曲线积分和格林公式

曲线积分和格林公式
曲线积分和格林公式

什么是曲线积分??

1. 设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,

在L上任意插入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds) ,若Σ f(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;

其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。

2.曲线积分的类别:

曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分)

两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx 或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。

3.两种曲线积分的联系:

对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;

)在推广之后都是以曲线积分的形式出现()。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出

4.格林公式

【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有

(1) ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy

其中是的取正向的边界曲线.

公式(1)叫做格林(green)公式.

【证明】先证

假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)

易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.

另一方面,据对坐标的曲线积分性质与计算法有

因此

再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证

综合有

当区域的边界曲线与穿过内部且平行于坐标轴( 轴或

轴 )的任何直线的交点至多是两点时,我们有

5.,若曲线积分在开区域内与路径无关,那它仅与曲线的起点与终点的坐标有关.假设曲线的起点为,终点为,可用记号或

来表示,而不需要明确地写出积分路径.

显然,这一积分形式与定积分非常相似, 事实上,我们有下列重要定理

【定理一】设是一个单连通的开区域,函数,在内具有一阶连续偏导数,且【证明】依条件知,对内任意一条以点为起点,点为终点的曲线,曲线积分与路径无关,仅与的起点和终点的坐标有关,亦即, 确为点的单值函数.

下面证明

由于可以认为是从点沿内任何路径到点的曲线积分,取如下路径,有

类似地可证明

因此

【定理二】设是单连通的开区域,,在上具有一阶连续偏导数,则在内为某一函数全微分的充要条件是

在内恒成立.

【证明】显然,充分性就是定理一

下面证明必要性

若存在使得 ,则

由于 ,在内连续, 则二阶混合偏导数适合等式

从而

【定理三】设是一个单连通的开区域, 函数,在内具有一阶连续偏导数, 若存在二元函数使得

其中,是内的任意两点.

【证明】由定理1知,函数

适合

于是或

因此 (是某一常数 )

这是因为由点沿任意内的路径回到点构成一条封闭曲线,故因此□

【确定的全微分函数的方法】

因为,而右端的曲线积分与路径无关,为了计算简便,可取平行于坐标轴的直线段所连成的折线作为积分路径(当然折线应完

全属于单连通区域).

------------------------------------------------------- 【证明】先证

假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)

易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.

另一方面,据对坐标的曲线积分性质与计算法有

因此

再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证

综合有

当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴 )的任何直线的交点至多是两点时,我们有

,

同时成立.

将两式合并之后即得格林公式

注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几

条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.

6. 牛顿—莱布尼兹公式?-=b a a F b F dx x F )()()('表示:)('x F 在区间[]b a ,上的定积分可以通过它的原函数)(x F 在这个区间端点的值来表达.而格林公式表示:在平面区域D 上的二重积分可以通过沿闭区域D 的边界曲线L 的曲线积分来表达.这样,牛顿——莱布尼兹公式成为格林公式的特殊情形.

平面单连通域的概念.设D 为平面区域,如果D 内任一闭曲线所围的部分都属于D ,则称D 为平面单连通区域,否则称为复连通区域.

例如:平面上的圆形区域(){}1|,22<+y x y x ,上半平面(){}

0|,>y y x 都是单连通区域,圆环形区域

(){}(){}

10|,,41|,2222<+<<+

y x 都是复连通区域. 对平面区域D 的边界曲线L ,规定L 的正向如下:

当观察者沿L 的方向行走时,D 总在他的左边.例如D

是边界曲线L 及l 所围成的复连通域(图8),作为D 的正向边界,L 的正向是逆时针方向,而l 的正向是顺时针方向.

定理 1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有

???+=??-??L D Qdy Pdx dxdy y P x Q )(

, (1)

其中L 是D 的取正向的边界曲线.公式(1)叫做格林公式.

证 先假设区域D 既是X 型又是Y 型的情形,即穿过区域D 且平行坐标轴的直线与D 的边界曲线L 的交点恰好为两点(图9)

设(){}b x a x y x y x D ≤≤≤≤=),()(|,21??,因为y P ??连续,所以 {}?????-=????????=??b a b a x x D dx x x P x x P dx dy y y x P dxdy y P ))(,())(,(),(12)()(21????.

另一方面,对坐标的曲线积分

{}??????-=+=+=L L L b a a b b

a dx x x P x x P dx x x P dx x x P Pdx Pdx Pdx 12))(,())(,())(,())(,(2121????.

因此得 ???=??-L D Pdx dxdy y P . (2) 类似地,设(){}d y c y x y y x D ≤≤≤≤=),()(|,21??,则可证

???=??L D Qdy dxdy x Q . (3)

由于D 既是X 型又是Y 型的区域,(2)(3)同时成立,二式合并即得公式

(1)

区域D 既是X 型又是Y 型这样的要求是相当严

格的,但是对于一般情形,即区域D 不满足这个条

件时,我们可在D 内引进辅助线把D 分成有限个部

分闭区域,使得每个部分闭区域都满足这个条件,

如图10,应用公式(1)于每个部分区域,即可得证.因

此,一般地对于由分段光滑曲线围成的闭区域公式(1)都成立.证毕.

注 (1) 格林公式中左端二重积分的被积函数是

y P x Q ??-??,而且在D 内偏导连续.这是初学者容易记错或者忽略的地方.右端曲线积分中曲线L 对区域D 来说都是正向,这也是需要注意的.

(2) 对于复连通区域D ,格林公式右端应包括沿区域D 的全部边

界的曲线积分.例如对图8的复连通域1D (阴影部分)格林公式应为

????+++++=???? ????-??L l D Qdy Pdx Qdy Pdx dxdy y P x Q 1.

其中+L 、+l 是D 的取正向的闭曲线.

(3) 格林公式揭示出二重积分与平面曲线积分之间的联系,同时也给出了通过二重积分计算曲线积分的一个重要公式.许多情况,曲线积分化为二重积分计算往往是方便的.当然有些二重积分也可以化为曲线积分来计算,但是在化为曲线积分时,被积表达式并不是唯一的.例如,??D xdxdy 化为曲线积分时,即可以是dy x L ?221,也可以是

()dx xy ?-或者是xydx dy x L -?22121,等等.

格林公式的一个简单应用,在公式(1)中取y P -=,x Q =,即得???-=L D ydx

xdy dxdy 2,上式左端为闭区域D 的面积A 的两倍,因此区域D 的面积A 可以用下面的曲线积分计算

格林公式及其在曲线积分求解中的应用

南昌工程学院 《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用 课程名称数分选讲 系院理学院 专业信息与计算科学 班级2012级1班 学生姓名魏志辉 学号2012101316 指导教师禹海雄 设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分?? 1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插 入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分) 对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx; 或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对 坐标轴的曲线积分了。

缓和曲线计算公式

高速公路的线路(缓和曲线)计算公式 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角: α ⑥点ZH 的坐标:x Z ,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ的坐标 ? 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l

②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: 当只知道HZ 点的坐标时,则:

l为到点HZ的长度 α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反 x Z ,y Z 为点HZ的坐标 ? 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)——第一缓和曲线长度 l 1 ——第二缓和曲线长度 l 2 l ——对应的缓和曲线长度 R——圆曲线半径

R ——曲线起点处的半径 1 ——曲线终点处的半径 R 2 P ——曲线起点处的曲率 1 P ——曲线终点处的曲率 2 α——曲线转角值 四、竖曲线上高程计算 (上坡为“+”,下坡为“-”)已知:①第一坡度:i 1 (上坡为“+”,下坡为“-”) ②第二坡度:i 2 ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ

计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

曲线积分与曲面积分

第十章 曲线积分与曲面积分 一、 基本内容要求 1. 理解线、面积分的概念,了解线、面积分的几何意义及物理意义,能用线、 面积分表达一些几何量和物理量; 2. 掌握线、面积分的计算法; 3. 知道两类曲线积分及两类曲面积分的联系; 4. 掌握格林公式,并能将沿闭曲线正向的积分化为该曲线所围闭区域上的二重 积分; 5. 掌握曲线积分与路径无关的充要条件,并能求全微分为已知的某个原函数, 注意此时所讨论问题单连通域的条件不可缺少; 6. 掌握高斯公式,并能将闭曲面Σ外侧上的一个曲面积分化为由其所围空间闭 区间Ω上的三重积分。 二、 选择 1.设OM 是从O (0,0)到点M (1,1)的直线段,则与曲线积分I=ds e om y x ? +2 2不相等的积分是:( ) A)dx e x 21 2? B) dy e y 21 02? C) dt e t ? 2 D) dr e r 21 ? 2.设L 是从点O(0,0)沿折线y=1-|x-1| 至点A(2,0) 的折线段,则曲线积分I= ? +-L xdy ydx 等于( ) A)0 B)-1 C)2 D)-2 3.设L 为下半圆周)0(222≤=+y R y x ,将曲线积分I= ds y x L ? +)2(化为定

积分的正确结果是:( ) A) dt t t R )sin 2(cos 0 2+? -π B) dt t t R )sin 2(cos 0 2 +?π C) dt t t R )cos 2sin (0 2+-?- π D) dt t t R )cos 2sin (232 2+-?π π 4.设L 是以A(-1,0) ,B(-3,2) ,C(3,0) 为顶点的三角形域的周界沿ABCA 方向, 则 ? -+-L dy y x dx y x )2()3(等于:( ) A) -8 B) 0 C) 8 D) 20 5.设AEB 是由点A(-1,0) 沿上半圆 21x y -=经点E(0,1)到点B(1,0), 则曲线积分I= dx y AEB ? 3等于:( ) A) 0 B)dx y BE ? 32 C) dx y EB ? 32 D) dx y EA ? 32 三、 填空 1.γβαcos ,cos ,cos 是光滑闭曲面Σ的外法向量的方向余弦,又Σ所围的空间闭区域为Ω;设函数P(x,y,z),Q(x,y,z)和R(x,y,z)在Ω上具有二阶连续偏导数,则由高斯公式,有 ds y P x Q x R z P z Q y R ]cos )(cos )(cos )[( γβα??-??+??-??+??-???? ∑ = 。 2.设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,且

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

公路缓和曲线原理及缓和曲线计算公式

一、缓和曲线 缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。 1.缓和曲线的作用 1)便于驾驶员操纵方向盘 2)乘客的舒适与稳定,减小离心力变化 3)满足超高、加宽缓和段的过渡,利于平稳行车 4)与圆曲线配合得当,增加线形美观 2.缓和曲线的性质 为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。 S=A2/ρ(A:与汽车有关的参数) ρ=C/s C=A2 由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。 3.回旋线基本方程 即用回旋线作为缓和曲线的数学模型。 令:ρ=R,l h=s 则 l h=A2/R

4.缓和曲线最小长度 缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。a1=0,a2=v2/ρ,a s=Δa/t≤0.6 2)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s) 3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度 超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。 发布日期:2012-01-31 作者:李秋生浏览次数:149 4)从视觉上应有平顺感的要求计算缓和曲线最小长度 缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。 《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。 5.直角坐标及要素计算

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

缓和曲线要素及计算公式

缓和曲线要素及计算公式 缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。 缓和曲线的主要曲线元素 缓和曲线主要有ZH 、HY 、QZ 、YH 、HZ 5个主点。 由此可得: q P R q T T h ++=+=2 tan )(α R P R E h -+=2 sec )(α s h L R L 2180)2(0+-=πβα 180 )2(0R L y πβα-= 式中:h T -缓和曲线切线长 h E -缓和曲线外矢距 h L -缓和曲线中曲线总长 y L -缓和曲线中圆曲线长度

缓和曲线与圆曲线区别: 1. 因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P 产生) 2. 缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q; 3. 由于有缓和曲线的存在,因此有缓和曲线角0β。 缓和曲线角 0β的计算: R L S 2/0=β(弧度)= R L S π90 (度) 内移值P 的计算: ()m R L P S 242 = 切线增长值q 的计算: )(240223 m R L L q S S -= P -缓和曲线内移值 q -缓和曲线切线增长值 0β-缓和曲线首或尾所采用的缓和曲线段分别的总缓和曲线角。 S L -缓和曲线两端各自的缓和曲线长。 R -缓和曲线中的主圆曲线半径 α-偏转角

缓和曲线主点桩号: ZH 桩号=JD 桩号-h T HY 桩号=ZH 桩号+S L QZ 桩号=HY 桩号+2y L YH 桩号=QZ 桩号+ 2 y L HZ 桩号=ZH 桩号+h L 另外、QZ 桩号、YH 桩号、HZ 桩号还可以用以下方式推导: QZ 桩号=ZH 桩号+ 2 h L YH 桩号=HZ 桩号-S L HZ 桩号=YH 桩号+S L 切线支距法计算坐标: 缓和曲线段内坐标计算如式: 2 2540S P p L R L L -=X s P RL L Y 63 = 进入净圆曲线段内坐标计算如式: ?? ??????- ?? ???+=R L L R q X s p π1802 sin ? ??????????- ?? ? ?? -???+=R L L R P Y s p π1802cos 1

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为 n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分 析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点 (),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于 (),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 1 lim (,).n i i i i M s λρξη→∞ ==?∑ 即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到. 上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义: 定义13.1 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入 图13-1

曲线与曲面积分习题参考答案

十 曲线积分与曲面积分习题 (一) 对弧长的曲线积分 1. 计算ds y x L ?+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t . 解 320 32 2 2 2 20 2 2 2 2 2 2 2cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x L ππ π==++=+???. 2. 计算ds x L ?,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界. 解 )12655(12 1 4121 021 0-+= ++=???dx x x dx x ds x L . 3.计算?L yds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧. 解 ?L yds =dy y y dy y y ??+=+2 22 2421)2(1 )122(3 4)4(4412202-=++= ?y d y . 4.计算?+L ds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段. 解 ?+L ds y x )(=23 2 11)(1 0= ++?x x . 5.计算?L xyzds ,其中L 是曲线232 1 ,232,t z t y t x == =)10(≤≤t 的一段. 解 ?L xyzds =??+=++1 31 02223)1(232 )2(121232dt t t t dt t t t t t =143 216. 6.计算L ?,其中L 为圆周222x y a +=,直线y x =及x 轴在第 一象限所围成的扇形的整个边界.

曲线积分与曲面积分总结

对弧长的曲线积分??+=L L y d x d y x f ds y x f 22),(),( ???==) ()(:t y y t x x L βα≤≤t dt t y t x t y t x f ?'+'βα)()())(),((22 (,,)((),(),(L L f x y z ds f x t y t z t =??():()()x x t L y y t z z t =??=??=? βα≤≤t ((),(),(f x t y t z t βα ? 22222.2x y L L L e ds e ds e ds e π+===? ?? 22=2(0)L x y y +≥为上半圆周 ?+L dy y x q dx y x p ),(),( ???==) ()(:t y y t x x L α=t β=t dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?βα (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++?

():()()x x t L y y t z z t =??=??=? α=t β =t ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++? 11 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+?? 1( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? ??=??-??D dxdy y p x q )( ?+L dy y x q dx y x p ),(),( y p x q ??=?? ???+=+2 1212211),(),(),(),(21) ,(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,)P x y dx Q x y dy dU x y +=Q P x y ??? =?? 1、 ?? ??++= =∑xy D y x dxdy f f y x f y x ds z y x y x f z 221)),(,,(),,(),(μμ 2、 (,)(,,)(,(,),xz D y f x z x y z ds x f x z z μμ∑==???? 3、 (,)(,,)((,),,yz D x f y z x y z ds f y z y z μμ∑==???? ds ∑ =∑??面积。

缓和曲线要素及公式介绍

11.2.1 带缓和曲线的圆曲线的测设 为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。 目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。数学表达为: ρ∝1/l 或ρ·l = k ( k为常数) 若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有: ρ·l = R·l0 = k 目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R , 铁路缓和曲线的长度为:l0 = 0.09808V3/R 。 11.2.2 带缓和曲线的圆曲线的主点及主元素的计算 带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。

带缓和曲线的圆曲线的主元素及计算公式: 切线长 T h = q+(R+p)·tan(α/2) 曲线长 L h = 2l0+R·(α-2β0)·π/180° 外矢距 E h = (R+p)·sec(α/2)-R 切线加长 q = l0/2-l03/(240R2) 圆曲线相对切线内移量 p = l02/(24R) 切曲差 D h = 2T h -L h 式中:α为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。 11.2.3 缓和曲线参数推导 dβ = dl/ρ = l/k·dl 两边分别积分,得: β= l2/(2k) = l/(2ρ)

当ρ = R时,则β =β0 β0 = l0/(2R) 若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则: dx = dl·cosβ = cos[l2/(2k)]·dl dy = dl·sinβ = sin[l2/(2k)]·dl 考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线 长度l为参数的缓和曲线方程式: X = l-l5/(40R2l02)+…… Y = l3/(6Rl0)+…… 通常应用上式时,只取前一、二项,即: X = l-l5/(40R2l02) Y = l3/(6Rl0) 另外,由图可知, q = X HY-R·sinβ0 p = Y HY-R(1-cosβ0) 以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2) p = l02/(24R) 若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为: Xi = R·sinψi+q Yi = R·(1-cosψi)+p 11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核

第八章 曲线积分与曲面积分

第八章曲线积分与曲面积分 本章是把定积分概念推广到定义在曲线是的函数和定义曲面上的函数上去,就得到曲线积分和曲面积分。 §1对弧长的曲线积分 问题:设有一曲线形构件占xOy 面上的一段曲线L ,设构件的质量分布函数为),(y x ρ,设),(y x ρ定义在L 上且在L 上连续,求构件的质量。 ∑=→=n i i i i S M 10 ),(lim ?ηξρλ 定义:设L 为xOy 平面上的一条光滑的简单曲线弧,),(y x f 在L 上有界,在L 上任意插入一点列1M ,2M ,…,1-n M 把L 分成n 个小弧段 i i i M M L 1-=?的长度为i S ?,又),(i i ηξ是i L ?上的任一点,作乘积 i i i S f ?ηξ),(,),,2,1(n i =,并求和∑=n i i i i S f 1 ),(?ηξ,记}max {i S ?λ=,若 ∑=→n i i i i S f 1 ),(lim ?ηξλ存在,且极限值与L 的分法及),(i i ηξ在i L ?的取法无关, 则称极限值为),(y x f 在L 上对弧长的曲线积分,记为:?L s y x f d ),(,即 ?L s y x f d ),(∑=→=n i i i i S f 1 ),(lim ?ηξλ 。 其中),(y x f 叫做被积函数,L 叫做积分曲线。 对弧长曲线积分的存在性: 设),(y x f 在光滑曲线L 上连续,则?L s y x f d ),(一定存在。 对弧长曲线积分的性质:

1、???±=±L L L s y x g s y x f s y x g y x f d ),(d ),(d )],(),([ 2、??=L L s y x f k s k y x kf d ),(d ),( 3、设21L L L +=,则???+=2 1 d ),(d ),(d ),(L L L s y x f s y x f s y x f 这里规定:若L 是封闭曲线,则曲线积分记为?L s y x f d ),( 有上述对弧长的曲线积分,则上面的问题就可以用对弧长的曲线积分表示为 ?=L s y x f M d ),( 对弧长的曲线积分的计算法: 在一定体积下化为定积分计算,首先要注意: 1、),(y x f 定义在曲线L 上, 2、s d 是弧长微分。 定理:设),(y x f 在光滑曲线L 上连续,L 由参数方程) ()() (βαψ?≤≤? ? ?==t t y t x 给出,其中)(t ?、)(t ψ在],[βα上具有连续导数且0)()(22≠'+'t t ψ?,则 ? L s y x f d ),(存在,且:??'+'=β α ψ?ψ?t t t t t f s y x f L d )()()](),([d ),(22。 若L 方程为:)(x y ψ=,b x a ≤≤,则??'+=b a L x x x x f s y x f d )(1)] (,[d ),(2ψψ。 若L 方程为:)(y x ?=,d y c ≤≤,则??'+=d c L y y y y f s y x f d )(1]),([d ),(2?? 例1、计算?L s y d ,其中L :)20()cos 1() sin (π≤≤? ? ?-=-=t t a y t t a x

曲线积分和格林公式学习总结

高 数 作 业 姓名:徐艳涛 班级:电子商务1133 学号:201161102348

曲线积分和格林公式学习总结 §1对弧长的曲线积分 1.1由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分 化为定积分的计算方法。 1、引例:求曲线形构件的质量 最后举例巩固计算方法的掌握。 2、s z y x f d ),,(? Γ 为第一类曲线积分,其中Γ为曲线,被积函数 ) ,,(z y x f 中的点) ,,(z y x 位于曲线Γ上,即),,(z y x 必须满足Γ对应的方程,222dz dy dx ds ++=是弧微分、弧长元素。 若Γ是封闭曲线,则第一类曲线积分记为s z y x f d ),,(?Γ 3、第一类曲线积分的应用: 1)、曲线Γ的长s=s d ?Γ 2)、若空间曲线形物体的线密度为),,(z y x f ,Γ∈),,(z y x ,则其质量M ds z y x f ),,(?Γ = ; 质心坐标为),,(z y x ,其中M ds z y x zf z M ds z y x yf y M ds z y x xf x ),,(,),,(,),,(???Γ Γ Γ = = = ; 对x 轴的转动惯量ds z y x f z y Ix ),,()(2 2 += ?Γ 4、第一类曲线积分的计算方法: 若空间曲线Γ参数方程为:?? ? ??===)() () (t z z t y y t x x ,β α ≤≤t ,则dt t z t y t x ds 222)]('[)]('[)]('[++=, s z y x f d ),,(?Γ =? β α )) (),(),((t z t y t x f t t z t y t x d )]('[)]('[)]('[2 2 2 ++。 例1 计算? Γ ds z y x )(2 2 2 ++,其中Γ:t x cos =,t y sin =,t z =,π 20≤≤t 解 因为222z y x ++=222sin cos t t t ++=21t +,dt dt t t ds 21)(cos )sin (22=++-=, 所以? Γ ds z y x )(2 22++) 3 82(22)1(3 2 20 πππ + = += ?dt t 例2 ?Γds y ||,其中Γ为球面2 2 2 2 =++z y x 与平面y x =的交线; 解 Γ的参数方程为t z t y x sin 2,cos = ==,π 20≤≤t ,dt dt z y x ds 2'''222=++=, 根据对称性得到? L ds y ||=2 4d cos 24 2 =?t t π 例3 计算?Γ ds z y x )(2 2 2 ++,其中:Γ???? ?==+1 222z a y x )0(>a 解 Γ:?? ? ??===1sin cos z t a y t a x ,π20≤≤t ,dt t z t y t x ds 222)]('[)]('[)]('[++=adt dt t t a =+=)cos (sin 222 ∴ ?Γ ds z y x )(2 22++) 1(2)1(2 2 20 +=+= ?a a adt a ππ

缓和曲线交点桩号计算公式

缓和曲线计算方法(ZH~HY)中线 首先计算直线段坐标方位角(即ZH~JD坐标方位角),及ZH点坐标。备用偏角公式:{30*L/(π*RLS)缓和曲线} 计算待求点偏角=((L/10)2 *(57296/(RLS ))/60。其中L=待求点至ZH距离、R=圆曲线半径、LS =缓和曲线长。 待求点方位角=直线方位角±待求点偏角。(曲线左转-偏角,曲线右转+偏角) 待求点至ZH点弦长=L—L5 /(90*R2 *LS 2),其中L=待求点至ZH距离(里程)、R=圆曲线半径。 待求点坐标: X=ZH点X坐标+COS(待求点方位角)*弦长 Y= ZH点Y坐标+SIN(待求点方位角)*弦长 缓和曲线计算左右边线坐标(ZH~HY) 左侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)—边线与中线夹角。 右侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)+边线与中线夹角。 左侧边线坐标: X=该点中线X坐标+COS(左侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离 右侧边线坐标: X=该点中线X坐标+COS(右侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离 圆曲线计算方法(HY~YH)中线 注:(ZY-YZ)同理,方位角=用直线方位角-待求点偏角 首先计算直线段坐标方位角(即ZH~JD坐标方位角),及HY点坐标。 求出缓圆点(HY)偏角=(LS*90)/(π* R)。 求待求点偏角=(L*90)/(π* R)。 其中: L=待求点至HY距离(里程)、R=圆曲线半径、LS =缓和曲线长。 待求点至HY点弦长=2* R*SIN(待求点偏角)。 待求点方位角=直线方位角±HY点偏角±待求点偏角,(曲线左转-偏角,曲线右转+偏角)。 待求点坐标: X=HY点X坐标+COS(待求点方位角)*弦长 Y=HY点Y坐标+SIN(待求点方位角)*弦长 圆曲线计算左右边线坐标 左侧方位角=(待求点方位角±偏角—边线与中线夹角)。 右侧方位角=(待求点方位角±偏角)+边线与中线夹角)。 左侧边线坐标: X=该点中线X坐标+COS(左侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离 右侧边线坐标: X=该点中线X坐标+COS(右侧方位角)*边线至中线距离 Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离 缓和曲线计算方法(YH~HZ)中线 首先计算直线段坐标方位角(即ZH-JD坐标方位角),及YH点坐标。备用偏角公式:{30*L/

曲线积分与曲面积分总结

第十一章:曲线积分与曲面积分 一、对弧长的曲线积分 ?? +=L L y d x d y x f ds y x f 22),(),( 若 ?? ?==) () (:t y y t x x L βα≤≤t 则 原式= dt t y t x t y t x f ?'+'β α )()())(),((22 对弧长的曲线积分 (,,) ((),()L L f x y z ds f x t y t z t =? ?若 () :()()x x t L y y t z z t =?? =??=? βα≤≤t 则 原式= ((),(),(f x t y t z t β α ? 常见的参数方程为: 特别的: 22 222.2x y L L L e ds e ds e ds e π+===??? 22 =2(0)L x y y +≥为上半圆周

二、对坐标的曲线积分 ? +L dy y x q dx y x p ),(),( 计算方法一: 若 ?? ?==) () (:t y y t x x L 起点处α=t ,终点处β=t 则 原式= dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?β α 对坐标的曲线积分 (,,)(,,)(,,)L P x y z d x Q x y z d y R x y z d z ++? () :()()x x t L y y t z z t =?? =??=? 起点处α=t ,终点处β=t 则 原式= ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt β α'''++? 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。 1 1 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+? ? 1 ( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? 如图: 三、格林公式 ??=??-??D dxdy y p x q )( ? +L dy y x q dx y x p ),(),( 其中L 为D 的正向边界 特别地:当 y p x q ??=??时,积分与路径无关, 且 ??? +=+2 1 21 2211),(),(),(),(21) ,() ,(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,P x y d x Q x y d y d U x y +=是某个函数的全微分Q P x y ??? =?? 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积

相关文档
最新文档