利用导数解决圆锥曲线中的切线问题

利用导数解决圆锥曲线中的切线问题
利用导数解决圆锥曲线中的切线问题

龙源期刊网 https://www.360docs.net/doc/f814008670.html,

利用导数解决圆锥曲线中的切线问题

作者:陈建参

来源:《考试周刊》2013年第51期

摘要:文章认为,根据圆锥曲线特别是抛物线的全部或局部函数性,利用导数求导的方法,可以顺利解决圆锥曲线中的切线问题.

关键词:圆锥切线函数性导数切线斜率

圆锥曲线问题与导数的工具性的交叉渗透,很自然地做了一个知识点和能力上的交汇整合.在2012年的高考题中,总体的体现是题型新颖,难度跨度增大,特别是对考生的运算求解能力的要求提高,但如果能利用好导数,则可以使解题变得简捷巧妙.

【点评】化抛物线方程为函数形式,根据曲线在切点处的导数即为切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键.

(I)求抛物线E的方程;

(II)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明:以PQ为直径的圆恒过y轴上某定点.

【点评】本题考查的知识点为圆锥曲线的定义,直线和圆锥曲线的位置关系,以及定值的证明,关键是把抛物线方程化为函数形式,利用导数的几何意义求解.

【点评】开口向左或向右的抛物线方程不是函数形式,但如果只取轴的上方或下方部分,就是函数关系了,利用导数就可以解决相应切线问题.

【点评】该试题出题的角度不同寻常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,是该试题的创新之处.另外,在第二问中难度加大了,出现了另

外两条公共的切线,这样的问题在我们以后的学习中也是需要练习的.

利用导数求解圆锥曲线的切线问题,关键在于设切点求斜率,把解析几何和导数的工具性结合起来,作为一种思维方式,体现了数学的简捷、实用和综合性.

导数切线斜率问题解析版

绝密★启用前 2015-2016学年度学校1月月考卷 试卷副标题 题 号 一 二 三 总 分 得 分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得 分 一、选择题(题型注 释) 1.曲线31 23y x =-在点 51,3?? - ??? 处切线的斜率为( ) A .3 B .1 C .1- D .3- 2.曲线31 23y x =-在点(1,-5 3)处切线的倾斜角为( ) A .30° B.45° C .135° D .150° 3.已知函数ln y x x =,则这个函数在点)0,1(处的切线方程是( ) A .22y x =- B .22y x =+ C .1y x =- D .1+=x y 4.直线y =kx +1与曲线y =x 3+ax +b 相切于点A(1,3),则2a +b 的值为( ) A .2 B .-1 C .1 D .-2 5.若曲线在点处的切线平行于x 轴,则k= ( ) A .-1 B .1 C .-2 D .2 6.过点)1,1(-且与曲线x x y 23-=相切的直线方程为( ) A . 20x y --=或5410x y +-= B .02=--y x C .20x y --=或4510x y ++= D .02=+-y x

7.已知点P 在曲线41 x y e = +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.3[ ,)4ππ B.[,)42ππ C.3(,]24ππ D.[0,4 π) 8.若曲线321()3 f x x x mx =++的所有切线中,只有一条与直线30x y +-=垂直,则实数m 的值等于( ) A .0 B .2 C .0或2 D .3 9.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )()11,e -- (B )()0,1 (C )()1,e (D )()0,2 10.设曲线11 x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a 等于 ( ) A. 2 B. 12 C. 12 - D. 2- 11.曲线323y x x =-+在点(1,2)处的切线方程为( ) A .y =3x -1 B .y =-3x +5 C .y =3x +5 D .y =2x 12.已知曲线421y x ax =++在点()-12a +,处切线的斜率为8,=a ( ) (A )9 (B )6 (C )-9 (D )-6 13.已知点P 在曲线y= 41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.[0, 4π) B.[,)42ππ C. 3(,]24ππ D. 3[,)4 ππ

圆锥曲线大题十个大招——轨迹问题

招式八:轨迹问题 轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2 222)2(1y x y x +-=-+λ 化简得0)41(4))(1(2 2 2 2 2 =++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 2 22 222) 1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y , ,则 2222(2)12[(2)1]x y x y ++-=-+-, y x Q M N O

即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 例2、已知动圆过定点,02p ?? ??? ,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程; 【解析】如图,设M 为动圆圆心,,02p ?? ??? 为记为F ,过点M 作直线2p x =-的垂线, 垂足为N ,由题意知:MF MN = 即动点M 到定点F 与定直线2 p x =- 的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ?? ??? 为焦点, 2 p x =- 为准线,所以轨迹方程为2 2(0)y px P =>; ◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。 【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、 O 为焦点的椭圆,中心为(-3,0),故P 点的方程为 12516 25)3(2 2=++y x ,02p ?? ??? 2 p x =-

圆锥曲线的切线问题

圆锥曲线的切线问题 圆锥曲线的切线问题有两种处理思路:思路 1,导数法,将圆锥曲线方程化为函数 y =f (x) ,利用导数法求出函数y =f (x) 在点(x 0 , y ) 处的切线方程,特别是焦点在y 轴 上常用此法求切线;思路 2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式?= 0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为 0 这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 类型一 导数法求抛物线切线 例1 【2017 课表1,文 20】设A,B为曲线C:y= x 4 (1)求直线A B的斜率; 上两点,A与B的横坐标之和为 4. (2)设M为曲线C上一点,C在M处的切线与直线A B平行,且A M⊥B M,求直线A B的方程. 类型二椭圆的切线问题 2

5 + = > > 例 2(2014 广东 20)(14 分)已知椭圆C : x a 2 y 2 + = 1(a > b > 0) 的一个焦点为( 5, 0) , b 2 离心率为 . 3 (1) 求椭圆 C 的标准方程; (2) 若动点 P (x 0 , y 0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P 的轨 迹方程. 类型三 直线与椭圆的一个交点 例 3.【2013 年高考安徽卷】已知椭圆 C : x a 2 y 2 b 2 1(a b 0) 的焦距为 4 , 且过点 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设Q (x 0 , y 0 )(x 0 y 0 ≠ 0) 为椭圆C 上一点,过点Q 作 x 轴的垂线,垂足为 E .取点 A (0, 2 2) ,连接 AE ,过点 A 作 AE 的垂线交 x 轴于点 D .点G 是点 D 关于 y 轴的对称点, 作直 线QG ,问这样作出的直线QG 是否与椭圆 C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点 P ( 2,3) ∴ 2 + 3 = 1 a 2 b 2 且a 2 = b 2 + c 2 P ( 2,3) . 2 2

利用导数求切线的方程

利用导数求切线的方程 第I 卷(选择题) 一、选择题 1.已知曲线21y x =-在0x x =处的切线与曲线31y x =-在0x x =处的切线互相平行,则0x 的值为( ) A .0 B C .0 D 2.若幂函数a mx x f =)(的图像经过点A 处的切线方程是( ) A.02=-y x B.02=+y x C.0144=+-y x D.0144=++y x 3.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A B 、22e C 、2e D 4.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是( ) A.)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 5.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-距离的最小值为() A .1 B C D 6处的切线与直线1y x =+平行,则实数a 的值为( ) A D 7处的切线平行于x 轴, 则()0f x =( ) A C D .2e 8上一动点00(,())P x f x 处的切线斜率的最小值为( ) A B .3 C D .6 第II 卷(非选择题) 二、填空题 9在点()1,1处的切线与曲线x y e =在点P 处的切线垂直,则点P 的坐标为 __________.

10.曲线cos y x x =-在点___________. 11.已知直线01=+-y x 与曲线的值为 . 12.若曲线ln (0)y x x =>的一条切线是直线,则实数b 的值为 . 13.若直线y x b =+是曲线 14.已知函数()tan f x x =,则__________. 15在点()()1,1f 处的切线方程是 . 16.设曲线3()2f x ax a =-在点()1,a 处的切线与直线210x y -+=平行,则实数a 的值为______. 17.已知曲线()cos f x a x =与曲线()21g x x bx =++在交点()0,m 处有公切线,则实数a b +的值为____________. 18.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为________. 19__________. 三、解答题 20.求曲线3 =y=f(x)(2x-2)在点(2,8)处的切线方程(一般式) 参考答案

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

导数解决切线问题的习题

导数复习专题——切线问题 例一: 求曲线32 31y x x =-+在点(11)-,处的切线方程 变式一:已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 变式二:已知函数33y x x =-,过点(2,2)A 作曲线()y f x =的切线,求此切线方程. 例二:已知函数f(x)=x 3+3ax 2-3b ,g(x)=-2x 2+2x+3(a≠0) (1) 若f(x)的图象与g(x)的图象在x=2处的切线互相平行,求a 的值; (2)若函数y=f(x)的两个极值点x=x 1,x=x 2恰是方程f(x)=g(x)的两个根,求a 、b 的值;并求此时函数y=f(x)的单调区间. 变式二:设函数()32910y x ax x a =+--<, 若曲线y =f (x )的斜率最小的切线与直线126x y +=平行,求: (Ⅰ)a 的值; (Ⅱ)函数()f x 的单调区间.

例三:已知函数()3,y x ax b a b R =++∈ (Ⅰ)若()f x 的图像在22x -≤≤部分在x 轴的上方,且在点()(2,2)f 处的切线与直线950x y -+=平行,求b 的取值范围; (Ⅱ)当123,0,3x x ??∈ ? ??? ,且12x x ≠时,不等式()()1212f x f x x x -<-恒成立,求的取值范围。 变式三: 已知函数f(x)=,在x=1处取得极值为2. (1)求函数f(x)的解析式; (2)若函数f(x)在区间(m ,2m +1)上为增函数,求实数m 的取值范围; (3)若P (x 0,y 0)为f(x)=图象上的任意一点,直线l 与f(x)=的图象相切于点P ,求直线l 的斜率的取值范围. b x ax +2b x ax +2b x ax +2

圆锥曲线的双切线问题初探

圆锥曲线的双切线问题初探 蓝 婷 深圳市第二高级中学; 广东深圳 518055 【摘要】:本文以高考题为载体,在一个引理的基础上给出了一个关于圆锥曲线双切线问题的定理,并总结出了解决圆锥曲线的双切线问题的一套统一的简洁方法,充分体现定理的妙处。 【关键词】:圆锥曲线 ; 双切线 ; 切点弦方程 一、研究背景 圆锥曲线是高考数学中的必考问题,圆锥曲线以切线为背景与导数相结合的问题长期被高考命题者所青睐。我们发现,这类问题的标准答案使用的传统方法解答过程一般较为复杂,并且在高强度的高考环境下,考生不得不将有限的时间浪费在繁杂的运算中。笔者在这个问题的研究中试图寻求一种简单统一的方法,将此类问题的运算量降低,从而达到简化解题过程的目的。 二、定理证明 为了简捷且更具一般性和代表性,我们将圆锥曲线(包含圆)统一写成最一般的形式:220Ax By Cx Dy Exy F +++++=,下面给出定理的证明。 引理:设()00,P x y 是圆锥曲线220Ax By Cx Dy Exy F +++++=上一点,则与该圆锥曲线切于点P 的直线方程为:000000( )()()0222 x x y y y x x y Ax x By y C D E F ++++++++=。 证明:在圆锥曲线方程2 2 0Ax By Cx Dy Exy F +++++=两边求导,可得: 220Ax Byy C Dy Ey Exy '''+++++=,所以:22Ax Ey C y Ex By D ++'=- ++ 则切线方程为:0000002()2Ax Ey C y y x x Ex By D ++-=- -++ 得:000000()(2)(2)()y y Ex By D Ax Ey C x x -++=-++- 化简:220000000000002222222Ax By Cx Dy Ex y Ax x By y Cx Dy Cx Dy Ex y Exy ++++=+++++++ 因为()00,P x y 在圆锥曲线上,所以:220000002222220Ax By Cx Dy Ex y F +++++=

导数切线斜率问题解析版

绝密★启用前 2015-2016学年度???学校1月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 一、选择题(题型注释) 1处切线的斜率为( ) A 2(1处切线的倾斜角为( ) A.30° B.45° C.135° D.150° 3) A D 4.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为()A.2 B.-1 C.1 D.-2 5.若曲线在点处的切线平行于x轴,则k= ( ) A.-1 B.1 C.-2 D.2 6) A. C 7.已知点P P

是() 8 ) A.0 B.2 C.0或2 D.3 9( ) (A(B(C(D 10.() 11(1,2)处的切线方程为( ) A.y=3x-1 B.y=-3x+5 C.y=3x+5 D.y=2x 128) (A(B(C(D P 13.已知点P在曲线 是( )

第II卷(非选择题) 请点击修改第II卷的文字说明 二、填空题(题型注释) 141,2)处切线的斜率为__________。 151,3)处的切线方程为. 16s 加速度为. 17.已知直线l过点,且与曲线相切,则直线的方程为 . 18.____________. 19处的切线方程是 . 20, 三、解答题(题型注释)

参考答案 1.B 【解析】 (145°. 考点:导数的几何意义.特殊角的三角函数值. 2.B 【解析】 (145°. 考点:导数的几何意义.特殊角的三角函数值. 3.C 【解析】 ,∴函数在点(1,0)处的 考点:导数的几何意义. 4.C 【解析】 试题分析:由题意得,y′=3x2+a,∴k=3+a …… ①∵切点为A(1,3),∴3=k+1……②3=1+a+b ……③,由①②③解得,a=-1,b=3,∴2a+b=1,故选C. 考点:利用导数研究曲线上某点切线方程. 5.A 【解析】求导得,依题意, ∵ 曲线在点处的切线平行于x轴, ∴k+1=0,即k=-1. 6.A 【解析】 试题分析:设切点为,因为,所以切线的斜率为 又因为切线过

圆锥曲线综合 切线问题

【例1】 抛物线2y x =上的点到直线24x y -=的最短距离是( ) A . 35 5 B . 45 5 C . 135 20 D . 95 20 【例2】 若曲线22y x =的一条切线l 与直线480x y +-=垂直,则切线l 的方程为( ) A .430x y ++= B .490x y +-= C .430x y -+= D .420x y --= 【例3】 与直线240x y -+=平行的抛物线2y x =的切线方程是 ; 【例4】 过点(01)P , 且与抛物线22y x =只有一个公共点的直线方程为_______________________. 【例5】 已知过定点A (2,0)的直线和抛物线2 14 y x = 有且只有一个交点,求满足条件的直线方程. 【例6】 已知圆O :222x y +=交x 轴于,A B 两点,曲线C 是以AB 为长轴,离心率为 2 2 的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂 典例分析 板块三.切线问题

线交直线2x =-于点Q . ⑴求椭圆C 的标准方程; ⑵若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切. ⑶试探究:当点P 在圆O 上运动时(不与,A B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. 【例7】 如图,P 是抛物线C :2 12 y x = 上一点,直线l 过点P 且与抛物线C 交于另一点Q . ⑴若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; ⑵若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求ST ST SP SQ + 的取值 范围. 【例8】 已知椭圆22 122:1(0)y x C a b a b +=>>的右顶点为(10)A ,,过1C 的焦点且垂直长轴 的弦长为1. ⑴求椭圆1C 的方程; ⑵设点P 在抛物线22:()C y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求 h 的最小值. 是双曲线上不同的两个动点. ⑴ 求直线1A P 与2A Q 交点的轨迹E 的方程 ⑵ 若过点()0,h 的两条直线1l 和2l 与轨迹E 都只有一个交点,且12l l ⊥,求h 的值.

高考数学圆锥曲线的基本公式推导

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22 =与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式, 再代入原始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

利用导数求函数切线方程

利用导数求函数切线方程 摘要:导数是高中数学学习中分析和解决问题的有效工具,其中,导数在求解函数切线方程的应用中有很强的功能。本文采用“目标法”,通过对几个用导数求函数切线方程的例子的剖析,给出这类题的解题思路和技巧,让大家更深入地理解如何用“目标法”解决用导数求函数切线方程的问题,并在解题过程中通过“目标法”寻找策略,发现疏漏,同时展示高考题中用导数求切线方程的缜密的数学逻辑思维过程。 关键词:导数;切线方程;目标法;解题思路;数学逻辑 前言 导数作为高中教材必学内容之一,无论是在高中生的平时学习或者是在高考试题中,都毫无疑问的占有一席之地,已经有很多的教育工作者对有关导数在高中学习中的重要性和应该注意的一些问题进行了研究。付禹[1]采用问卷调查法,通过分析学生在测试中出现的问题和错误,对学生在学习“导数及其应用”中遇到的困难进行了分析。在高考试题中,导数已经从作为解决问题的辅助地位上升为分析和解决问题必不可少的工具[2]。而且,导数的广泛应用,也成为新教材高考试题的热点和命题的增长点[3]。可见,导数在高中学习中占有重要的位置。应用导数求函数的切线方程,这是导数的一个重要应用,对于高中生来说,也还存在一些解题误区,高春娇[4]对此做了分析。针对导数在求函数的切线方程中的重要性和高中生在学习过程中遇到的问题,作者主要想从一个高中生的视角,结合自己的解题经验,总结利用导数求函数切线方程的要点,并发现了解决导数问题的有效工具——“目标法”,同时在应用时体现数学的逻辑。希望对正在学习导数及其应用的高中学生有一定的帮助。文中选取的一些例题,主要来源于参考文献[5],作者从另一角度给出了解题的思路和步骤,以及解答的过程,同时给出了解题中应该要注意到的诸多的细节问题,以期读者能掌握良好的做题习惯,感受强大的数学逻辑。 1用“目标法”解决用导数求函数的切线方程

高三数学解答题难题突破 圆锥曲线的切线问题

高三数学解答题难题突破 圆锥曲线的切线问题 【题型综述】 圆锥曲线的切线问题有两种处理思路:思路1,导数法,将圆锥曲线方程化为函数)(x f y =,利用导数法求出函数)(x f y =在点),(00y x 处的切线方程,特别是焦点在y 轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x (或y )的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式0=?,即可解出切线方程,注意关于x (或y )的一元二次方程的二次项系数不为0这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 【典例指引】 类型一 导数法求抛物线切线 例1 【2017课表1,文20】设A ,B 为曲线C :y =2 4 x 上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率; (2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 类型二 椭圆的切线问题 例2(2014广东20)(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为. (1)求椭圆C 的标准方程;

(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 类型三 直线与椭圆的一个交点 例3.【2013年高考安徽卷】已知椭圆22 22:1(0)x y C a b a b +=>>的焦距为4,且过点P . (Ⅰ)求椭圆C 的方程; (Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点P ∴ 22 231a b += 且222 a b c =+ ∴ 2 8a = 2 4b = 2 4c = 椭圆C 的方程是22 184 x y + = (2)

(完整版)利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线 一.求切线方程 【例1】.已知曲线f(x)=x3-2x2+1. (1)求在点P(1,0)处的切线l 1 的方程; (2)求过点Q(2,1)与已知曲线f(x)相切的直线l 2 的方程. 提醒:注意是在某个点处还是过某个点! 二.有关切线的条数 【例2】.(2014?北京)已知函数f(x)=2x3﹣3x. (Ⅰ)求f(x)在区间[﹣2,1]上的最大值; (Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论) 【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3, 令f′(x)=0得,x=﹣或x=, ∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1, ∴f(x)在区间[﹣2,1]上的最大值为. (Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x 0,y ), 则y 0=2﹣3x ,且切线斜率为k=6﹣3, ∴切线方程为y﹣y 0=(6﹣3)(x﹣x ), ∴t﹣y 0=(6﹣3)(1﹣x ),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3, 则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1), ∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值. ∴g(0)>0且g(1)<0,即﹣3<t<﹣1, ∴当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(﹣3,﹣1). (Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切; 过点B(2,10)存在2条直线与曲线y=f(x)相切; 过点C(0,2)存在1条直线与曲线y=f(x)相切.

导数中的切线问题

第二轮解答题复习——函数和导数(1) (求导和切线) 令狐采学 一、过往八年高考题型汇总: 二、知识点: 1.导数的几何意义是 2.默写以下的求导公式: 3.写出求导的四则运算公式: 4.如何求复合函数的导数?例如求)2 ln( (2x ) =的导数。 f- x x 5、函数)(x f y=在0x处的切线方程是

6、基础题型说明——切线: (1)直接求函数在0x 处的切线方程或者切线斜率; (2)已知函数),(a x f 在0x 处的切线求a 值; (3)已知函数),,(b a x f 在0x 处的切线求b a ,值 三、强化训练: 1、请对下列函数进行求导,并写出其定义域: (1))1ln()(+=x x x f (2))ln()(2x x x f -= (3)1 ()ln(1)f x x x = +- (4) ()f x =2x x e e x ---. (5) 22 ()(ln )x e f x k x x x =-+ (6) x x e x f x sin ln )(2= 2、曲线 y=x(3lnx+1)在点(1,1)处的切线方程为________ 3、若曲线y =kx +ln x 在点(1,k)处的切线平行于x 轴,则k =________ 4、曲线y= sin x 1M(,0)sin x cos x 24 π -+在点处的切线的斜率为 5.若点P 是曲线y =x2-lnx 上任意一点,则点P 到直线y =x -2的最小距离为

6、已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=. 7、过原点与x y ln =相切的直线方程是 8、(15年21)已知函数f (x )=31,()ln 4 x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线; 9、(14年21)设函数 x be x ae x f x x 1 ln )(-+=曲线 y=f (x )在点(1, f (1))处得切线方程为y=e (x ﹣1)+2.(Ⅰ)求a 、b ; 10、(13 年21)已知函数f(x)=x2+ax +b ,g(x)=ex(cx +d),若 曲线y =f(x)和曲线y =g(x)都过点 P(0,2),且在点P 处有相同的切线y =4x+2 (Ⅰ)求a ,b ,c ,d 的值 11、已知函数ln ()1 a x b f x x x =++,曲线()y f x =在点(1,(1)f )处的切线方 程为230x y +-=. (I)求a ,b 的值; 12、设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的 切线与y 轴相交于点()0,6.(1)确定a 的值; 13、已知函数f (x ) g (x )=alnx ,a ∈R 。

齐次式法与圆锥曲线斜率有关的一类问题

“齐次式”法解圆锥曲线斜率有关的顶点定值问题 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 例题、(07山东) 已知椭圆C :13 42 2=+y x 若与x 轴不垂直的直线l 与曲线C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解法一(常规法):m kx y l +=:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, (*) 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++,(**) 整理得:2 2 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2 :()7 l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +--+-。(参考百度文库文章:“圆锥曲线的弦 对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值或=+BP AP k k 定值),直线AB 依然会过定点。 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。 方法评估:此方法求解过程中(*)(**)化简整理计算非常繁琐。下面介绍齐次式法。(上述方法改进还有“点乘双根法”) 解法二(齐次式法) 由以AB 为直径的圆过椭圆C 的右顶点P ,知PB PA ⊥,即1-=?PB PA k k 。(??????PB PA k k ?为定值)

圆锥曲线的切线方程

圆锥曲线的切线 方程 点击此处添加副标题 作者:鲜海东微信:xhd1438488322

11),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022 222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+b y y a x x M b y a x y x M b y y a x x y x M b a b y a x r b y b y a x a x M y x M r b y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程: 点切线有两条:切点弦在圆外,过若切线方程:则过一点 为圆上,若的方程::若圆心不在原点,圆结论。 弦所在直线方程为,过两切点的 点引切线有且只有两条在圆外时,过当。 的切线方程为上一点:经过圆结论

。两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。又因、: 两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明: 11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202 0020202222 22=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a b y a x b y y a x x x x y a x b y y y a x b x x y b y y a x x b y a x

最新圆锥曲线轨迹问题

圆锥曲线轨迹问题

建设现代化(检验) ——有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。

【解析】设MN 切圆C 于N ,则2 22ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线 PM PN ,(M N , 分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则 2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

圆锥曲线的切线方程总结

运用联想探究圆锥曲线的切线方程 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆2 22r y x =+上 一点),(00y x M 的切线方程为2 00r y y x x =+;当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为2 00r y y x x =+。那么,在圆锥曲线中,又 将如何?我们不妨进行几个联想。 联想一:(1)过椭圆)0(122 22>>=+b a b y a x 上一点),(00y x M 切线方程为 1202 0=+b y y a x x ;(2)当),(00y x M 在椭圆122 22=+b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=+b y y a x x 证明:(1)2222 1x y a b +=的两边对x 求导,得22220x yy a b ' +=,得020 2 x x b x y a y ='=-,由点斜式得切线方程为20 0020 ()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。 (2)设过椭圆)0(122 22>>=+b a b y a x 外一点),(00y x M 引两条切线,切点分别 为),(11y x A 、),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y y a x x 、 12222=+b y y a x x 。又因),(0 0y x M 是两条切线的交点,所以有1201201=+b y y a x x 、120 2202=+b y y a x x 。观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12020=+b y y a x x 。 评注:因),(00y x M 在椭圆)0(12222>>=+b a b y a x 上的位置(在椭圆上或椭圆 外)的不同,同一方程12020=+b y y a x x 表示直线的几何意义亦不同。 联想二:(1)过双曲线)0,0(122 22>>=-b a b y a x 上一点),(00y x M 切线方程为 1202 0=-b y y a x x ;(2)当),(00y x M 在双曲线122 22=-b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=-b y y a x x 。(证明同上) 联想三:(1)过圆锥曲线2 2 0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点 ),(00y x M 的切线方程为00 00022 x x y y Ax x Cy y D E F ++++++=;(2)当

相关文档
最新文档