自考高数线性代数课堂笔记

自考高数线性代数课堂笔记
自考高数线性代数课堂笔记

自考高数线性代数课堂笔记

第一章行列式

线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1行列式的定义

(一)一阶、二阶、三阶行列式的定义

)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;

)定义:符号叫二阶行列式,它也是一个数,其大小规定为:

所以二阶行列式的值等于两个对角线上的数的积之差。

例如

)符号叫三阶行列式,它也是一个数,其大小规定为

例如=0

三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:

(1)

=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0

(2)

(3)

(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如

例1a为何值时,

[答疑编号10010101:针对该题提问]

解因为

所以8-3a=0,时

例2当x取何值时,

[答疑编号10010102:针对该题提问]解:

解得0

所以当0

符号:

它由n行、n列元素(共个元素)组成,称之为n阶行列式。其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。所以在行列式的第i行和第j列的交叉位置上。

为叙述方便起见,我们用(i,j)表示这个位置。n阶行列式通常也简记作。

n阶行列式也是一个数,至于它的值的计算方法需要引入下面两个概念。

阶行列式中,划去它的第

阶行列式叫元素的余子式,记作

例如,在三阶行列式

中,的余子式表示将三阶行列式划去第1行和第1列后,余下的数按照相对位置组成的二阶行列式,所以

相似地,的余子式表示将三阶行列式划去第二行和第三列后,余下的数组成的二阶行列式。所以

例1若,求:

(1)

[答疑编号10010103:针对该题提问]

(2)

[答疑编号10010104:针对该题提问]

(3)

[答疑编号10010105:针对该题提问]

(4)

[答疑编号10010106:针对该题提问]

解(1)

(2)

(3)

(4)

)符号叫元素的代数余子式定义:

例2求例1中的代数余子式(1)

[答疑编号10010107:针对该题提问](2)

[答疑编号10010108:针对该题提问](3)

[答疑编号10010109:针对该题提问](4)

[答疑编号10010110:针对该题提问]解:(1)

(2)

(3)

(4)

例3若

计算

[答疑编号10010111:针对该题提问]解:

自学考试试卷 线性代数(经管类)

2015年10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 本试卷共3页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间。超出答题区域无效。 说明:在本卷中。A T表示矩阵A的转置矩阵。A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性表出,则下列结论中 正确的是 A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则 下列结论中正确的是 A.若r1=m,则Ax=O有非零解 B.若r1=n,则Ax=0仅有零解 C.若r2=m,则Ax=b有无穷多解 D.若r2=n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值=

第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij的代数余子式为A ij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________. 8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________. 12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________. 15.二次型f(x1,x2)=-2x12+x22+4x1x2的规范形为__________. 三、计算题(本大题共7小题,每小题9分,共63分) 请在答题卡上作答。 16. 计算行列式的值. 17. 已知矩阵,若矩阵x满足等式AX=B+X,求X.

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

12121211 12121222()121 2()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 == ()mn A O A A O A B O B O B B O A A A B B O B O *= =* * =-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==- 1 (即:所有取自不同行不 同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 2 2 22 1211 1112n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 111 由m n ?个数排成的m 行n 列的表11 12121 2221 2 n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为m n ?矩阵.记作:()ij m n A a ?=或m n A ? () 1121112222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ? --???? 1 主换位副变号

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

2017年10月全国自考线性代数真题

2017年10月高等教育自学考试全国统一命题考试 线性代数(经管类)试卷 (课程代码04184) 本试卷共4页,满分100分,考试时间150分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。 2.第一部分为选择题。必须对应试卷上的题号使用2B 铅笔将“答题卡”的相应代码涂黑 3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。 4.合理安排答题空间,超出答题区域无效。 说明:在本卷中,T A 表示矩阵A 的转置矩阵,* A 表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩阵A 的秩。第一部分选择题 一、单项选择题:本大题共5小题,每小题2分,共10分。在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。 1.设B A ,是n 阶可逆矩阵,下列等式中正确的是 A.() 111---+=+B A B A B.()111---=B A AB C.()111----=-B A B A D.()111 ---=A B AB 2.设A 为3阶矩阵且???? ? ??==100610321,1)(B A r 则=)(BA r A.0 B.1 C.2 D.3 3.设向量组),6,3,1(),1,0,0(),2,1,0(),3,2,1(321====βa a a 则 A.β,,,321a a a 线性无关 B.β不能由321,,a a a 线性表示 C.β可由321,,a a a 线性表示,且表示法惟一

22.已知()31212322213212224,,x x x tx x x x x x x f -+++=为正定二次型,(1)确定t 的取值范围;(2)写出二次型()321,,x x x f 的规范形。 四、证明题:本题7分。 23.证明矩阵????? ??=111011001 A 不能对角化。

最全线性代数公式笔记

线性代数公式必记 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

历年自考04184线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++2 21 12 1 c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+=++2 12 12121 221121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 211312 11a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332 31 232221 131211 a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

线性代数公式大全——最新修订(突击必备)

线性代数公式大全 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 5. 对于n 阶行列式A ,恒有:1(1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 6. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :* * AA A A A E == 无条件恒成立; 3. 1* *1 11**()()()()()()T T T T A A A A A A ----=== * * * 1 1 1 ()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12 s A A A A ?? ? ?= ? ?? ? ,则: Ⅰ、12s A A A A = ; Ⅱ、1 1112 1s A A A A ----?? ? ?= ? ? ?? ? ; ②、1 11A O A O O B O B ---?? ?? = ? ????? ;(主对角分块) ③、1 11O A O B B O A O ---?? ??= ? ? ???? ;(副对角分块) ④、1 1111A C A A CB O B O B -----?? -?? = ? ????? ;(拉普拉斯) ⑤、1 111 1A O A O C B B CA B -----?? ?? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ???= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

线性代数02198自考2006年-2017年真题试题及答案(新)

2006年10月高等教育自学考试课程代码:2198 1.设A 是4阶矩阵,则|-A|=( ) A .-4|A| B .-|A| C .|A| D .4|A| 2.设A 为n 阶可逆矩阵,下列运算中正确的是( ) A .(2A )T =2A T B .(3A )-1=3A -1 C .[(A T )T ]-1=[(A -1)-1]T D .(A T )-1=A 3.设2阶方阵A 可逆,且A -1=??? ??--2173,则A=( ) A .??? ??--3172 B .??? ??3172 C .?? ? ??--3172 D .?? ? ??2173 4.设向量组α1,α2,α3线性无关,则下列向量组线性无关的是( ) A .α1,α2,α1+α 2 B .α1,α2,α1-α2 C .α1-α2,α2-α3,α3-α 1 D .α1+α2,α2+α3,α3+α1 5.向量组α1=(1,0,0),α2=(0,0,1),下列向量中可以由α1,α2线性表出的是( ) A .(2,0,0) B .(-3,2,4) C .(1,1,0) D .(0,-1,0) 6.设A ,B 均为3阶矩阵,若A 可逆,秩(B )=2,那么秩(AB )=( ) A .0 B .1 C .2 D .3 7.设A 为n 阶矩阵,若A 与n 阶单位矩阵等价,那么方程组Ax=b ( ) A .无解 B .有唯一解 C .有无穷多解 D .解的情况不能确定 8.在R 3中,与向量α1=(1,1,1),α2=(1,2,1)都正交的单位向量是( ) A .(-1,0,1) B .21 (-1,0,1) C .(1,0,-1) D .21 (1,0,1) 9.下列矩阵中,为正定矩阵的是( ) A .??? ? ??003021311 B .??? ? ??111121111

全国2010年10月高等教育自学考试线性代数(经管类)试题及答案

全国2010年10月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩A 的秩. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A 为3阶矩阵,|A|=1,则|-2A T |=( A ) A.-8 B.-2 C.2 D.8 2.设矩阵A=??? ? ??-11,B=(1,1),则AB=( D ) A.0 B.(1,-1) C. ???? ??-11 D. ??? ? ??--1111 3.设A 为n 阶对称矩阵,B 为n 阶反对称矩阵,则下列矩阵中为反对称矩阵的是( B ) A.AB-BA B.AB+BA C.AB D.BA 4.设矩阵A 的伴随矩阵A *=??? ? ??4321,则A -1= ( C ) A.21- ???? ??--1234 B. 21- ??? ? ?? --4321 C. 21- ???? ?? 4321 D. 21- ??? ? ??1324 5.下列矩阵中不是..初等矩阵的是(A ) A.????? ??000010101 B. ???? ? ??0010101 00 C. ????? ??100030001 D. ???? ? ?? 102010001 6.设A,B 均为n 阶可逆矩阵,则必有( B ) A.A+B 可逆 B.AB 可逆 C.A-B 可逆 D.AB+BA 可逆 7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( D ) A. α1, α2,β线性无关 B. β不能由α1, α2线性表示 C. β可由α1, α2线性表示,但表示法不惟一 D. β可由α1, α2线性表示,且表示法惟一

线性代数公式大全

概率论公式大全(2010版) 1.随机事件及其概率 吸收律:A AB A A A A =?=??Ω=Ω?)( A B A A A A A =???=??=Ω?)( )(AB A B A B A -==- 反演律:B A B A =? B A AB ?= n i i n i i A A 11=== n i i n i i A A 11=== 2.概率的定义及其计算 )(1)(A P A P -= 若B A ? )()()(A P B P A B P -=-? 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=? )()()(B P A P B A P +≤? )()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++- =∑∑∑ 3.条件概率 ()=A B P ) ()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P

()() ) 0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 ∑==n i i AB P A P 1)()( )()(1i n i i B A P B P ?=∑= Bayes 公式 )(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1 ) ()()()( 4.随机变量及其分布 分布函数计算 ) ()()()()(a F b F a X P b X P b X a P -=≤-≤=≤< 5.离散型随机变量 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞ →λn n np 有 ,2,1,0!)1(l i m ==---∞→k k e p p C k k n n k n k n n λλ (3) Poisson 分布 )(λP ,2,1,0,!)(===-k k e k X P k λλ

2018年10月全国自考线性代数(经管类)真题及答案

2014年10月全国高等教育自学考试 线性代数(经管类)试卷及答案 课程代码:04184 本试卷共8页,满分100分,考试时间150分钟。 说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设3阶行列式111 2322 21131211 a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以21- 得到单位矩阵E , 则A =【 】 A.2- B.2 1- C.21 D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量 B. B.任意两个向量都线性无关 C.存在一个向量可由其余向量线性表出 D.每个向量均可由其余向量线性表出 4.设3阶矩阵???? ? ??---=466353331A ,则下列向量中是A 的属于特征值2-的特

征向量为 【 】 A.????? ??-011 B.????? ??-101 C.????? ??201 D.???? ? ??211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】 A.0 B.1 C.2 D.3 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错误、不填均无分、 6.设131 2)(--=x x f ,则方程0)(=x f 的根是 7.设矩阵??? ? ??=0210A ,则*A = 8.设A 为3阶矩阵,21- =A ,则行列式1)2(-A = 9.设矩阵???? ??=4321B ,??? ? ??=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T )2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出 的表示式为 11.设向量组T T T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关, 则数=k 12.3元齐次线性方程组?? ?=-=+0 03221x x x x 的基础解系中所含解向量的个数 为 13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A

线性代数公式必记

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1) 2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1) 2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1) 2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0 Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;

2019年4月全国自考线性代数(经管类)04184真题试题

2019年4月全国自考线性代数04184真题试题 一、 单项选择题:本大题共5小题,每小题2分,共10分。在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。 1.(04184)设行列式122112212a a a a b b b b +-=-+-,则1212 a a b b = A.-2 B.-1 C.1 D.2 2.设A 为2阶矩阵,将A 的第1行与第2行互换得到矩阵B ,再将B 的第2行加到第1行得到单位矩阵,则1A -= A.1110?? ??? B.1101?? ??? C.0111?? ??? D.1011?? ??? 3.设向量(2,1,)T b β=可由向量组1(1,1,1)T α=,2(2,3,)T a α=线性表出,则数,a b 满足关系式 A.a-b=4 B.a+b=4 C.a-b=0 D.a+b=0 4.设齐次线性方程组123123123 2000x x x kx x x x x x ++=??++=??-+=?有非零解,则数k= A.-2 B.-1 C.1 D.2 5.(04183) 设3阶实对称矩阵A 的秩为2,则A 的特征值=0λ的重数为 A.0 B.1 C.2 D.3 二、填空题:本大题共10小题,每小题2分,共20分。 6.(04183)设某3阶行列式第2行元素分别为1,-2,3,对应的余子式为3,2,-2,则该行列式的值为 . 7.已知行列式2031111a b c =,则203 111111 a b c -+-= . 8. 111213212223313233a a a a a a a a a ?? ? ? ???100010201?? ?= ? ??? . 9.(04184)设n 阶矩阵A 满足关系式22A A E -=,则1A -= . 10.设向量组123(1,1,),(1,,1),(,1,1)T T T a a a ααα===的秩为2,则数a= . 11.(04184)与向量1(2,1)T α=-正交的单位向量2α= . 12.设4元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为

考研线性代数公式

考研线性代数公式

————————————————————————————————作者:————————————————————————————————日期: ?

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

精心整理线性代数公式大全

1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1 (1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2 D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3 D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式 : A O A C A B C B O B = =、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子 式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;

线性代数公式总结大全

线性代数公式 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 8. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

2020年自考历年线性代数考试试题及答案解析精选

自考历年线性代数考试试题及答案解析精选 第一部分选择题(共28分) 一、单项选择题[本大题共14小题,每小题2分,共28分]在 每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内.错选或未选均无分. 1、设行列式=m, =n,则行列式等于[] A、m+n B、-(m+n) C、n-m D、m-n 2、设矩阵A=,则A-1等于[] A、B、 C、D、 3、设矩阵A=,A*是A的伴随矩阵,则A*中位于[1,2]的元素是[] A、–6 B、6 C、2 D、–2 4、设A是方阵,如有矩阵关系式AB=AC,则必有[] A、A=0 B、BC时A=0 C、A0时B=C D、|A|0时B=C

5、已知3×4矩阵A的行向量组线性无关,则秩[A T]等于[] A、1 B、2 C、3 D、4 6、设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则[] A、有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B、有不全为0的数λ1,λ2,…,λs使λ1[α1+β1]+λ2[α2+β2]+…+λs[αs+βs]=0 C、有不全为0的数λ1,λ2,…,λs使λ1[α1-β1]+λ2[α2-β2]+…+λs[αs-βs]=0 D、有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=0 7、设矩阵A的秩为r,则A中[] A、全部r-1阶子式都不为0 B、全部r-1阶子式全为0 C、至少有一个r阶子式不等于0 D、全部r阶子式都不为0 8、设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下面结论错误的是[] A、η1+η2是Ax=0的一个解 B、η1+η2是Ax=b的一个解 C、η1-η2是Ax=0的一个解 D、2η1-η2是Ax=b的一个解

2018年4月自考《线性代数(经管类)》真题(完整试卷)

2018年4月自考《线性代数(经管类)》真题(完整试卷) 一、单项选择题(本大题共5小题,每小题2分,共10分) 1. 设2阶行列式 121 2 1a a b b =-, 则121212 12 a a a a b b b b +-=+- A. 2- B. 1- C. 1 D.2 2. 设A 为3阶矩阵,且||=0A a ≠,将A 按列分块为123(,,)A a a a = ,若矩阵122331(,,),B a a a a a a =+++则||=B A. 0 B. a C. 2a D.3a 3. 设向量组123,,a a a 线性无关,则下列向量组中线性无关的是 A. 123,2,3a a a C. 122331,,a a a a a a --- B. 1123,2,a a a a - D.1223123,,2a a a a a a a +-+- 4. 设矩阵3 00 00000120 022B ?? ? ? = ? - ? ??,若矩阵,A B 相似,则矩阵3E A -的秩为 A. 1 B. 2 C. 3 D.4 5. 设矩阵120240001A -?? ?=- ? ??? ,则二次型T x Ax 的规范型为

A. 222123z z z ++ B. 222123z z z +- C. 2212z z - D.2212z z + 二、填空题:本题共10小题,每小题2分,共20分。 6. 设3阶行列式11121321222312 2 2 a a a a a a = ,若元素ij a 的代数余子式为ij A ,则 313233++=A A A . 7. 已知矩阵(1,2,1),(2,1,1)A B =-=- ,且,T C A B = 则C = . 8. 设A 为3阶矩阵,且1||=3A -,则行列式1 * 132A A -??+= ??? . 9.2016 2017 001123010010456100=100789001?? ???? ? ??? ? ??? ? ????? ???? . 10.设向量(1,0,0)T β= 可由向量组123(1,1,)(1,,1)(,1,1)T T T a a a ααα===,,线性表示,且表示法唯一,则 a 的取值应满足 . 11. 设向量组123(1,2,1)(0,4,5)(2,0,)T T T t ααα=-=-=,,的秩为2,则 t = . 12. 已知12(1,0,1)(3,1,5)T T ηη=-=-,是3元非齐次线性方程组Ax b = 的两个解,则对应齐次线性方程组Ax b =有一个非零解=ξ . 13.设2=3 λ- 为n 阶矩阵A 的一个特征值,则矩阵223E A - 必有一个特征值为 . 14.设2阶实对称阵A 的特征值为2,2- ,则2A = .

相关文档
最新文档