气相色谱定性和色谱柱效测定

气相色谱定性和色谱柱效测定
气相色谱定性和色谱柱效测定

实验五 气相色谱定性和色谱柱效测定

(TCD )

一、目的要求

1. 了解气相色谱仪的基本结构、工作原理与操作技术;

2. 学习色谱柱的柱效测定方法;

3. 掌握有效塔板数及有效塔板高度的计算方法;

4. 学习利用保留值和相对保留值进行色谱对照定性方法。 二、色谱法概述 (基本概念、术语及有关实验原理 详见课件)

色谱法是一种重要的分离、分析技术 混合试样→分离→单组分→检测各组分

色谱法由来、分类。色谱图、基线、半峰宽保留值、调整保留值、相对保留值、 气相色谱仪器结构,工作流程:进样→气化→分离→检测→数据采集与处理

色谱柱效能是色谱柱的一项重要指标:

保留值定性的依据:一定色谱条件下每一种物质都有一个确定的保留值和它相对应。

相对保留值计算: 三、仪器、试剂

1. SP-6800A 型气相色谱仪,热导池检测器(TCD ),N2000色谱数据工作站;

2. SPH-200氢气发生器。

3. 色谱柱: 1m ×3mm i.d 不锈钢填充柱

4. 固定相:GDX -103(80~100目)

5. 微量进样器:10ul

6. 95%乙醇,乙酸乙酯,均为分析纯试剂。 四、实验条件

1. 载气(H 2):0.05 MPa;

2. 桥电流:175Ma;

2

2

2/1')(16)(54.5w

t w n R R

t

'==有效

有效

有效n L H =

t

t t t

M

M is

R R s

i

-

-=γ

3.色谱柱室温度:160℃,检测器温度:170℃,汽化室温度:180℃;

4.灵敏度:002,衰减:002

五、实验步骤

1.按仪器操作规程开机运行至基线平直(查看基线)。

2.用10ul微量进样器吸取5ul空气,注入色谱仪,同时启动遥控按钮,待出现完整色谱图,

停止采集数据,记录空气峰保留时间。重复三次。

3.用专用注射器分别吸取试剂乙醇、乙酸乙酯、试样各1ml分别置于三只5ml具塞刻度试管

中,贴标签,备用。

4.用微量进样器吸取乙醇1ul注入色谱仪,同时启动遥控按钮,待出峰完毕,停止采集数据,

记录保留时间,重复进样三次。用同样方法分别取乙酸乙测定、记录数据。

5.在确定的色谱条件下,用上述同样方法,进混合试样1~2ul,待所有组分全部出峰完毕,

停止采集数据,记录各相关组分峰的保留时间t R,平行三次。保存文件。

6.编辑分析报告,打印色谱图,

5.实验一旦结束,按仪器操作规程,正确操作停止加热,降温、关气源、关电源。

六、色谱数据记录与处理

(一)实验条件记录

1.仪器:SP-6800A

2.检测器:TCD

3.色谱柱内径、柱长与材质

不锈钢1000mm×i.d3mm

4.固定相及粒度:

GDX-103,80~100目

5.载气(H2 )及其流量

H2ml.mim-1

6.桥电流:175 mA

7.检测器:

8.灵敏度,衰减:

9.柱室温度:160 ℃

10.检测器温度:170℃

11.汽化室温度:180℃

12.分析试样名称:乙醇、乙

酸乙酯、混合试样

13.进样量:1~2 ul

色谱数据记录与处理

(一)实验条件记录

14.仪器:

15.检测器:

16.色谱柱内径、柱长与材质

17.固定相及粒度:18.载气()及其流量

ml.mim-1

19.桥电流:mA

20.检测器:

21.灵敏度,衰减:

22.柱室温度:℃

23.汽化室温度:℃

24.分析试样名称:

25.进样量:ul

(二)实验数据记录与处理

1.标样保留值及相对保留值(以乙醇为标准物质)

2.试样定性结果处理表

气相色谱定性和定量分析

气相色谱定性和定量分析 一、实验目的 1、了解气相色谱各种定性定量方法的优缺点。 2、掌握纯标样对照、保留值定性的方法。 3、掌握面积和峰高归一化定量方法。 二、实验原理 气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。 在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。这时利用简单的气相色谱定性方法往往能解决问题。气相色谱定性方法主要有以下几种: (1)标准样品对照定性; (2)相对保留值定性; (3)利用调整保留时间与同系物碳数的线性关系定性; (4)利用调整保留时间与同系物沸点的线性关系定性; (5)利用Kovats 保留指数定性; (6)双柱定性或多柱定性。 (7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。 本实验采用标准样品对照和相对保留值定性方法。 气相色谱在定量分析方面是一种强有力的手段。常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。本实验采用内部归一化法,其计算公式如下: %100%?=∑mi i mi i i f A f A A 式中Ai 为组分i 的峰面积,fmi 为组分i 的相对校正因子,它可由计算相对响应值S ’的方法求得: i s i s m yA x A S S S f ==='1 式中,Ss 、Si 分别为标准物(常为苯)和被测物的响应因子,As 、y 和Ai 、x 分别为标准物和被测物的色谱峰面积及进样量。有些工具书或参考书记录了文献发表的一些fm 或S’值。

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

气相色谱定性与定量的分析

实验十一、气相色谱的定性和定量分析 一、实验目的: 1.进一步学习计算色谱峰的分辨率; 2.熟练掌握根据保留值,用已知物对照定性的分析方法; 3.熟悉用归一化法定量测定混合物各组分的含量。 二、实验原理 气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。 在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。这时利用简单的气相色谱定性方法往往能解决问题。气相色谱定性方法主要有以下几种: (1)标准样品对照定性; (2)相对保留值定性; (3)利用调整保留时间与同系物碳数的线性关系定性; (4)利用调整保留时间与同系物沸点的线性关系定性; (5)利用Kovats保留指数定性; (6)双柱定性或多柱定性。 (7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。 本实验采用标准样品对照和相对保留值定性方法。 气相色谱在定量分析方面是一种强有力的手段。常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。本实验采用内部归一化法,其计算公式如下:

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验 一、实验药品 乙酸丁酯(AR)、正己烷(AR)、未知试样 二、实验仪器 SC3000气相色谱仪;注射器:1μL;容量瓶若干 三、实验目的 1、深入了解气相色谱仪的基本结构 2、进一步熟悉气相色谱分离分析的基本原理 3、学习计算色谱峰的分离度 4、掌握根据保留值,作已知物对照定性的分析方法 5、熟悉用归一化法定量测定混合物各组分的含量 四、实验原理 利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。衡量一对色谱峰分离的程度可用分离度R表示: 式中,T R,2,w2和T R,1,w1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。在实际应用中,R=1.0一般可以满足需要。 用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。 在一定的色谱条件下,组分i的质量m:或其在流动相中的浓度,与检测器的响应信号峰面积Ai或峰高h,成正比: m i = f i A? A i(1) 或m i = f i h? A i(2) 式中,f i A和f i h称为绝对校正因子。式(1)和式(2)是色谱定量的依据。不难看出,响

应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。 由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。 由式(1),绝对校正因子可用下式表示: (3) 式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。由于绝对校正因子受仪器和操作条件的影响很大,其应用受到限制,一般采用相对校正因子。相对校正因子是指组分i与基准组分s的绝对校正因子之比,即: (4) 因绝对校正因子很少使用,一般文献上提到的校正因子就是相对校正因子。 根据不同的情况,可选用不同的定量方法。归一化法是将样品中所有组分合量之和按100%计算,以它们相应的响应信号为定量参数.通过下式计算各组分的质量分数: 该法简便、准确。当操作条件变化时,对分析结果影响较小,常用于定量分析,尤其适于进样量少而体积不易准确测量的液体试样。但采用本法进行定量分析时,要求试样中各组分产生可测量的色谱峰。 五、实验内容 1.认真阅读气相色谱仪操作说明。 2.在教师指导下,开启色谱仪。根据实验条件,将色谱仪按仪器操作步骤,调至可进样状态,待仪器上电路和气路系统达到平衡、记录仪上基线平直时,即可进样。 3、用气相色谱定性分析未知组成的酯类试样,进样量约0.05~0.3 L,2~3次,调节工作站的参数,得到合适的色谱图。 4、标准曲线制备,于一组6支已知含量的溶液试样,试样1(0.100g/ml)、试样2(0.160g/ml)、试样3(0.222g/ml)、试样4(0.288g/ml)、试样5(0.320g/ml)、试样6(0.364g/ml)。用气相色谱测定组分含量,并绘制面积对组分含量的标准曲线。

气相色谱法考试习题

气相色谱法 (总分137, 考试时间90分钟) 一、单项选择题 1.? 在气-液色谱中,色谱柱使用的下限温度( ? ?)。 A?应该不低于试样中沸点最低组分的沸点 B?应该不低于试样中各组分沸点的平均值 C?应该超过固定液的熔点 D?不应该超过固定液的熔点 答案:C 2.? 有机物在氢火焰中燃烧生成的离子,在电场作用下,能产生电讯号的器件是( ? ?)。 A?热导检测器 B?火焰离子化检测器 C?火焰光度检测器

D?电子捕获检测器 答案:B 3.? 毛细管气相色谱分析时常采用“分流进样”操作,其主要原因是( ? ?)。A?保证取样准确度 B?防止污染检测器 C?与色谱柱容量相适应 D?保证样品完全气化 答案:C 4.? 电子捕获检测器是( ? ?)检测器。 A?通用型 B?对具有电负性的物质有响应的选择性 C?对放射性物质有响应的选择性 D?对含硫、磷化合物有高选择性和灵敏度 答案:B

5.? 关于范第姆特方程式,下列说法正确的是( ? ?)。 A?载气最佳流速这一点,柱塔板高度最大 B?载气最佳流速这一点,柱塔板高度最小 C?塔板高度最小时,载气流速最小 D?塔板高度最小时,载气流速最大 答案:B 6.? 气-液色谱中色谱柱的分离效能主要由( ? ?)决定。 A?载体 B?担体 C?固定液 D?固定相 答案:D 7.? 在纸色谱时,试样中的各组分在流动相中( ? ?)大的物质,沿着流动相移动较长的距离。

A?浓度 B?溶解度 C?酸度 D?黏度 答案:B 8.? 若只需做一个复杂样品中某个特殊组分的定量分析,用色谱法时,宜选用( ? ?)。A?归一化法 B?标准曲线法 C?外标法 D?内标法 答案:D 9.? 气相色谱定性的依据是( ? ?)。 A?物质的密度 B?物质的沸点

实验1 甲苯的气相色谱定性和定量分析

实验1 甲苯的气相色谱定性和定量分析 一、目的要求 1. 学习利用保留值和相对保留值进行色谱对照的定性方法。 2. 学习利用外标法进行定量分析。 3. 熟悉色谱仪器操作。 二、基本原理 各种物质在一定的色谱条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于较简单的多组分混合物,若其中所有待测组分均为巳知,它们的色谱峰均能分开,则町将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r s i s i --= = // 式中t M 、t M ’t Rs ’分别为死时间、被测组分i 及标准物质s 的调整保留时间。 还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。 在没有已知标准样品可作对照的情况下,可借助于保留指数 (Kovátts 指数)文献值进行定性分析。对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用,如气相色谱/质谱,气相色谱/红外吸收光谱联用等手段进行定性分析。 本实验以甲苯作为标准物质,利用保留值和相对保留值对未知甲苯溶液进行定性分析,利用外标法对未知甲苯溶液进行定量分析。 三、仪器及试剂 1.仪器 气相色谱仪(岛津GC —17A ); 氮气钢瓶、氢气钢瓶; 空气压缩机; 氢火焰检测器; 色谱柱; 微量进样器 1μL 、10μL 、100μL (医用注射器)。

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验 一、实验药品 乙酸丁酯(AR )、正己烷(AR )、未知试样 二、实验仪器 SC3000气相色谱仪;注射器:1L ;容量瓶若干 三、实验目的 1、深入了解气相色谱仪的基本结构 2、进一步熟悉气相色谱分离分析的基本原理 3、学习计算色谱峰的分离度 4、掌握根据保留值,作已知物对照定性的分析方法 5、熟悉用归一化法定量测定混合物各组分的含量 四、实验原理 利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。衡 量一对色谱峰分离的程度可用分离度R 表示: 式中,T R,2,w 2和T R,1,w 1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。在实际应用中,R=1.0一般可以满足需要。 用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。在色谱条件 一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。 在一定的色谱条件下,组分i 的质量m :或其在流动相中的浓度,与检测器的响应 信号峰面积Ai 或峰高h ,成正比: 21)1()2(21)1()2()(22 w w t t w w t t R R R R R +-=+-=

m i = f i A? A i(1) 或m i = f i h? A i(2) 式中,f i A和f i h称为绝对校正因子。式(1)和式(2)是色谱定量的依据。不难看出,响应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。 由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。 由式(1),绝对校正因子可用下式表示: (3) 式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。由于绝对校正因子受仪器和操作条件的影响很大,其应用受到限制,一般采用相对校正因子。相对校正因子是指组分i与基准组分s的绝对校正因子之比,即: (4) 因绝对校正因子很少使用,一般文献上提到的校正因子就是相对校正因子。 根据不同的情况,可选用不同的定量方法。归一化法是将样品中所有组分合量之和按100%计算,以它们相应的响应信号为定量参数.通过下式计算各组分的质量分数: 该法简便、准确。当操作条件变化时,对分析结果影响较小,常用于定量分析,尤其适于进样量少而体积不易准确测量的液体试样。但采用本法进行定量分析时,要求试样中各组分产生可测量的色谱峰。

气相色谱定性和定量分析

气相色谱定性和定量分析 一、目的要求 1. 学习利用保留值和相对保留值进行色谱对照的定性方法。 2. 学习利用外标法进行定量分析。 3. 熟悉色谱仪器操作。 二、基本原理 各种物质在一定的色谱条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于较简单的多组分混合物,若其中所有待测组分均为巳知,它们的色谱峰均能分开,则町将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r s i s i --= = // 式中t M 、t M ’t Rs ’分别为死时间、被测组分i 及标准物质s 的调整保留时间。 还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。 在没有已知标准样品可作对照的情况下,可借助于保留指数 (Kov átts 指数)文献值进行定性分析。对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用,如气相色谱/质谱,气相色谱/红外吸收光谱联用等手段进行定性分析。

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析 基本原理 气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。混合物是通过在流动相和固定相中的相作用而分离的。流动相和固定相构成色谱法的基础。流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。流动相是气体的称作气相色谱。流动相是液体的称做液相色谱。气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。 各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。如下图: 气相色谱的气流系统主要包括气源和气体纯化及调节装置。气源一部分是作为流动相 的载气,我们所使用的载气是氮气。气源的另一部分是作为后期检测所

用的燃烧气体,主要是氢气和空气。由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99%以上,许多情况下应达99?99%。气相色谱分离系统包括样品汽化室和色谱柱两部分。气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热 (100一300℃)汽化才能进入色谱柱进 行分离。这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。 气相色谱的定性定量分析 气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定 性定量分析。所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。 有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

气相色谱定性与定量分析报告实验

气相色谱的定性与定量分析 一、 实验目的: 1、 学习计算色谱峰的分享度 2、 掌握根据纯物质的保留值进行定性分析 3、 掌握用归一化法定量测定混合物各组分的含量 4、 学习气相色谱信的使用方法 二、 方法原理 1、 柱效能的测定:色谱柱的分享效能,主要由柱效和分离度来衡量。柱效率是以样品中验 证分离组分的保留值用峰宽来计算的理论塔板数或塔板高度表示的。 2 2 2 1 1654.5??? ? ??=???? ? ??=b R R W t W t n 理论塔板数: n L H = 理论塔板高度: 式中R t 为保留值(S 或mm ):2 1 W 为半峰宽(S 或mm ):b W 为峰底宽(S 或mm ):L 为 柱长(cm )。 理论塔板数越大或塔板高度越小,说明柱效率越好。但柱效率只反应了色谱对某一组分的柱效能,不能反映相邻组分的分离度,因此,还需计算最难分离物质对的分离度。 分离度是指色谱柱对样品中相邻两组分的分离程度,对一个混合试样成功的分离,是气相色谱法完成定性及定量分析的前提和基础。分离度R 的计算方法是: ) ()(2211211 2W W t t R R R +-= 或 2112)(2B b R R W W t t R +-= 分离度数值越大,两组分分开程度越大,当R 值达到1.5时,可以认为两组分完全分开。 2、 样品的定性: 用纯物质的保留值对照定性。在一个确定的色谱条件下,每一个物质都有一个确定的保留值,所以在相同条件下,未知物的保留值和已知物的保留值相同时,就可以认为未知物即是用于对照的已知纯物质。但是,有不少物质在同一条件下可能有非常相近的而不容易察觉差异的保留值,所以,当样品组分未知时,仅用纯物质的保留值与样品的组分的保留值对照定性是困难的。这种情况,需用两根不同的极性的柱子或两种以上不同极性固定液配成的柱子,对于一些组成基本上可以估计的样品,那么准备这样一些纯物质,在同样的色谱条件下,以纯物质的保留时间对照,用来判断其色谱峰属于什么组分是一种简单而行方便的定性方法。 用标准加入法来定性。首先用未知的混合样品在一定的色谱条件下采集混合物样品的色谱峰,然后取一定量的混合物样品中加入怀疑有的物质的纯物质,在相同的色谱条件下采集加入某纯物质的色谱峰,用两个色谱图进行比较,就会发现两个色谱图上某一个峰的保留值相同,但加了某纯物质的色谱图上的色谱峰的峰高增加、峰面积增大,那么此峰即为某纯物质。 3、 样品的定量

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

如何建立气相色谱分析方法

气相色谱分析方法的建立步骤 在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。

气相色谱定性分析

气相色谱定性分析 一、实验目的 1、了解气相色谱仪的基本结构和工作原理。 2、学习和熟悉气相色谱仪的基本操作。 3、了解氢火焰离子化检测器和电子俘获检测器的原理和特点。 二、实验原理 各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留时间作为定性指标,虽然简便,但由于保留时间的测定受载气流速等色谱操作条件的影响较大,可靠性较差;若采用仅与柱温和固定相种类有关而不受其他操作条件影响的相对保留值r is 作为指标,则更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r S i S i --== '' 式中'',,S i R R M t t t 分别为死时间,被测组分 i 及标准物质s 的调整保留时间;s i R R t t ,为被测组 分i 及标准物质s 的保留时间。 氢火焰离子化检测器(FID )是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A )经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。本实验以丙酮作为标准物质,利用保留时间和相对保留值进行甲苯和乙酸乙酯的定性分析。 三、仪器与试剂 1、Agilent 6890N Network GC system ,FID 检测器 2、氮气、氢气、空气 3、微量注射器:1μL 和50μL 4、 试剂:丙酮、甲醇 5、配制混合试样 在2只10mL 的容量瓶内,按1:1的比例分别配制丙酮、甲醇溶液,摇匀备用。 四、实验步骤 1、开机

气相色谱中用保留值定性的方法

气相色谱中用保留值定性的方法 1. 利用已知物直接对照进行定性分析 利用已知物直接对照法定性是一种最简单的定性方法,在具有已知标准物质的情况下常使用这一方法。将未知物和已知标准物在同一根色谱柱上,用相同的色谱操作条件进行分析,作出色谱图后进行对照比较。如图,中将未知试样(a)与已知标准物质(b)在同样色谱条件下得到的色谱图直接进行比较,可以推测未知样品中峰2可能是甲醇,峰3 可能是乙醇,峰4可能是正丙醇,峰7 可能是正丁醇,峰9 可能是正戊醇。当然,以上的推测只是初步的,如要得到准确的结论,有时还需要进一步的确认。在利用已知纯物质直接对照进行定性时是利用保留时间(t R)直接比较,这时要求载气的流速,载气的温度和柱温度一定要恒定。载气流速的微小波动,载气温度和柱温度的微小变化,都会使保留值(t R)改变,从而对定性结果产生影响。使用保留体积(V R)定性,虽可避免载气流速变化的影响,但实际使用是很困难的,因为保留体积的直接测定是很困难的,一般都是利用流速和保留时间来计算保留体积。为了避免载气流速和温度的微小变化而引起的保留时间的变化对定性分析结果带来的影响,可采用以下两个方法:

(1)用相对保留值定性由于相对保留值是被测组分与加入的参比组分(其保留值应与被测组分相近)的调整保留值之比,因此,当载气的流速和温度发生微 小变化时,被测组分与参比组分的保留值同时发生变化,而它们的比值——相 对保留值则不变。也就是说,相对保留值只受柱温和固定相性质的影响,而柱长,固定相的填充情况(即固定相的紧密情况)和载气的流速均不影响相对保 留值(r is)。因此在柱温和固定相一定时,相对保留值(r is)为定值,可作 为定性的较可靠参数。 (2)用已知物增加峰高法定性在得到未知样品的色谱图后,在未知样品中加入一定量的已知纯物质,然后在同样的色谱条件下,作已加纯物质的未知样品的 色谱图。对比两张色谱图,哪个峰加高了,则该峰就是加入的已知纯物质的色 谱峰。这一方法即可避免载气流速的微小变化对保留时间的影响而影响定性分 析的结果,又可避免色谱图图形复杂时准确测定保留时间的困难。这是在确认 某一复杂样品中是否含有某一组分的最好办法。 2.利用文献值对照进行定性分析 在利用已知标准物直接对照定性时,已知标准物质的得到往往是一个很困难的 问题。一个实验室也不可能备有很多的,各种各样的已知标准物质。为此,#,-. 年匈牙利色谱学家E.Kovars首先提出用保留指数(I)(retention index)作为保留值的标准用于定性分析,这是使用最广泛并被国际上公认的定性指标。 它具有重现性好(精度可达正负0.1指数单位或更低一些),标准物统一及温 度系数小等优点。 保留指数仅与柱温和固定相性质有关,与色谱条件无关。不同的实验室测定的 保留指数的重现性较好,精度可达正负0.3个指数单位。所以,以保留指数定 性是有一定的可靠性。 用保留指数定性时需要知道被测的未知物是属于哪一类的化合物,然后查找分 析该类化合物所用的固定相和柱温等色谱条件。一定要用色谱条件来分析未知物,并计算它的保留指数,然后再与文献中所给出的保留指数值进行对照,给 出未知物的定性分析结果。 保留指数定性与用已知物直接对照定性相比,虽避免了寻找已知标准物质的困难,但它也有一定的局限性,对一些多官能团的化合物和结构比较复杂的天然 产物是无法采用保留指数定性的。 同一物质在同一柱上的保留指数与柱温的关系通常是线性的,利用这一规律可 以用内插法求出不同温度下的保留指数。例如某物质的保留指数,在100℃时 为654,150℃时为688,用内插法可求得在125℃时为671。 由于不同物质的这一线性关系往往不平行。因此可以利用两个或三个不同温度 时的保留指数进行对照,使定性分析的结果更为可靠。 保留指数定性与用已知物直接对照定性一样,定性结果的准确度往往也需用其

气相色谱定性分析

气相色谱定性分析 一、实验目的 1、了解气相色谱仪的基本结构和工作原理。 2、学习和熟悉气相色谱仪的基本操作。 3、了解氢火焰离子化检测器和电子俘获检测器的原理和特点。 二、实验原理 各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法。以保留时间作为定性指标,虽然简便,但由于保留时间的测定受载气流速等色谱操作条件的影响较大,可靠性较差;若采用仅与柱温和固定相种类有关而不受其他操作条件影响的相对保留值r is 作为指标,则更适合用于色谱定性分析。相对保留值r is 定义为: M R M R R R is t t t t t t r S i S i --= = '' 式中' ',,S i R R M t t t 分别为死时间,被测组分 i 及标准物质s 的调整保留时间;s i R R t t ,为被测组 分i 及标准物质s 的保留时间。 氢火焰离子化检测器(FID )是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12 ~10-8 A )经过高阻(106 ~1011 Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。本实验以丙酮作为标准物质,利用保留时间和相对保留值进行甲苯和乙酸乙酯的定性分析。 三、仪器与试剂 1、Agilent 6890N Network GC system ,FID 检测器 2、氮气、氢气、空气 3、微量注射器:1μL 和50μL 4、 试剂:丙酮、甲醇 5、配制混合试样 在2只10mL 的容量瓶内,按1:1的比例分别配制丙酮、甲醇溶液,摇匀备用。 四、实验步骤

实验2 气相色谱定性分析

实验二气相色谱定性分析 ——纯物质对照法 一、实验目的和要求 (1)学习利用保留值和相对保留值进行色潜对照的定性方 (2)熟悉色谱仪器操作。 二、基本原理 各种物质在一定的色潜条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。对于较简单的多组分混合物,若其中所有待测组分均为已知,它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。该法是气相色谱分析中最常用的一种定性方法,以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。相对保留值r i:定义 r21 = t′R2/ t′R1= (t R2-t M)/(t R1-t M)V′R2 / V′R1 式中t M、t′R2、t′R1分别为死时间、被测组分2及标准物质1的调整保留时间。 还应注意,有些物质在相同的色潜条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。在没有已知标准样品可作对照的情况下,可借助于保留指数文献值进行定性分析。对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用.如气相色谱/质谱、气相色谱/红外吸收光谱联用等手段进行定性分析。 本实验以甲苯作为标准物质,利用保留值和相对保留值进行苯、乙苯和1,2,3—三甲苯的定性分析。 三、仪器器

14 实验十四 气相色谱定性分析

色谱实验1 气相色谱定性分析 一、目的与要求 掌握利用保留值随分子结构或性质变化的规律; 进行GC碳数规律性测定,同时了解影响保留值的因素。 二、预习要求 1、预习气相色谱的分离基本原理; 2、理解气相色谱分析保留值; 3、理解GC碳数规律原理。 三、实验原理 在确定的色谱条件下,每种物质具有一定的保留值,这是色谱定性的重要依据。 利用色谱定性分析往往需要标准物作对照,在没有标准物时,色谱的定性分析就比较困难,这就需要和其他方法配合进行分析。但在没有标准的情况下,利用保留值随分子结构或性质变化规律定性,也是色谱中常用的定位方法之一。 同系物保留值的碳数规律性依据是:同系物调整保留时间的对数与碳原子数呈线形关系: = An + C lgt R 式中:n为同系物的碳原子数,A和C为与物质性质有关的常数。 ,由于n已知,即可作工作曲线,求出A、只要测定三个以上已知同系物的相对保留时间t R C。 四、仪器与药品 仪器:岛津气相色谱 色谱柱:2 m×4 mm不锈钢柱; 担体: 101白色担体60-8 固定液:15% DNP(邻苯二甲酸=壬硝) 温度:柱箱100℃,检测器130℃、气化室130℃ 衰减:8;量程:5; 五、实验内容与步骤 1、启动氢气发生器,调整载气流速为30ml/min; 2、检查色谱仪器,应用气体检测器检测气路是否通畅,检查接口是否漏气;

3、确认气相色谱气路正常后,启动计算机;启动色谱仪主机电源,设置仪器参数,调整 柱箱100℃,检测器130℃、气化室130℃; 4、打开控制软件,设置数据采集参数,设置文件名; 5、待仪器稳定(基线平直),每次进样体积0.20~0.50微升,平行进样3~5次,测定 已知样品(苯系物)的色谱峰高、空气死时间、样品保留时间,计算A、C; 6、测定未知样品空气死时间、样品保留时间,每次进样体积0.20~0.50微升,平行进 样3~5次,计算n值。 六、数据记录和结果处理 1、数据记录: 仪器型号:;分离柱: 柱温:;检测器温度:;气化室温度: 第一次第二次第三次 t R lgt R t R lgt R t R lgt R 2、结果处理 = An + C,求出A、C,计算未知物n值。 计算 lgt R 七、问题与讨论 1. 在气相色谱中,应用保留值定性的前提条件是什么? 2. 在气相色谱中,测量保留值有哪些方法?怎样便于测量准确?

气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I. 实验目的 (1)了解气相色谱-质谱联用技术的基本原理; (2)学习气相色谱-质谱联用技术定性鉴定的方法; (3)了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定 质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱 联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3?10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa),因此需要一个硬件接口 来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破 坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处 理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组 分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有 离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子 流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS中,总 离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a)和其中第4号峰的质谱图(b)。从总离子流图中出 现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b)进行解析可知该组分的相 对分子质量为100,图中有m/z29,43,57,71等一系列间隔14 (相当于CH?)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验 混合溶剂的总离子流图(a)和4号峰的质谱图(b) III.实验用品 仪器:岛津公司GCMS-QP5050A气相色谱-质谱联用仪,GCMS Solution工作站,NIST 谱库。微量注射器(1山) 试剂:混合试剂异丙醇、乙酸乙酯、苯3种试剂(纯度》99.5% )混合而成,甲

相关文档
最新文档