决策树分类

决策树分类
决策树分类

基于专家知识的决策树分类

概述

基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。

如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植被,那些是公园植被。

图1.JPG

图1 专家知识决策树分类器说明图

专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。

1.知识(规则)定义

规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也可以通过经验总结获得。

2.规则输入

将分类规则录入分类器中,不同的平台有着不同规则录入界面。

3.决策树运行

运行分类器或者是算法程序。

4.分类后处理

这步骤与监督/非监督分类的分类后处理类似。

知识(规则)定义

分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。也可以从样本中利用算法来获取,这里要讲述的就是C4.5算法。

利用C4.5算法获取规则可分为以下几个步骤:

(1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。

(2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。

(3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当的调整和筛选。这里就是C4.5算法。

4.5算法的基本思路基于信息熵来“修枝剪叶”,基本思路如下:

从树的根节点处的所有训练样本D0开始,离散化连续条件属性。计算增益比率,取GainRatio(C0)的最大值作为划分点V0,将样本分为两个部分D11和D12。对属性C0的每一个值产生一个分支,分支属性值的相应样本子集被移到新生成的子节点上,如果得到的样本都属于同一个类,那么直接得到叶子结点。相应地将此方法应用于每个子节点上,直到节点的所有样本都分区到某个类中。到达决策树的叶节点的每条路径表示一条分类规则,利用叶列表及指向父结点的指针就可以生成规则表。

图2.JPG

图2 规则挖掘基本思路

算法描述如下:

算法:从空间数据集(多波段文件)中挖掘分类规则

输入:训练样本

输出:分类规则表

方法:

一、读取数据集名字

二、读取所有的训练样本

A、读取属性信息C、原始类E、样本值A,并将样本划分为训练样本(2/3)和评价样本(1/3)。

B、属性信息C可以是连续(DISCRETE)或离散(CONTINUOUS)的,分别将属性注上这两种标记;若属性是DISCERTE,读取其可能取得值,并都存储在一个列表中;每一个属性都有一个标记,一个给定的属性编号及初始化的取值列表均存储于一个属性的数据结构中,并将数据结构存储在一个哈希表中。

C、原始类E当作一个附加属性信息储存在属性列表中。

D、以增量方式读取每一个样本A,将所有的样本储存在一个表中,每一行代表一个样本。

三、利用数据集构建树

A、离散化连续条件属性C DISCRETE,获得的分割点集T(t1,t2……)作为条件属性C的新的取值。

B、分别计算所有条件属性的增益比率GainRatio(C),取增益比率值最大的条件属性作为树的划分节点,其值或范围作为划分值V(v1,v2……)来生成树的分枝。

C、判断该层与每一个等价子集的原始类类别是否一致。若一致,生成叶子结点。否则,继续计算增益比率GainRatio(C)和选择条件属性C,得到树的节点和划分值V,直至所有的样本已分类完毕。

四、测试生成树

将测试样本C′带入树中,当某一测试样本的分类预测错误时,记录分类错误的计数,并将测试样本添加到训练样本中,转向步骤三,重新构建树。否则,输出分类树

五、抽取分类规则

到达树的叶节点的每条路径表示一条分类规则从树中抽取分类规则,打印规则和分类的详细信息

C4.5网上有源代码下载,vc和c++版本都能获得。

Decision Tree的使用

一、规则获取

选取Landsat TM5影像和这个地区对应的DEM数据,影像和DEM经过了精确配准。

规则如下描述:

Class1(朝北缓坡植被):NDVI>0.3, slope<20, aspect<90 and aspect>270

Class2(非朝北缓坡植被):NDVI>0.3, slope<20, 90<=aspect<=270

Class3(陡坡植被):NDVI>0.3, slope>=20,

Class4(水体):NDVI<=0.3, 0

Class5(裸地):NDVI<=0.3, b4>=20

Class6(无数据区,背景): NDVI<=0.3, b4=0

也可以按照二叉树描述方式:第一层,将影像分为两类,NDVI大于0.3,NDVI 小于或等于0.3;第二层,NDVI高的,分为坡度大于或等于20度和坡度小于20度。以此往下划分。

二、输入决策树规则

打开主菜单->classification->Decision Tree->Build New Decision Tree,如图3所示,默认显示了一个节点。

图3.JPG

图3 Decision Tree界面

首先我们按照NDVI的大小划分第一个节点,单击Node1,跳出图4对话框,Name为NDVI>0.3,在Expression中填写:{ndvi} gt 0.3。

图4.JPG

图4 添加规则表达式

点击OK后,会提示你给{ndvi}指定一个数据源,如图5所示,点击第一列中的变量,在对话框中选择相应的数据源,这样就完成第一层节点规则输入。

图5.JPG

图5 指定数据源

Expression中的表达式是有变量和运算符(包括数学函数)组成,支持的运算符如表1所示

表达式部分可用函数

基本运算符+、-、*、/

三角函数正弦Sin(x)、余弦cos(x)、正切tan(x)

反正弦Asin(x)、反余弦acos(x)、反正切atan(x) 双曲线正弦Sinh(x)、双曲线余弦cosh(x)、双曲线正切tanh(x)

关系/逻辑小于LT、小于等于LE、等于EQ、不等于NE、大于等于GE、大于GT

and、or、not、XOR

最大值(>)、最小值 (<)

其他符号指数(^)、自然指数exp

自然对数对数alog(x)

以10为底的对数alog10(x)

整形取整——round(x)、ceil(x)

平方根(sqrt)、绝对值(adb)表1 运算符

ENVI决策树分类器中的变量是指一个波段的数据或作用于数据的一个特定函数。变量名必须包含在大括号中,即{变量名};或者命名为bx,x代表数据,比如哪一个波段。如果变量被赋值为多波段文件,变量名必须包含一个写在方括号中的下标,表示波段数,比如{pc[2]}表示主成分分析的第一主成分。支持特定变量名如表2,也可以通过IDL自行编写函数。

变量作用

slope 计算坡度

aspect 计算坡向

ndvi 计算归一化植被指数

Tascap [n]穗帽变换,n表示获取的是哪一分量。

pc [n]主成分分析,n表示获取的是哪一分量。

lpc

局部主成分分析,n表示获取的是哪一分量。

[n]

mnf [n] 最小噪声变换,n表示获取的是哪一分量。

Lmnf[n]局部最小噪声变换,n表示获取的是哪一分量。

Stdev

波段n的标准差

[n]

lStdev

波段n的局部标准差0

[n]

Mean

波段n的平均值

[n]

lMean

波段n的局部平均值

[n]

Min [n]、max

波段n的最大、最小值

[n]

lMin [n]、lmax

波段n的局部最大、最小值

[n]

表2变量表达式

第一层节点根据NDVI的值划分为植被和非植被,如果不需要进一步分类的话,这个影像就会被分成两类:class0和class1。

对NDVI大于0.3,也就是class1,根据坡度划分成缓坡植被和陡坡植被。在class1图标上右键,选择Add Children。单击节点标识符,打开节点属性窗口,Name 为Slope<20,在Expression中填写:{Slope} lt 20。

同样的方法,将所有规则输入,末节点图标右键Edit Properties,可以设置分类结果的名称和颜色,最后结果如图6所示。

图6.JPG

图6 规则输入结果图

三、执行决策树

选择Options->Execute,执行决策树,跳出图7所示对话框,选择输出结果的投影参数、重采样方法、空间裁剪范围(如需要)、输出路径,点击OK之后,得到如图8所示结果。在决策树运行过程中,会以不同颜色标示运行的过程。

图7.JPG

图7 输出结果

图8.JPG

图8 决策树运行结果

回到决策树窗口,在工作空白处点击右键,选择Zoom In,可以看到每一个节点或者类别有相应的统计结果(以像素和百分比表示)。如果修改了某一节点或者类别的属性,可以左键单击节点或者末端类别图标,选择Execute,重新运行你修改部分的决策树。

图9.JPG

图9 运行决策树后的效果分类后处理和其他计算机分类类似的过程。

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

决策树算法研究及应用概要

决策树算法研究及应用? 王桂芹黄道 华东理工大学实验十五楼206室 摘要:信息论是数据挖掘技术的重要指导理论之一,是决策树算法实现的理论依据。决 策树算法是一种逼近离散值目标函数的方法,其实质是在学习的基础上,得到分类规则。本文简要介绍了信息论的基本原理,重点阐述基于信息论的决策树算法,分析了它们目前 主要的代表理论以及存在的问题,并用具体的事例来验证。 关键词:决策树算法分类应用 Study and Application in Decision Tree Algorithm WANG Guiqin HUANG Dao College of Information Science and Engineering, East China University of Science and Technology Abstract:The information theory is one of the basic theories of Data Mining,and also is the theoretical foundation of the Decision Tree Algorithm.Decision Tree Algorithm is a method to approach the discrete-valued objective function.The essential of the method is to obtain a clas-sification rule on the basis of example-based learning.An example is used to sustain the theory. Keywords:Decision Tree; Algorithm; Classification; Application 1 引言 决策树分类算法起源于概念学习系统CLS(Concept Learning System,然后发展 到ID3

C4.5 分类决策树

C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。 C4.5由J.Ross Quinlan在ID3的基础上提出的。ID3算法用来构造决策树。决策树是一种类似流程图的树结构,其中每个内部节点(非树叶节点)表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点存放一个类标号。一旦建立好了决策树,对于一个未给定类标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预测。决策树的优势在于不需要任何领域知识或参数设置,适合于探测性的知识发现。 从ID3算法中衍生出了C4.5和CART两种算法,这两种算法在数据挖掘中都非常重要。下图就是一棵典型的C4.5算法对数据集产生的决策树。 数据集如图1所示,它表示的是天气情况与去不去打高尔夫球之间的关系。

图1 数据集 图2 在数据集上通过C4.5生成的决策树 算法描述

C4.5并不一个算法,而是一组算法—C4.5,非剪枝C4.5和C4.5规则。下图中的算法将给出C4.5的基本工作流程: 图3 C4.5算法流程 我们可能有疑问,一个元组本身有很多属性,我们怎么知道首先要对哪个属性进行判断,接下来要对哪个属性进行判断?换句话说,在图2中,我们怎么知道第一个要测试的属性是Outlook,而不是Windy?其实,能回答这些问题的一个概念就是属性选择度量。 属性选择度量 属性选择度量又称分裂规则,因为它们决定给定节点上的元组如何分裂。属性选择度量提供了每个属性描述给定训练元组的秩评定,具有最好度量得分的属性被选作给定元组的分裂属性。目前比较流行的属性选择度量有--信息增益、增益率和Gini指标。

基于决策树的分类方法研究

南京师范大学 硕士学位论文 基于决策树的分类方法研究 姓名:戴南 申请学位级别:硕士 专业:计算数学(计算机应用方向) 指导教师:朱玉龙 2003.5.1

摘要 厂 {数掘挖掘,又称数据库中的知识发现,是指从大型数据库或数据仓库中提取 具有潜在应用价值的知识或模式。模式按其作用可分为两类:描述型模式和预测型模式。分类模式是一种重要的预测型模式。挖掘分娄模式的方法有多种,如决 策树方法、贝叶斯网络、遗传算法、基于关联的分类方法、羊H糙集和k一最临近方、/ 法等等。,/驴 I 本文研究如何用决策树方法进行分类模式挖掘。文中详细阐述了几种极具代表性的决策树算法:包括使用信息熵原理分割样本集的ID3算法;可以处理连续属性和属性值空缺样本的C4.5算法;依据GINI系数寻找最佳分割并生成二叉决策树的CART算法;将树剪枝融入到建树过程中的PUBLIC算法:在决策树生成过程中加入人工智能和人为干预的基于人机交互的决策树生成方法;以及突破主存容量限制,具有良好的伸缩性和并行性的SI,lQ和SPRINT算法。对这些算法的特点作了详细的分析和比较,指出了它们各自的优势和不足。文中对分布式环境下的决策树分类方法进行了描述,提出了分布式ID3算法。该算法在传统的ID3算法的基础上引进了新的数掘结构:属性按类别分稚表,使得算法具有可伸缩性和并行性。最后着重介绍了作者独立完成的一个决策树分类器。它使用的核心算法为可伸缩的ID3算法,分类器使用MicrosoftVisualc++6.0开发。实验结果表明作者开发的分类器可以有效地生成决策树,建树时间随样本集个数呈线性增长,具有可伸缩性。。 ,,荡囊 关键字:数据挖掘1分类规则,决策树,分布式数据挖掘

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

如何运用决策树进行分类分析

如何运用决策树进行分类分析 前面我们讲到了聚类分析的基本方法,这次我们来讲讲分类分析的方法。 所谓分类分析,就是基于响应,找出更好区分响应的识别模式。分类分析的方法很多,一般而言,当你的响应为分类变量时,我们就可以使用各种机器学习的方法来进行分类的模式识别工作,而决策树就是一类最为常见的机器学习的分类算法。 决策树,顾名思义,是基于树结构来进行决策的,它采用自顶向下的贪婪算法,在每个结点选择分类的效果最好的属性对样本进行分类,然后继续这一过程,直到这棵树能准确地分类训练样本或所有的属性都已被使用过。 建造好决策树以后,我们就可以使用决策树对新的事例进行分类。我们以一个生活小案例来说什么是决策树。例如,当一位女士来决定是否同男士进行约会的时候,她面临的问题是“什么样的男士是适合我的,是我值得花时间去见面再进行深入了解的?” 这个时候,我们找到了一些女生约会对象的相关属性信息,例如,年龄、长相、收入等等,然后通过构建决策树,层层分析,最终得到女士愿意去近一步约会的男士的标准。 图:利用决策树确定约会对象的条件

接下来,我们来看看这个决策的过程什么样的。 那么,问题来了,怎样才能产生一棵关于确定约会对象的决策树呢?在构造决策树的过程中,我们希望决策树的每一个分支结点所包含的样本尽可能属于同一类别,即结点的”纯度”(Purity )越来越高。 信息熵(Information Entropy )是我们度量样本集合纯度的最常见指标,假定当前样本集合中第K 类样本所占的比例为P k ,则该样本集合的信息熵为: Ent (D )=?∑p k |y| k=1 log 2p k 有了这个结点的信息熵,我们接下来就要在这个结点上对决策树进行裁剪。当我们选择了某一个属性对该结点,使用该属性将这个结点分成了2类,此时裁剪出来的样本集为D 1和D 2, 然后我们根据样本数量的大小,对这两个裁剪点赋予权重|D 1||D|?,|D 2||D|?,最后我们就 可以得出在这个结点裁剪这个属性所获得的信息增益(Information Gain ) Gain(D ,a)=Ent (D )?∑|D V ||D |2 v=1Ent(D V ) 在一个结点的裁剪过程中,出现信息增益最大的属性就是最佳的裁剪点,因为在这个属性上,我们获得了最大的信息增益,即信息纯度提升的最大。 其实,决策树不仅可以帮助我们提高生活的质量,更可以提高产品的质量。 例如,我们下表是一组产品最终是否被质检接受的数据,这组数据共有90个样本量,数据的响应量为接受或拒绝,则|y|=2。在我们还没有对数据进行裁剪时,结点包含全部的样本量,其中接受占比为p 1= 7690,拒绝占比为p 2=1490,此时,该结点的信息熵为: Ent (D )=?∑p k |y|k=1log 2p k =-(7690log 27690+1490log 21490)=0.6235

决策树学习研究综述

科技论坛 决策树学习研究综述 叶萌 (黑龙江电力职工大学,黑龙江哈尔滨150030) 1概述 决策树是构建人工智能系统的主要方法之一,随着数据挖掘技术在商业智能等方面的应用,决策树技术将在未来发挥越来越强大的作用[1]。自从Quinlan 在1979年提出构造决策树ID3算法以来,决策树的实现已经有很多算法,常见的有:CLS (concept learning system )学习算法,ID4、ID5R 、C4.5算法,以及CART 、C5.0、FuzzyC4.5、0C1、QUEST 和CAL5等[2]。 现在,许多学者在规则学习与决策树学习的结合方面,做了大量的研究工作。Brako 等的ASSISTANT ,将AQ15中的近似匹配方法引入决策树中。Clark 等的CN2,将ID3算法和AQ 算法编织在一起,用户可选择其中任何一种算法使用。Utgoff 等的ID5R 算法,不要求一次性提供所有的训练实例,训练实例可以逐次提供,生成的决策树逐次精化,以支持增量式学习。洪家荣教授结合实际应用问题对ID3算法作了一些改进,提出了两个ID3和AQ 结合的改进算法,IDAQ 和AQID ,此外,还陆续出现了处理大规模数据集的决策树算法,如SLIQ ,SPRINT 等等[3]。 2决策树算法研究2.1构造决策树算法 决策树学习是从无次序、无规则的样本数据集中推理出决策树表示形式、逼近离散值目标函数的分类规则方法。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较并根据不同的属性值判断从该结点向下的分支,在决策树的叶结点得到结论,因此从根结点到叶结点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。我们可将决策树看成是定义布尔函数的一种方法。其输入是一组属性描述的对象,输出为yes/no 决策。决策树代表一个假设,可以写成逻辑公式。决策树的表达能力限于命题逻辑,该对象的任一个属性的任一次测试均是一个命题。在命题逻辑范围内,决策树的表达能力是完全的。一棵决策树可以代表一个决定训练例集分类的决策过程,树的每个结点对应于一个属性名或一个特定的测试,该测试在此结点根据测试的可能结果对训练例集进行划分。划分出的每个部分都对应于相应训练例集子空间的一个分类子问题,该分类子问题可以由一棵决策树来解决。因此,一 棵决策树可以看作是一个对目标分类的划分和获取策略[4] 。 2.2处理大规模数据集的决策树算法 ID3或者C4.5算法都是在建树时将训练集一次性装载入内存的。但当面对大型的有着上百万条纪录的数据库时,就无法实际应用这些算 法。针对这一问题, 前人提出了不少改进方法,如数据采样法、连续属性离散化法或将数据分为若干小块分别建树然后综合成一个最终的树,但这些改进都以降低了树的准确性为代价。直到M etha,Agrawal 和Ris-sane 在1996年提出了SLIQ 方法,以及在此基础上进行改进得到的SPRINT [6]方法。 3决策树学习的常见问题3.1过度拟合 在利用决策树归纳学习时,需要事先给定一个假设空间,且必须在这个假设空间中选择一个,使之与训练实例集相匹配。我们知道任何一个学习算法不可能在没有任何偏置的情况下学习。如果事先知道所要学习的函数属于整个假设空间中的一个很小的子集,那么即使训练实例不完整,也有可能从已有的训练实例集中学习到有用的假设,使它对未来的实例进行正确的分类。当然,我们往往无法事先知道所要学习的函数属于整个假设空间中的哪个很小的子集,即使是知道,我们还是希望有一个大的训练实例集。因为训练实例集越大,关于分类的信息就越多。这时,即使随机地从与训练实例集相匹配的假设集中选择一个,它也能对未知实例的分类进行预测。相反,如果训练实例集与整个假设空间相比 过小,即使在有偏置的情况下,仍有过多的假设与训练实例集相匹配,这 时作出假设的泛化能力将很差。当有过多的假设与训练实例集相匹配,便称为过度拟合(overfit )。 3.2树剪枝 对决策树进行修剪可以控制决策树的复杂程度,避免决策树过于复 杂和庞大。此外, 还可以解决过度拟合的问题。修剪决策树有多种算法,通常分为这样五类。最为常用的是通过预 剪枝(pre-pruning )和后剪枝(post-pruning )完成,或逐步调整树的大小;其次是扩展测试集方法,首先按特征构成是数据驱动还是假设驱动的差别,将建立的特征组合或分割,然后在此基础上引进多变量测试集。第三类方法包括选择不同的测试集评价函数,通过改善连续特征的描述或修改搜索算法本身实现;第四类方法使用数据库约束,即通过削减数据库或实例描述特征集来简化决策树;第五类方法是将决策树转化成另一种数据结构。这些方法通常可以在同另一种算法相互结合中,增强各自的功能。 4决策树在工程中的应用 决策树在工程中的诸多领域获得了非常广泛的应用,主要有以下几个方面: 4.1决策树技术应用于机器人导航 E.Swere 和D .J.M ulvaney 将决策树技术应用于移动机器人导航并取得了一定的成功。 4.2决策树技术应用于地铁中的事故处理 法国的Brezillon 等人成功地将决策树技术应用于地铁交通调度智能系统。他们根据决策树的基本思想开发出上下文图表来帮助驾驶员针对事故做出正确的处理。 4.3决策树技术应用于图像识别 决策树技术应用于包括图像在内的科学数据分析。如利用决策树对上百万个天体进行分类,利用决策树对卫星图像进行分析以估计落叶林和针叶林的基部面积值。 4.4决策树应用于制造业 决策树技术已经成功应用于焊接质量的检测以及大规模集成电路 的设计,它不仅可以规划印刷电路板的布线, 波音公司甚至将它用于波音飞机生产过程的故障诊断以及质量控制。 5决策树技术面临的问题和挑战发展至今,决策树技术面临的问题和挑战表现在以下几个方面:5.1决策树方法的效率亟待提高 数据挖掘面临的数据往往是海量的,对实时性要求较高的决策场所,数据挖掘方法的主动性和快速性显得日益重要。应用实时性技术、主动数据库技术和分布并行算法设计技术等现代计算机先进技术,是数据挖掘方法实用化的有效途径。 5.2适应多数据类型、容噪的决策树挖掘方法随着计算机网络和信息的社会化,数据挖掘的对象已不是关系数据库模型,而是分布、异构的多类型数据库,数据的非结构化程度、噪声等现象越来越突出,这也是决策树技术面临的困难问题。 6结论 决策树技术早已被证明是利用计算机模仿人类决策的有效方法,已经得到广泛的应用,并且已经有了许多成熟的系统。但是,解决一个复杂的数据挖掘问题的任何算法都要面临以下问题:从错误的数据中学习、从分布的数据中学习、从有偏的数据中学习、学习有弹性的概念、学习那些抽象程度不同的概念、整合定性与定量的发现等,因此,还有很多未开 发的课题等待研究。若将决策树技术与其他新兴 摘要:决策树分类学习算法是使用广泛、实用性很强的归纳推理方法之一,在机器学习、数据挖掘等人工智能领域有相当重要的理 论意义与实用价值。在详细阐述决策树技术的几种典型算法以及它的一些常见问题后, 介绍了它在工程上的实际应用,最后提出了它的研究方向以及它所面临的问题和挑战。 关键词:决策树;决策树算法;ID3;C4.5;SLIQ ;SPRINT (下转156页)22··

利用决策树方法对数据进行分类挖掘毕业设计论文

目录 摘要 (3) Abstract (iii) 第一章绪论 (1) 1.1 数据挖掘技术 (1) 1.1.1 数据挖掘技术的应用背景 (1) 1.1.2数据挖掘的定义及系统结构 (2) 1.1.3 数据挖掘的方法 (4) 1.1.4 数据挖掘系统的发展 (5) 1.1.5 数据挖掘的应用与面临的挑战 (6) 1.2 决策树分类算法及其研究现状 (8) 1.3数据挖掘分类算法的研究意义 (10) 1.4本文的主要内容 (11) 第二章决策树分类算法相关知识 (12) 2.1决策树方法介绍 (12) 2.1.1决策树的结构 (12) 2.1.2决策树的基本原理 (13) 2.1.3决策树的剪枝 (15) 2.1.4决策树的特性 (16) 2.1.5决策树的适用问题 (18) 2.2 ID3分类算法基本原理 (18) 2.3其它常见决策树算法 (20) 2.4决策树算法总结比较 (24) 2.5实现平台简介 (25) 2.6本章小结 (29) 第三章 ID3算法的具体分析 (30) 3.1 ID3算法分析 (30) 3.1.1 ID3算法流程 (30) 3.1.2 ID3算法评价 (33) 3.2决策树模型的建立 (34) 3.2.1 决策树的生成 (34) 3.2.2 分类规则的提取 (377) 3.2.3模型准确性评估 (388) 3.3 本章小结 (39)

第四章实验结果分析 (40) 4.1 实验结果分析 (40) 4.1.1生成的决策树 (40) 4.1.2 分类规则的提取 (40) 4.2 本章小结 (41) 第五章总结与展望 (42) 参考文献 (44) 致谢 (45) 附录 (46)

决策树分类-8页文档资料

基于专家知识的决策树分类 概述 基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。 如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植被,那些是公园植被。 图1.JPG 图1 专家知识决策树分类器说明图 专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。 1.知识(规则)定义 规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也可以通过经验总结获得。 2.规则输入

将分类规则录入分类器中,不同的平台有着不同规则录入界面。 3.决策树运行 运行分类器或者是算法程序。 4.分类后处理 这步骤与监督/非监督分类的分类后处理类似。 知识(规则)定义 分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。也可以从样本中利用算法来获取,这里要讲述的就是C4.5算法。 利用C4.5算法获取规则可分为以下几个步骤: (1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。 (2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。 (3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当的调整和筛选。这里就是C4.5算法。 4.5算法的基本思路基于信息熵来“修枝剪叶”,基本思路如下: 从树的根节点处的所有训练样本D0开始,离散化连续条件属性。计算增益比率,取GainRatio(C0)的最大值作为划分点V0,将样本分为两个部分D11和D12。对属性C0的每一个值产生一个分支,分支属性值的相应样本子集被移到新生成的子节点上,如果得到的样本都属于同一个类,那么直接得到叶子结点。相应地将此方法应用于每个子节点上,直到节点的所有样本都分区到某个类中。到达决策树的叶节点的每条路径表示一条分类规则,利用叶列表及指向父结点的指针就可以生成规则表。

决策树分类算法的时间和性能测试(DOC)

决策树分类算法的时间和性能测试 姓名:ls 学号:

目录 一、项目要求 (3) 二、基本思想 (3) 三、样本处理 (4) 四、实验及其分析 (9) 1.总时间 (9) 2.分类准确性. (12) 五、结论及不足 (13) 附录 (14)

一、项目要求 (1)设计并实现决策树分类算法(可参考网上很多版本的决策树算法及代码, 但算法的基本思想应为以上所给内容)。 (2)使用UCI 的基准测试数据集,测试所实现的决策树分类算法。评价指标 包括:总时间、分类准确性等。 (3) 使用UCI Iris Data Set 进行测试。 二、基本思想 决策树是一个类似于流程图的树结构,其中每个内部节点表示在一个属性变量上的测试,每个分支代表一个测试输出,而每个叶子节点代表类或分布,树的最顶层节点是根节点。 当需要预测一个未知样本的分类值时,基于决策树,沿着该树模型向下追溯,在树的每个节点将该样本的变量值和该节点变量的阈值进行比较,然后选取合适的分支,从而完成分类。决策树能够很容易地转换成分类规则,成为业务规则归纳系统的基础。 决策树算法是非常常用的分类算法,是逼近离散目标函数的方法,学习得到的函数以决策树的形式表示。其基本思路是不断选取产生信息增益最大的属性来划分样例集和,构造决策树。信息增益定义为结点与其子结点的信息熵之差。信息熵是香农提出的,用于描述信息不纯度(不稳定性),其计算公式是 Pi为子集合中不同性(而二元分类即正样例和负样例)的样例的比例。这样信息收益可以定义为样本按照某属性划分时造成熵减少的期望,可以区分训练样本中正负样本的能力,其计算公式是

决策树分类算法

决策树分类算法 决策树是一种用来表示人们为了做出某个决策而进行的一系列判断过程的树形图。决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。 1.决策树的组成 决策树的基本组成部分有:决策节点、分支和叶,树中每个内部节点表示一个属性上的测试,每个叶节点代表一个类。图1就是一棵典型的决策树。 图1 决策树 决策树的每个节点的子节点的个数与决策树所使用的算法有关。例如,CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。 下面介绍一个具体的构造决策树的过程,该方法

是以信息论原理为基础,利用信息论中信息增益寻找数据库中具有最大信息量的字段,建立决策树的一个节点,然后再根据字段的不同取值建立树的分支,在每个分支中重复建立树的下层节点和分支。 ID3算法的特点就是在对当前例子集中对象进行分类时,利用求最大熵的方法,找出例子集中信息量(熵)最大的对象属性,用该属性实现对节点的划分,从而构成一棵判定树。 首先,假设训练集C 中含有P 类对象的数量为p ,N 类对象的数量为n ,则利用判定树分类训练集中的对象后,任何对象属于类P 的概率为p/(p+n),属于类N 的概率为n/(p+n)。 当用判定树进行分类时,作为消息源“P ”或“N ”有关的判定树,产生这些消息所需的期望信息为: n p n log n p n n p p log n p p )n ,p (I 22++-++- = 如果判定树根的属性A 具有m 个值{A 1, A 2, …, A m },它将训练集C 划分成{C 1, C 2, …, C m },其中A i 包括C 中属性A 的值为A i 的那些对象。设C i 包括p i 个类P 对象和n i 个类N 对象,子树C i 所需的期望信息是I(p i , n i )。以属性A 作为树根所要求的期望信息可以通过加权平均得到

数据挖掘——决策树分类算法 (2)

贝叶斯分类算法 学号:20120311108 学生所在学院:软件工程学院学生姓名:朱建梁 任课教师:汤亮 教师所在学院:软件工程学院 2015年11月

12软件1班 贝叶斯分类算法 朱建梁 12软件1班 摘要:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正 式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论 贝叶斯分类中最简单的一种:朴素贝叶斯分类。 关键词:朴素贝叶斯;文本分类 1 贝叶斯分类的基础——贝叶斯定理 每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率: P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:P(A|B)=P(AB)/P(B)。 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。 下面不加证明地直接给出贝叶斯定理:P(B|A)=P(A|B)P(B)/P(A) 2 朴素贝叶斯分类的原理与流程 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。 朴素贝叶斯分类的正式定义如下: 1、X={a1,a2,....am}设为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合c={y1,y2,...,yn} 3、计算p(y1|x),p(y2|x),...,p(yn|x)。 4、如果p(yk|x)=max{p(y1|x),p(y2|x),...,p(yn|x)}, 那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做: 1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。 2、统计得到在各类别下各个特征属性的条件概率估计。即p(a1|y1),p(a2|y1),...,p(am|y1);p(a1|y2),p(a2|y2),...,p(am|y2);p(a1|yn),p(a2 |yn),...,p(am|yn);。

决策树分类的定义以及优缺点 (1)

决策树分类 决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点(internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某个类(class)或者类的分布(class distribution),最上面的结点是根结点。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 构造决策树是采用自上而下的递归构造方法。决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b)的逻辑判断,其中a 是属性,b是该属性的某个属性值;树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶结点都是类别标记。 使用决策树进行分类分为两步: 第1步:利用训练集建立并精化一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程。 第2步:利用生成完毕的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。 问题的关键是建立一棵决策树。这个过程通常分为两个阶段: (1) 建树(Tree Building):决策树建树算法见下,可以看得出,这是一个递归的过程,最终将得到一棵树。 (2) 剪枝(Tree Pruning):剪枝是目的是降低由于训练集存在噪声而产生的起伏。 决策树方法的评价。 优点 与其他分类算法相比决策树有如下优点: (1) 速度快:计算量相对较小,且容易转化成分类规则。只要沿着树根向下一直走到叶,沿途的分裂条件就能够唯一确定一条分类的谓词。 (2) 准确性高:挖掘出的分类规则准确性高,便于理解,决策树可以清晰的显示哪些字段比较重要。 缺点 一般决策树的劣势: (1) 缺乏伸缩性:由于进行深度优先搜索,所以算法受内存大小限制,难于处理大训练集。一个例子:在Irvine机器学习知识库中,最大可以允许的数据集仅仅为700KB,2000条记录。而现代的数据仓库动辄存储几个G-Bytes的海量数据。用以前的方法是显然不行的。

决策树算法总结

决策树决策树研发二部

目录 1. 算法介绍 (1) 1.1. 分支节点选取 (1) 1.2. 构建树 (3) 1.3. 剪枝 (10) 2. sk-learn 中的使用 (12) 3. sk-learn中源码分析 (13)

1. 算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作 为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对 ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1. 分支节点选取 2. 构建树 3. 剪枝 1.1. 分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 Entropy = -V p ” 基尼系数:同上,也可以作为信息混乱程度的衡量指标。 Gini = 1 - p: l-L

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势

论贝叶斯分类、决策树分类、感知器分类挖掘算法的优势与劣势 摘要本文介绍了在数据挖掘中数据分类的几个主要分类方法,包括:贝叶斯分类、决策树分类、感知器分类,及其各自的优势与劣势。并对于分类问题中出现的高维效应,介绍了两种通用的解决办法。 关键词数据分类贝叶斯分类决策树分类感知器分类 引言 数据分类是指按照分析对象的属性、特征,建立不同的组类来描述事物。数据分类是数据挖掘的主要内容之一,主要是通过分析训练数据样本,产生关于类别的精确描述。这种类别通常由分类规则组成,可以用来对未来的数据进行分类和预测。分类技术解决问题的关键是构造分类器。 一.数据分类 数据分类一般是两个步骤的过程: 第1步:建立一个模型,描述给定的数据类集或概念集(简称训练集)。通过分析由属性描述的数据库元组来构造模型。每个元组属于一个预定义的类,由类标号属性确定。用于建立模型的元组集称为训练数据集,其中每个元组称为训练样本。由于给出了类标号属性,因此该步骤又称为有指导的学习。如果训练样本的类标号是未知的,则称为无指导的学习(聚类)。学习模型可用分类规则、决策树和数学公式的形式给出。 第2步:使用模型对数据进行分类。包括评估模型的分类准确性以及对类标号未知的元组按模型进行分类。 常用的分类规则挖掘方法 分类规则挖掘有着广泛的应用前景。对于分类规则的挖掘通常有以下几种方法,不同的方法适用于不同特点的数据:1.贝叶斯方法 2.决策树方法 3.人工神经网络方法 4.约略集方法 5.遗传算法 分类方法的评估标准: 准确率:模型正确预测新数据类标号的能力。 速度:产生和使用模型花费的时间。 健壮性:有噪声数据或空缺值数据时模型正确分类或预测的能力。 伸缩性:对于给定的大量数据,有效地构造模型的能力。 可解释性:学习模型提供的理解和观察的层次。 影响一个分类器错误率的因素 (1) 训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。 (2) 属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。因此,如果我们通过常识可以确认某个属性与目标无关,则将它从训练集中移走。 (3) 属性中的信息。有时生成器不能从属性中获取足够的信息来正确、低错误率地预测标签(如试图根据某人眼睛的颜色来决定他的收入)。加入其他的属性(如职业、每周工作小时数和年龄),可以降低错误率。 (4) 待预测记录的分布。如果待预测记录来自不同于训练集中记录的分布,那么错误率有可能很高。比如如果你从包含家用轿车数据的训练集中构造出分类器,那么试图用它来对包含许多运动用车辆的记录进行分类可能没多大用途,因为数据属性值的分布可能是有很大差别的。 评估方法 有两种方法可以用于对分类器的错误率进行评估,它们都假定待预测记录和训练集取自同样的样本分布。 (1) 保留方法(Holdout):记录集中的一部分(通常是2/3)作为训练集,保留剩余的部分用作测试集。生成器使用2/3 的数据来构造分类器,然后使用这个分类器来对测试集进行分类,得出的错误率就是评估错误率。 虽然这种方法速度快,但由于仅使用2/3 的数据来构造分类器,因此它没有充分利用所有的数据来进行学习。如果使用所有的数据,那么可能构造出更精确的分类器。 (2) 交叉纠错方法(Cross validation):数据集被分成k 个没有交叉数据的子集,所有子集的大小大致相同。生成器训练和测试共k 次;每一次,生成器使用去除一个子集的剩余数据作为训练集,然后在被去除的子集上进行测试。把所有

分类决策树

分类决策树 原理 决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,对未知的数据进行分类。如何预测, 先看看下面的数据表格: 上表根据历史数据,记录已有的用户是否可以偿还债务,以及相关的信息。通过该数据,构建的决策树如下: 如新来一个用户:无房产,单身,年收入55K,那么根据上面的决策树,可以预测他无法偿还债务(蓝色虚线路径)。从上面的决策树,还可以知道是否拥有房产可以很大的决定用户是否可以偿还债务,对借贷业务具有指导意义。 决策树构建的基本步骤如下: 1. 开始所有记录看作一个节点 2. 遍历每个变量的每一种分割方式,找到最好的分割点 3. 分割成两个节点N1和N2

4. 对N1和N2分别继续执行2-3步,直到每个节点足够“纯”为止 构建决策树的变量可以有两种: 1)连续型:如前例中的“年收入”。用“>=”,“>”,“<”或“<=”作为分割条件(排序后,利用已有的分割情况,可以优化分割算法的时间复杂度)。 2)分类型:如前例中的“婚姻情况”,使用“=”来分割。 如何评估分割点的好坏?如果一个分割点可以将当前的所有节点分为两类,使得每一类都很“纯”,也就是同一类的记录较多,那么就是一个好分割点。比如上面的例子,“拥有房产”,可以将记录分成了两类,“是”的节点全部都可以偿还债务,非常“纯”;“否”的节点,可以偿还贷款和无法偿还贷款的人都有,不是很“纯”,但是两个节点加起来的纯度之和与原始节点的纯度之差最大,所以按照这种方法分割。构建决策树采用贪心算法,只考虑当前纯度差最大的情况作为分割点。 纯度计算 前面讲到,决策树是根据“纯度”来构建的,如何量化纯度呢?这里介绍三种纯度计算方法。如果记录被分为n类,每一类的比例P(i)=第i类的数目/总数目。还是拿上面的例子,10个数据中可以偿还债务的记录比例为P(1) = 7/10 = 0.7,无法偿还的为 P(2) = 3/10 = 0.3,N = 2。 Gini不纯度: 熵(Entropy): 错误率: 上面的三个公式均是值越大,表示越“不纯”,越小表示越“纯”。三种公式只需要取一种即可,对最终分类准确率的影响并不大,一般使用熵公式。 纯度差,也称为信息增益(Information Gain),公式如下: 其中,I代表不纯度(也就是上面三个公式的任意一种),K代表分割的节点数,一般K = 2。vj表示子节点中的记录数目。上面公式实际上就是当前节点的不纯度减去子节点不纯度的加权平均数,权重由子节点记录数与当前节点记录数的比例决定。 停止条件 决策树的构建过程是一个递归的过程,所以需要确定停止条件,否则过程将不会结束。一种最直观的方式是当每个子节点只有一种类型的记录时停止,但是这样往往会使得树的节点过多,导致过度拟合(Overfitting)。另一种可行的方法是当前节点中的记录数低于一个最小的阀值,那么就停止分割,将max(P(i))对应的分类作为当前叶节点的分类。

(完整版)ENVI决策树分类

遥感专题讲座——影像信息提取(三、基于专家知识的决策树分类) 基于专家知识的决策树分类 可以将多源数据用于影像分类当中,这就是专家知识的决策树分类器,本专题以ENVI中Decision Tree为例来叙述这一分类器。 本专题包括以下内容: ? ?●专家知识分类器概述 ? ?●知识(规则)定义 ? ?●ENVI中Decision Tree的使用 概述 基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。 如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植 被,那些是公园植被。

图1 专家知识决策树分类器说明图 专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则 输入、决策树运行和分类后处理。 1.知识(规则)定义 规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也 可以通过经验总结获得。 2.规则输入 将分类规则录入分类器中,不同的平台有着不同规则录入界面。 3.决策树运行 运行分类器或者是算法程序。 4.分类后处理 这步骤与监督/非监督分类的分类后处理类似。 知识(规则)定义 分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。也可以从样本中利用算法来获取,这里要讲述的就是C4.5 算法。 利用C4.5算法获取规则可分为以下几个步骤:(1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。 (2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。 (3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当 的调整和筛选。这里就是C4.5算法。 4.5算法的基本思路基于信息熵来“修枝剪叶”,基本思路如下: 从树的根节点处的所有训练样本D0开始,离散化连续条件属性。计算增益比率,取GainRatio(C0)的最大值作为划分点V0,将样本分为两个部分D11和D12。对属性C0的每一个值产生一个分支,分支属性值的相应样本子集被移

相关文档
最新文档