCO3)、菱锰矿(MnCO3)等,土壤由黄棕转变为青灰,蓝灰、灰黑色,称潜育层。当季节性水分落干,低价铁、锰又被氧化成高价铁、锰,呈斑纹状淀积于结构体表面成为锈色斑纹层。 3.主要诊断层和诊断特性 包括:①具有潮湿土壤水分状况(aquic moisture regime),大多数年份土温>5℃时的某一时期,全部或某些土层被地下水或毛管锋水饱和并呈还原状态;②草根层(As)是泥炭土的

土壤成分测定实验报告

土壤有效成分速测 土壤有效养分待测液的制备 1、取相当2g风干土壤于三角瓶中,加入1mol(NaCl)L1‐—0.025mol(HCl)L1‐浸提液20ml,大力摇1分钟。 2、过滤到干燥洁净的三角瓶或试管中,滤液即为待测液,用于测定铵态氮,磷及钾。 一、铵态氮的测定 1、测定原理 土壤待测液中的铵离子,与纳氏离子作用时,会生成碘化汞铵合氧化汞 的橙黄色络合物,铵离子愈多,生成的橙黄色就越深,通过与已知的铵 态氮含量的标准色阶比较,便可求出土壤铵态氮的含量,在强碱性条件 下,其反应式如下: 值得注意,水田在浸水情况下,会出现Fe2﹢,它会干扰铵的测定,另外,待测液中存在的Fe2﹢,Al3+,Ca2+,Mg2+等离子,也会干扰铵的 测定,故在测铵前,必须先加入碳酸钠,使它们产生沉淀,以消除干扰。 NH4++4OH‐+2HgI4‐→碘化汞铵合氧化汞(橙黄色)↓+7I-+H2O 碘化汞离子 2、测定步骤 ①取待测液约5ml,放入试管中,加入固体碳酸钠(约3粒黄豆大小), 摇匀,使溶解静置15min,等溶液澄清后,再吸取上层清液进行测定 1、测定原理

土壤待测液中的有效磷,与钼酸铵作用,生成钼酸杂多酸,在一定酸度范围内,磷钼杂多酸被氯化亚锡或金属锡还原为兰色的磷酸络合物,其反应如下: H3PO4+10MoO4-+2Sn2++24H+ → (MoO4·4MoO4-)2·H3PO4·4H2O+2Sn++8H2O 待测液的有效磷越多,兰色就越深,将其与标准比色阶比较,就可求出土壤有效磷的含量。 2、测定步骤: 附 1、测定原理 存在于土壤待测液中的钾,在弱碱性条件下与四苯硼钠作用,生成四苯硼钾白色沉淀,其反应式如下: K++B(C6H5)4→B(C6H5)K↓ 四苯硼离子四苯硼钾(白色) 土壤待测液中,钾离子越多,白色沉淀越多,因此可以根据浑浊的程度来确定钾的含量,由于铵离子也能和四苯硼钠作用生成白色沉淀干扰测定,故在测钾之前加入甲醛,供生成的环六次甲基四胺,以除去它的干扰,由于反应是在弱碱性条件下进行,土壤待测液中可能有Fe3﹢,Al3+,Ca2+,Mg2+等离子,也会产生黄色或白色的氢氧化物,碳酸盐或碱式碳酸盐沉淀,从而干扰钾的测定。为此,在除去铵离子之前,必须先加入碳酸钠于土壤待测液中,以除去Fe3﹢,Al3+,Ca2+,Mg2+等离子的干扰。

土壤成分分析标准物质标准值

土壤成分分析标准物质标准值 成分GBW07401 (GSS-1) GBW07402 (GSS-2) GBW0740 3 (GSS-3) GBW0740 4 (GSS-4) GBW0740 5 (GSS-5) GBW074 06 (GSS-6 ) GBW0740 7 (GSS-7) GBW0740 8 (GSS-8) μg/ g Ag0.35±0.0 5 0.054±0. 007 0.091±0. 007 0.070±0. 011 4.4±0.40.20±0. 02 0.057±0. 011 0.060±0. 009 As34±413.7±1.2 4.4±0.658±6412±16220±14 4.8±1.312.7±1.1 Au(0.00055 )(0.0017)(0.0055)0.260±0. 007 (0.009)(0.0008)(0.0014) B50±336±323±397±953±657±5(10)54±4 Ba590±32930±521210±65213±20296±26118±14180±27480±23 Be 2.5±0.3 1.8±0.2 1.4±0.2 1.85±0.3 4 2.0±0.4 4.4±0.7 2.8±0.6 1.9±0.2 Bi 1.2±0.10.38±0. 04 0.17±0.0 3 1.04±0.1 3 41±449±50.20±0.0 4 0.30±0. 04 Br 2.9±0.6 4.5±0.7 4.3±0.8 4.0±0.7(1.5)8.0±0.7 5.1±0.5 2.5±0.5 Cd 4.3±0.40.071±0. 014 0.060±0. 009 0.35±0.0 6 0.45±0.0 6 0.13±0. 03 0.08±0.0 2 0.13±0.0 2 Ce70±4402±1639±4136±1191±1066±698±1166±7 C170±962±1057±11(39)(76)95±7100±668±12 Co14.2±1.08.7±0.9 5.5±0.722±212±27.6±1.197±612.7±1.1 Cr62±447±432±4370±16118±775±6410±2368±6 Cs9.0±0.7 4.9±0.5 3.2±0.421.4±1.015±110.8±0. 6 2.7±0.87.5±0.7 Cu2l±216.3±0.911.4±1.140±3144±6390±1497±624.3±1.2 Dy 4.6±0.3 4.4±0.3 2.6±0.2 6.6±0.6 3.7±0.5 3.3±0. 3 6.6±0.6 4.8±0.4 Er 2.6±0.2 2.1±0.4 1.5±0.3 4.5±0.7 2.4±0.3 2.2±0.3 2.7±0.5 2.8±0.2 Eu 1.0±0.1 3.0±0.20.72±0.0 4 0.85±0.0 7 0.82±0.0 4 0.66±0. 04 3.4±0.2 1.2±0.1 F506±322240±112246±26540±25603±28906±45321±29577±24 Ga19.3±1.112±113.7±0.931±332±430±339±514.8±1.1 Gd 4.6±0.37.8±0.6 2.9±0.4 4.7±0.5 3.5±0.3 3.4±0.39.6±0.9 5.4±0.5 Ge 1.34±0.2 01.2±0.2 1.16±0.13 1.9±0.3 2.6±0.4 3.2±0.4 1.6±0.3 1.27±0.2 Hf 6.8±0.8 5.8±0.9 6.8±0.814±28.1±1.77.5±0.87.7±0.57.0±0.8 Hg0.032±0 .004 0.015±0. 003 0.060±0. 004 0.59±0.0 5 0.29±0.0 3 0.072±0 .007 0.061±0. 006 0.017±0. 003 Ho0.87±0.0 7 0.93±0.1 2 0.53±0.0 6 1.46±0.1 2 0.77±0.0 8 0.69±0. 05 1.1±0.20.97±0.0 8 I 1.8±0.3 1.8±0.2 1.3±0.29.4±1.1 3.8±0.519.4±0.19±2 1.7±0.2

土壤成分测定实验报告

土壤成分测定实验报告 This model paper was revised by the Standardization Office on December 10, 2020

土壤有效成分速测 土壤有效养分待测液的制备 1、取相当2g风干土壤于三角瓶中,加入1mol(NaCl)L1‐—0.025mol (HCl)L1‐浸提液20ml,大力摇1分钟。 2、过滤到干燥洁净的三角瓶或试管中,滤液即为待测液,用于测定铵态氮,磷及钾。 一、铵态氮的测定 1、测定原理 土壤待测液中的铵离子,与纳氏离子作用时,会生成碘化汞铵合氧化汞 的橙黄色络合物,铵离子愈多,生成的橙黄色就越深,通过与已知的铵 态氮含量的标准色阶比较,便可求出土壤铵态氮的含量,在强碱性条件 下,其反应式如下: 值得注意,水田在浸水情况下,会出现Fe2﹢,它会干扰铵的测定,另外,待测液中存在的Fe2﹢,Al3+,Ca2+,Mg2+等离子,也会干扰铵的 测定,故在测铵前,必须先加入碳酸钠,使它们产生沉淀,以消除干 扰。 NH4++4OH‐+2HgI4‐→碘化汞铵合氧化汞(橙黄色)↓+7I-+H2O 碘化汞离子 2、测定步骤 ①取待测液约5ml,放入试管中,加入固体碳酸钠(约3粒黄豆大 小),摇匀,使溶解静置15min,等溶液澄清后,再吸取上层清液进 1、测定原理

土壤待测液中的有效磷,与钼酸铵作用,生成钼酸杂多酸,在一定酸度范围内,磷钼杂多酸被氯化亚锡或金属锡还原为兰色的磷酸络合物,其反应如下: H 3PO 4+10MoO 4-+2Sn 2++24H + → (MoO 4·4MoO 4-)2·H 3PO 4·4H 2O+2Sn ++8H 2O 待测液的有效磷越多,兰色就越深,将其与标准比色阶比较,就可求出土壤有效磷的含量。 2、测定步骤: 附 1、测定原理 存在于土壤待测液中的钾,在弱碱性条件下与四苯硼钠作用,生成四苯硼钾白色沉淀,其反应式如下: K ++B(C 6H 5)4 → B(C 6H 5)K ↓ 四苯硼离子 四苯硼钾(白色) 土壤待测液中,钾离子越多,白色沉淀越多,因此可以根据浑浊的程度来确定钾的含量,由于铵离子也能和四苯硼钠作用生成白色沉淀干扰测定,故在测钾之前加入甲醛,供生成的环六次甲基四胺,以除去它的干扰,由于反应是在弱碱性条件下进行,土壤待测液中可能有Fe 3﹢,Al 3+,Ca 2+,Mg 2+等离子,也会产生黄色或白色的氢氧化物,碳酸盐或碱式碳酸盐沉淀,从而干扰钾的测定。为此,在除去铵离子之前,必须先加入碳酸钠于土壤待测液中,以除去Fe 3﹢,Al 3+,Ca 2+,Mg 2+等离子的干扰。

土壤检测项目

土壤检测项目 中国科学院广州化学研究所分析测试中心 卿工---189******** 土壤,是由一层层厚度各异的矿物质成分所组成大自然主体。土壤和母质层的区别表现在于形态、物理特性、化学特性以及矿物学特性等方面。由于地壳、水蒸气、大气和生物圈的相互作用,土层有别于母质层。它是矿物和有机物的混合组成部分,存在着固体,气体和液体状态。疏松的土壤微粒组合起来,形成充满间隙的土壤的形式。这些孔隙中含有溶解溶液(液体)和空气(气体)。因此,土壤通常被视为有多种状态。 我中心根据美国环境保护署方法、中国国家标准、环境保护标准、农业标准和林业标准建立了土壤测试的综合能力,可以提供土壤污染物测试、农业土壤成分测试、以及相关采样服务。 土壤环境质量标准适用于农田、蔬菜地、茶园、果园、牧场、林地、自然保护区等地的土壤。国家规定的自然保护区(原有背景重金属含量高的除外)、集中式生活饮用水源地、茶园、牧场和其他保护地区的土壤,土壤质量基本保持自然背景水平。一般农田、蔬菜地、茶园、果园、牧场等土壤,土壤质量基本上对植物和环境不造成危害和污染。林地土壤及污染物容量较大的高背景值土壤和矿产附近等地的农田土 壤(蔬菜地除外)。土壤质量基本上对植物和环境不造成危害和污染。 土壤检测服务项目

序号检测项目检测项目指标 1 土壤营养成分分析有机质、铵态氮、硝态氮、磷~~~~~(共17个养分指标,依据美国方法,最全面的养分水平分析。另可提供全元素分析,大约70个指标,可快速了解土壤的环境安全) 适用于农田、蔬菜地、茶园、果园、牧场、林地、自然保护区等地的土壤分析:养分分析、土壤污染分析。 2 土壤有机物 及其他分析总石油类烃、苯系物、挥发性有机物、半挥发性有机物、苯酚类、多环芳烃、多环芳烃(低浓度)、苯并(a)芘、邻苯二甲酸酯、有机氯农药(六六六、滴滴涕)、有机磷农药、多氯联苯、二噁英 氟化物、有机质、含水率、总碱度、酚、矿物油、pH值、水分、六六六、滴滴涕、氰化物、挥发性有机化合物、挥发性有机化合物、多氯联苯、半挥发性有机物、阳离子交换量 3 土壤、肥料、植株土壤检测: 全氮、水解性氮、有效磷、速效钾、缓效钾、有机质、全磷、全钾、有效铁、铜、锌、锰、总镉、总铅、总铬、总汞、总砷、pH、阳离子交换量、水分、有效硼、有效钼、有效硫、有效硅、氯离子、硫酸根离子、容重、水溶性盐总量、交换性钙、交换

爬沙虫物质成分分析研究

爬沙虫物质成分分析研究 摘要 爬沙虫(Neochauliodes sparsuslarvae)在分类学上隶属于广翅目(Megaloptera),齿蛉科(Corydalidae),斑鱼蛉属(Neochauliodes),在溪流中分布广泛,密度较大,环境适应能力很强。爬沙虫,被誉为“虫参”,是一种珍稀的食用、药用昆虫。既是宴席上的佳肴,又是滋补人体的珍品。 本文选择爬沙虫为研究对象,从其资源成分分析及价值评价方面进行了研究,以期为爬沙虫资源的保护与开发利用提供必要的理论依据。 爬沙虫干物质中蛋白质、脂肪、糖类及灰分含量分别为67.69%、10.4%、1.59%、7.05%,含有18种氨基酸,包括8种人体必需氨基酸,第一限制性氨基酸为色氨酸;此外,还含有Ca、P、Fe、Zn等多种矿物质和微量元素。 关键词:齿蛉科,爬沙虫,生物学,资源成分,营养价值

ABSTRACT Neochauliodes sparsuslarvae belong to Neochauliodes,Corydalidae,Megaloptera. which is widely distributed in the stream and has a strong ability to adapt for different environments. The larvae of Neochauliodes sparsuslarvae whose popular name is pashachong praised asnsectile ginseng is a rare insects for food and medicinal. It is both a delicacy on the feastand a treasure for nourishing. In this paper, the biology characteristics and the larvae resource components of Neochauliodes sparsuslarvae were studied by reseaching two kinds of Corydalidae Insect resources based on investigation, as astheoretical and experimental evidence for future studies on protection and exploitation of Neochauliodes sparsus resource. Proteins, fat, sugar and ash content were 67.69%, 10.4%, 1.59%and 7.05%of dry samples respectively. Furthermore, sampled insects contained 18 essentialamino acids, including 8 human essential amino acids, TRY was the first limiting amino acid in larvae protein. In addition, larvae contained abundant minerals and trace elements, including Ca, P, Fe and Zn. Keywords Corydalidae, Neochauliodes sparsuslarvae,biology,resource components,value

土壤成分分析标准物质标准值

精品文档 土壤成分分析标准物质标准值 成分GBW07401 (GSS-1) GBW07402 (GSS-2) GBW07403 (GSS-3) GBW07404 (GSS-4) GBW07405 (GSS-5) GBW0740 6 (GSS-6) GBW07407 (GSS-7) GBW07408 (GSS-8) ⑷/g Ag 0.35 ±).05 0.054 ±0.007 0.091 ±).007 0.070 ±).011 4.4 ±).4 0.20 ±).02 0.057 ±).011 0.060 ±).009 As 34 ±4 13.7 ±1.2 4.4 ±).6 58 ±5 412±16 220 ±4 4.8 ±1.3 12.7 ±1.1 Au (0.00055) (0.0017) (0.0055) 0.260 ±).007 ( ).009) (0.0008) (0.0014) B 50 ±3 36 43 23 ±3 97 53戈57 i5(10) 54 ±4 Ba 590 出2 930 ±52 1210+65 213i20 296+26 118±14 180 ±!7 480+23 Be 2.5 ±).3 1.8 ±).2 1.4 ±).2 1.85 ±).34 2.0 ±).4 4.4 ±).7 2.8 ±).6 1.9 ±).2 Bi 1.2 ±).1 0.38 ±).04 0.17 ±).03 1.04 ±).13 41 ±49 i50.20 ±).04 0.30 ±).04 Br 2.9 ±).6 4.5 ±).7 4.3 ±).8 4.0 ±).7 (1.5) 8.0 ±).7 5.1 ±).5 2.5 ±).5 Cd 4.3 ±).4 0.071 ±0.014 0.060 ±).009 0.35 ±).06 0.45 ±).06 0.13 ±).03 0.08 ±).02 0.13 ±).02 Ce 70 ±4 402 ±16 39 ±4 136 ±11 91 ±10 66 ±5 98 ±11 66 ± C1 70 ±9 62 ±10 57 ±11 (39) (76) 95幻100戈68 ±12 Co 14.2 ±1.0 3.7 ±).9 5.5 ±).7 22 i212 ±7.6 ±1.1 97 ±12.7 ±1.1 Cr 62 ±4 47 ±4 32 ±4 370 ±16 118±7 75 ±5 410 ±!3 68 ± Cs 9.0 ±).7 4.9 ±).5 3.2 ±).4 21.4 ±1.0 15 ±1 10.8 ±).6 2.7 ±).8 7.5 ±).7 Cu 2l ±2 16.3 ±).9 11.4 ±1.1 40 ±3 144+6 390 ±14 97 ±24.3 ±1.2 Dy 4.6 ±).3 4.4 ±).3 2.6 ±).2 6.6 ±).6 3.7 ±).5 3.3 ±).3 6.6 ±).6 4.8 ±).4 Er 2.6 ±).2 2.1 ±).4 1.5 ±).3 4.5 ±).7 2.4 ±).3 2.2 ±).3 2.7 ±).5 2.8 ±).2 Eu 1.0 ±).1 3.0 ±).2 0.72 ±).04 0.85 ±).07 0.82 ±).04 0.66 ±).04 3.4 ±).2 1.2 ±).1 F 506 出2 2240 ±112 246 ±!6 540 i25 603+28 906+45 321 ±!9 577 ±24 Ga 19.3 ±1.1 12±1 13.7 ±).9 31 ±3 32 ±30+3 39 ±14.8 ±1.1 Gd 4.6 ±).3 7.8 ±).6 2.9 ±).4 4.7 ±).5 3.5 ±).3 3.4 ±).3 9.6 ±).9 5.4 ±).5 Ge 1.34 ±).20 1.2 ±).2 1.16 ±).13 1.9 ±).3 2.6 ±).4 3.2 ±).4 1.6 ±).3 1.27 ±).20 Hf 6.8 ±).8 5.8 ±).9 6.8 ±).8 14 ±8.1 ±1.7 7.5 ±).8 7.7 ±).5 7.0 ±).8 Hg 0.032 ±).004 0.015 ±0.003 0.060 ±).004 0.59 ±).05 0.29 ±).03 0.072 ±).00 7 0.69 ±).05 0.061 ±).006 0.017 ±).003 Ho 0.87 ±).07 0.93 ±).12 0.53 ±).06 1.46 ±).12 0.77 ±).08 1.1 ±).2 0.97 ±).08 I 1.8 ±).3 1.8 ±).2 1.3 ±).2 9.4 ±1.1 3.8 ±).5 19.4 ±).9 19± 1.7 ±).2 In 0.08 ±).02 0.09 ±).03 0.031 ±).010 0.12 ±).03 4.1 ±).6 0.84 ±).18 0.10 ±).03 0.044 ±).013 La 34 ±2 164 ±11 21 i253 ±4 36 ±4 30 i246 i536 43 Li 35 ±1 22 ±1 18.4 ±).8 55 i256 ±>36 ±119.5 ±).9 35 ± Lu 0.41 ±).04 0.32 ±).05 0.29 ±).02 0.75 ±).06 0.42 ±).05 0.42 ±).05 0.35 ±).06 0.43 ±).04 Mn 1760 ±33 510±16 304 ±14 1420^5 1360 方1 1450^82 1780 ±113 650+23 Mo 1.4 ±).1 0.98 ±).11 0.31 ±).06 2.6 ±).3 4.6 ±).4 18± 2.9 ±).3 1.16 ±).10 N 1870 ±37 630 i59 640 ±50 1000^62 610±31 740 i59 660 戈2 370 i54 Nb 16.6 ±1.4 27^2 9.3 ±1.5 38 ±3 23 ±27i2 64+7 15± Nd 28 ±2 210±14 18.4 ±1.7 27 i224 ±>2l i2 45 ±2 32 ± Ni 20.4 ±1.8 19.4 ±1.3 12 ±64 i540 ±4 53 ±4 276 ±15 31.5 ±1.8 P 735 ±!8 446 i25 320 ±18 695 i28 390 ±34 303+30 1150 ±39 775 ±25 Pb 98 ±5 20 43 26 ±3 58 i5552+29 314±13 14+3 21 ±

相关文档
最新文档