电池管理系统技术协议合同书

苏州安靠电源有限公司B65P43电池管理系统技术协议

电池管理系统技术协议

甲方:苏州安靠电源有限公司

乙方:惠州市亿能电子有限公司

苏州安靠电源有限公司(甲方)向惠州市亿能电子有限公司(乙方)购买一套电池管理系统(亿能工程代号:B65P43),对应的整车配置电池系统由28并96串共2688只三元材料电芯联接组成,单只电芯标称规格:3.6V/2.7Ah。双方经友好协商,签署本技术协议。

电池系统基本参数

基于整车对电池系统的需要,双方就表1所列的电池系统基本参数信息进行确认。

表1电池系统基本参数(亿能提供)

表2立项信息(甲方提供)

电池管理系统基本拓扑参考图

图1电池管理系统拓扑结构

BMU:电池管理从控单元BCU:电池管理主控单元

电池管理系统(BMS,BatteryManagementSystem)基本拓扑结构

内部CAN总线:BMS内部CANCAN1:整车CANCAN2:充电机CAN

电池管理系统功能

(1)单体电池电压的检测

利用专用电压测量芯片,内含高精度A/D转换模块。精确及时监控电池在使用过程中的状态及变化。有效时防止电池的不正当使用。(2)电池温度的检测

采用NTC温度检测方案,具备断线和短路故障检测能力。

(3)电池组工作电流的检测

以分流器方案为主,同时提供2路AD扩展配置,用于支持LEM公司的单电源5V供电的霍尔传感器;高低压耐压等级按照2500VDC设计。

(4)总电压检测

持2路总电压检测。

(5)绝缘监测

检测动力电池与车底盘之间的绝缘电阻,并按照国家电动汽车

GB-T18384.1—18384.3-2001相关标准对绝缘进行分级,分级编号、标准和建议参见下表:

(6)热管理

依据甲方提供的加热控制策略,在电池温度超过限定值时由主板控制加热器启动,配合整车控制,实现热管理。

(7)电池组SOC的估测

(8)通过分流器对电流采样,完成电流测量和SOC估算。电池故障分析与在线报警

BMS具备系统自诊断功能,系统上电后对电压、温度、通讯、时钟、存储器、内部通讯等部件进行检测,同时依据甲方提供的信息,对电池的过压、欠压、过流、过温、SOC过低/高以及一致性等电池故障进行判断和报警。

(9)与车载设备通信

BMS与整车采用高速CAN通讯,及时可靠地将电池状态报至整车,有效地防止电池滥用。BMS向整车按故障严重性分二级进行报警,在一级报警情况下BMS计算降功率后的电池可用充放电流,电机控制器应根

据BMS发送的可用充放电电流值进行降功率运行;二级报警情况下,BMS 将电池的可用充放电电流置零后发送给电机控制器,电机控制器应停止对电池进行放电。

(10)充电管理

充电过程中BMS依据电池的当前信息,为充电机实时提供电池的最大允许充电电流,电池的实际充电电流应在BMS允许的充电电流和充电机的设计最大输出电流之间取小。

(11)高压上下电管理

BMS可以实时控制整车的高压继电器,最多可以控制6路,实现多路高压的输入输出控制,保证电池系统的安全有效,并与整车的控制策略的全匹配。

(12)均衡管理

BMS可以根据电池系统各个单体的容量,进行电池均衡动作,保证电池长期使用过程中的一致性,提升电池使用效率。

(13)功率估算

实时估算电池系统的当前可用功率,作为整车的功率参考因素,保证电池系统的正常运行。

(14)数据记录及读取

BMS可以记录电池系统发生故障时刻的电池数据,为故障分析提供依据,快速定位历史故障原因。

BMS可以记录电池系统运行的历史数据,每运行3分钟记录1条,共记录500条。

以上数据都是循环记录,达到存储数量后,自动擦除旧数据,数据通过专用上位机进行读取。

主控技术参数

系统时钟:用于提供系统记录数据的发生时间。

继电器控制:具备额定驱动电流为1A(峰值电流可达到3A,<1S)的高电平继电器控制通道4路,具备额定驱动电流为1A(峰值电流可达到

3A,<1S)的低电平继电器控制通道2路;选择集成自诊断、短路和过热保护功能且空间小的兼容12V/24V电压等级的汽车级集成智能开关。

延时断电功能:在车辆下电或充电机停机后,BMS可通过车辆常火信号继续供电,直到BMS系统完成下电流程后(<1S,或按控制要求进行延时),BMS自动待机。

总电压测量:可支持2路总电压检测通道,通过高精度电压测量芯片,准确测量电池组总正、总负之间的电压。

电流测量:通过分流器或霍尔传感器进行电流采样,完成电流的测量和AH累计。

绝缘检测:检测动力电池与车底盘之间的绝缘电阻,BMS检测系统对地电阻大于2MΩ。

CAN1:用于与电机控制器/整车控制器/仪表之间通讯,优化驾驶(如果有控制器或仪表)。

CAN2:用于与充电机之间通讯,优化充电(如果充电需要BMS控制及管理,并且有独立CAN)。

内部CAN:主控板以及从控之间的通讯接口;也可和PC上位机连接,进行数据监控或用户程序下载。

从控技术参数

温度检测:每个从控最多可检测8个NTC温度传感器,系统具备温度传感器查询、温度传感器丢失、温度传感器不能读回数据、温度超高等检测功能。根据温度传感器编号判断其在电池箱内的位置。

电压检测:单个从控最多可检测24~60路电压。如果加装保险,为了排除保险对测量误差的影响,需要在保险前后分别引线。(注:不得利用电压采样线对电池补电或放电)。

继电器控制:具备额定驱动电流为1A(峰值电流可达到3A,<1S)的低电平控制通道2路;

内部CAN:主控、从控之间的通讯接口;也可和PC上位机连接,进行数据监控或用户程序下载。

安装操作

1、调试

批量情况下,乙方提供相关技术支持,由甲方完成所有调试,必要时乙方到现场调试。

2、主控板和高压控制器安装

(1)乙方提供主控板和高压器件以及与整车对接接插件段的相关线束并指导甲方进行安装(如果高压器件为甲方自购的,则由甲方负责)。(2)主控与整车对接的接插件由甲方或甲方委托其他供应商提供并安装。

(3)电流检测用分流器及线束由乙方提供,由乙方指导甲方安装。

3、从控安装

(1)乙方提供并指导安装电池管理从控单元、温度传感器以及相关线束,包含电压检测线、温度检测线、电源线、CAN通信线。

(2)到各个电池箱体的电源线、通讯线由乙方提供并指导安装。

4、布线注意事项

通信线应尽量离开动力线(0.2m以上)、离开低压控制线(0.05m 以上);低压供电线尽量离开动力线(0.2m以上)。如果动力线无屏蔽,以上距离需加大。

建议电机控制器交流动力线和直流母线保持一定距离(0.5m以上)。法律声明

(1)本项目中甲方向乙方提供的所有资料,乙方未经甲方允许不得泄露,如果确定乙方行为违法或有损本公司的合法利益,则甲方保留但不限于采取相关法律措施的权利。

(2)该文件由惠州市亿能电子有限公司起草,除非征得本公司同意,本文件的信息及其任何组成部分不得被重新编辑、复制、仿制、抄袭,或为任何未经本公司允许的商业目的所使用。如果本公司确定客户行为违法或有损本公司的合法利益,则本公司保留但不限于采取相关法律措施的权利。

甲方代表:乙方代表:

日期:日期:

附件1BMS系统低压供电示意图

附件2整车CAN总线协议(整车通讯协议)

BMS与整车通讯协议参照文件《SEV000_CAN_BMS_CAN_V1.1.xls》。

注:有些CAN信号处理方式以沟通内容为准。

附件3充电CAN总线协议(充电通讯协议)

BMS与车载充机电通信协议参照文件《SEV000_CAN_BMS_CAN_V1.1.xls》。附件4电池箱2D/3D结构图

注:以电子文档为准

附件5电池参数表

(1)电池故障阀值及其响应方式(一级为轻微、二级为较严重、三级为严重)

(2)电池SOC-OCV参数表(用于SOC修正):

若无相关参数说明:无电池SOC相关参数,BMS做SOC修正有:满充电修正到100%;最低单体过低修正到0%;最高单体过高修正到100%。

若BMS长期无修正条件,或电池容量衰减、基准容量偏差等都会造成SOC误差无限增大。

(3)电池组充放电功率参数表电池组充放电功率参数表

电池管理系统技术协议

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 电池管理系统技术协议 甲方:___________________ 乙方:___________________ 日期:___________________

说明:本合同资料适用于约定双方经过谈判、协商而共同承认、共同遵守的责任与义务,同时阐述确定的时间内达成约定的承诺结果。文档可直接下载或修改,使用时请详细阅读内容。

B65P43电池管理系统技术协议 制订审核批准 文件变更履历

o 版本号修改人修改日期更改简要 A周东锡2015-11-05新制订。

电池管理系统技术协议 甲方:苏州安靠电源有限公司 乙方:惠州市亿能电子有限公司 苏州安靠电源有限公司(甲方)向惠州市亿能电子有限公司(乙方)购买一套电池管理系统(亿能工程代号:B65P43,对应的整车配置电池系统由28并丝申共2688只三元材料电芯联接组成, 单只电芯标称规格:3.6V/2.7Ah 。双方经友好协 商,签署本技术协议。 电池系统基本参数 基丁整车对电池系统的需要,双方就表1所列的电池系统基本参数信息进行确认 表1电池系统基本参数(亿能提供) )丁与项目参数 1 基 本 参 数BMSX作电压范围12V (6V?18V) 2BM立作功耗(额定/峰值)主板:3.6W/120W(峰值持续时间10mS)从板:2.8W/120W(峰值持续时间10mS) 3BMSH态功耗主板v 1mA ; 单个从板<0.1mA 4BMSX作温度范围-40 C ?85 C 5BMS^存温度范围(C)-40 C ?95 C 6BM立作湿度范围(%)5防95% 7「单体电池电压检测范围0?5V 8单只电池电压米样精度< ± 10mV (2V?5V@-2K ?55 C) 9单只电池电压米样频率<20mS 10总电压检测通道数 2 (检内部总电压及外部总电压)11总电压测量范围0V ?900V 12总电压检测精度<0.5%FSR (FSR 满量程) 13温度测量范围-40 C ?125 C 14温度检测精度〈土 2 C ( NTC,@-4(T ?-20 C)〈土 1 C ( NTC,@-2(T ?65 C)〈土 2 C (NTC,@6配?125 C) 15电流检测精度<1%FSR( FSR 满量程)

非车载充电机(充电桩)与BMS(电池管理系统)通讯协议解析——CANScope协议解析功能介绍

非车载充电机(充电桩)与电动汽车BMS通讯协议解析CANScope协议解析功能介绍 CANScope分析仪广州致远电子股份有限公司研发的一款综合性的CAN总线开发与测试的专业工具,集海量存储示波器、网络分析仪、误码率分析仪、协议分析仪及可靠性测试工具于一身,并把各种仪器有机的整合和关联;重新定义CAN总线的开发测试方法,可对CAN网络通信正确性、可靠性、合理性进行多角度全方位的评估;帮助用户快速定位故障节点,解决CAN 总线应用的各种问题,是CAN总线开发测试的终极工具。 CANScope支持各种车载CAN-bus应用协议的解析,特别是支持充电桩与电动汽车BMS(电池管理系统)的通讯协议解析与验证,只要用户将CANScope接入被测系统,即可实现协议数据的解析。可用于电动汽车CAN协议解析、正确性验证等,如图 1所示。 图 1 CANScope总线分析仪解析示意图

操作步骤 1. 将仪器测试头接入被测系统CAN总线,打开CANScope软件,选择正确的波特率,启动。如果正确连接与设置,将会有数据出现,如图 2所示; 图 2 打开CANScope软件 2. 点击菜单“高级”操作中的“报文解析列表”,进入解析界面,如图 3所示; 图 3 打开报文解析列表

3. 报文解析列表界面中,点击“加载协议”,选择“J1939_bms.dbc”文件打开,然后点击菜单栏上的“分类显示”,如图 4所示。 图 4 加载DBC文件 4. 此时接收数据即可进行协议解析,用户可以使用分类显示获取实时值或者刷新显示查看具体的帧时序关系。如图 5所示,为握手阶段的解析。 图 5 握手阶段的解析

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

钒液流电池管理系统技术标准

全钒液流电池管理系统技术标准 编制部门: 生效日期: 编制: 审核: 核准: 本文件为乐山华易能源有限公司专有之财产,非经许可,不得复 制、翻印或转变成其它形式使用。一经打印,即为非受控文件,

总经理研发中心生产部人力资源部质量部营销中心采购部

1 范围 本标准规定了储能电站(包括风电储能电站、光伏储能电站、风光储电站、电网储能电站等)用全钒液流电池管理系统(以下简称电池管理系统)产品的技术要求、试验方法、检验规则、标志、包装、运输和储存。 本标准适用于储能电站用全钒液流电池管理系统。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2900.11 电工术语原电池和蓄电池[egv IEC 60050( 482 ):2003] GB/T 191-2008 包装储运图示标志 GB/T 2423.4 电工电子产品基本环境试验规程试验Db:交变湿热试验方法 GB/T 2423.17 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限制和测量方法 3 术语、定义 GB/T 2900.11 确立的以及下列术语和定义适用于本标准。 3.1 电池(堆) battery pack 通过正负极电解液中不同价态钒离子的电化学反应来实现电能和化学能互相转化的储能装置。 3.2 电解液electrolyte 具有离子导电性的含不同价态钒离子的溶液。 3.3 电解液循环系统electrolyte circulation system

电池管理系统 (BMS)

如何重新定义电动汽车电池管理系统 (BMS )? 来源:英飞凌公司 作者:Klaus & Bj?rn2013年12月13日 12:01 0 分享 订阅 [导读] 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。 关键词:电池管理处理器英飞凌电动汽车 随着电气化动力系统变得日益复杂,BMS 需要执行的功能增多,承受的负担之重前所未有。 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。未 来,甚至车辆控制单元 (VCU ) 的部件和功能也会与 BMS 相关联。 图1 配备所有相关部件的电动汽车电池管理系统 (BMS )

未来,BMS 将在电动汽车领域发挥重要作用。然而 BMS 的各个子功能往往由 OEM车厂定制,会因系统配置不同而存在很大差异。因此,不可能制定出适用于每一个电动汽车制造商的完整的 BMS 要求列表。然而,电池管理系统处理的任务范围不断扩大,这一事实毋庸置疑。BMS 最常见的要求包括安全要求、控制和监控功能、待机功能、热管理、加密算法和预留可扩展接口增加新功能。 安全要求 在 ISO 26262 安全标准范围内,如 BMS 等特定的电气和电子系统将被归类为从 ASIL C 至 ASIL D 的高安全类别。与之对应的故障检测率至少为 97% 至 99%。电池系统中最危险的故障来源有:因电缆磨损或事故而导致车辆底盘出现高电压漏电而未被发现;各种引起高电压电池起火或爆炸的原因:例如对电池过度充电(例如在公用电网上或因停电恢复引起)、电池过早老化(例如爆炸性气体泄漏)、液体进入和短路(例如因雨水引起)、滥用(例如维修不当)和热管理错误(例如冷却失效)等。 在安全方面,主开关(主继电器)在避免与高电压相关的事故中起到了重要的作用,它可确保 BMS 电子系统能够作出充分的故障反应。发生故障时,BMS 模块会在适当的故障反应时间内断开开关(例如 10ms 以内)。非关键故障安全条件的特征通常是:如果 BMS 微控制器(MCU)失效,甚至在控制器逻辑完全失效的情况下,独立的外部安全元件(例如窗口看门狗)仍可确保主开关继电器可靠地打开逆变器(正/负)的两个高电压触点。BMS 系统中还集成了其他安全功能,包括漏电电流监控和主开关继电器监控。 控制和监控功能: 其他 BMS 功能包括对电动汽车中昂贵的高电压电池的监控、保养和维护。BMS 控制和监控功能来源于安装于电池包中的电子平衡单元。管理各个电池组内(battery slave pack)的平衡,同时精确地感测各个单电池的电压。平衡芯片通常可管理多达 12 个单电池组成的群组。相关数量的电池群组串联后可产生高达数百伏的高中间电路电压以供逆变器控制之用,这是电动汽车的逆变器电驱动所必需的。 位于主开关对所有高电压电池的总电流的测量,以及从芯片对各个单电池电压的单电池精确同步监控,BMS 可使用特定算法(例如,基于电池化学 Matlab Simulink 模型)评估充电状态及健康状态等电池参数。BMS 通常不会安装在非常靠近高电压电池的位置,但是通常会通过冗余的流电去耦总线系统(比如 CAN 或其他适合的差分总线)与电子平衡从动元件相连接。它由汽车电压(12 伏电池)供电,因此可通过现有的网络架构与现有的控制单元群组结合使用,无需进一步的流电去耦措施。最后,它还改善了安全性,因为它让 BMS 能够在高电压电池发生机构或化学缺陷时确保功能正常并且安全地断开主开关。 随着电池专用的化学/电气算法日益复杂,预计 BMS 将需要使用拥有 2.5MB 至 4MB 闪存和强大的多核处理器架构的 AURIX 等微控制器(MCU)。这种组合可以保证有足够的内存用于全面校准参数并提供足够的计算能力(图 2)。

动力电池技术协议模版

动力电池技术协议模版 产品名称:XXXV/XXX 动力电池系统 甲方:XXX汽车集团有限公司 乙方:XXX新能源有限公司

协议版本变更履历:

甲方:XXXX汽车有限公司 乙方:XXXX新能源有限公司 依据国家有关法律、法规规定,甲、乙双方经过友好协商,本着相互信任、平等互利、合作共赢的原则,双方就供货产品要求达成如下技术协议,以下条款未涉及的,按照双方签订的《产品质量协议》、《产品供货协议》、《产品售后服务协议》等要求执行。 1 开发方式 开发方式1:甲方提出产品开发需求,乙方按照甲方要求完成产品设计及样品开发工作。 开发方式2:甲方提供设计样件,并提出开发需求,甲方和乙方按约定共同完成产品设计及样品开发工作。 开发方式3: 甲方提供产品技术文件及完整的技术输入,乙方按技术文件完成样件开发工作 2 产品物料清单 3 开发文档清单 (1)产品开发APQP计划编制 (2)产品特性 (3)设计潜在失效模式分析

(4)工程分析 (5)结构分析 (6)工装开发 (7)样件提供 (8)DVP (9)模具认可 (10)检具认可 (11)材料认可 (12)PPAP 1)甲方有权对其提供的技术资料进行更改,但应及时通知乙方。技术资料更改后,经双方 确认后,乙方应按更改后的技术要求组织生产和供货。 2)乙方发现甲方提供的技术资料存在问题,或因工艺要求需要对技术资料进行调整时,应 及时通知甲方,由甲方进行确认并对技术资料进行更改或调整。未经甲方同意,乙方擅自更改技术资料或未按技术资料生产的,全部责任由乙方承担。 3)按乙方图纸生产的产品,乙方有义务向甲方提供必要的产品图纸、执行标准、产品说明、 测试要求等资料。 4)甲方可要求乙方提供必要的技术支持,享受乙方承诺的标准服务。 5)甲方有义务在乙方产品异常时,在可能的情况下通知乙方人员到场,了解实际情况。 6)甲方进行样品安装、线束布置及系统调试时,乙方应派相关技术人员到现场进行技术指 导。 7)甲方对系统产品使用及维护过程中遇到问题或故障时,乙方应进行及时技术服务支持。 8)乙方须积极配合甲方,提供甲方用于申报公告和申报购置税目录的,与电池系统产品相 关的资料,并保证资料的准确性和真实性, 4 参考标准 产品设计开发时须参考以下标准,凡是注明日期的引用文件,仅注明日期的版本适用于本文件。凡不注明日期的应用文件,以其最新版本(含所有修订单)适用于本协议。 参考标准如下:

电动汽车电池管理系统与非车载充电机之间的通信协议

电动汽车电池管理系统与非车载充电机之间的通信协议 编制说明 一、 制定背景和意义 电动汽车产业化现阶段面临的最大困难是技术的成熟度问题,要实现产业化,其前提必然是统一的标准和规范。为保证电动汽车充电设施的规范化和标准化,需制定电动汽车充电通信协议的标准,目前针对电动汽车的非车载充电通信协议国内外没有统一的标准。本标准的目的就是针对电动汽车非车载充电在行业内形成统一的标准,为建立标准化、规范化的电动汽车充电设施奠定良好的基础。 本标准由全国汽车标准化技术委员会电动车辆分技术委员会动力蓄电池及其应用工作组通讯协议标准起草组负责起草。 二、 制定原则 本标准的制定原则是立足国内,参考国际上在该领域的现有成果,结合中国的具体情况,本着科学、开放、适用和促进国内技术发展的原则,对电动汽车电池管理系统与非车载充电机之间的通信协议进行深入研究,制定出适合我国国情并且反应国内外电动汽车充电通信协议研究领域最新成果的标准。 三、 标准起草过程 1.2009 年3 月27 日,电动车辆分技术委员会电动汽车用动力蓄电池及其应用标准化工作组在天津召开了工作组首次会议。根据会上讨论意见,电动车辆分技术委员会秘书处走访了相关单位,综合各单位对该标准参与起草的申请情况和企业技术基础,确定了通讯协议标准起草组。 根据第一次工作组会议精神,标准起草工作组各成员单位按照分工进行了诸多富有成效的工作。标准起草工作组在广泛收集资料并深入研究的基础上形成了标准草案稿。 2.2009年8月17日,在天津召开标准讨论会,针对该标准草案进行了讨论,会后,对标准草稿进行了讨论和修改。 3.2009年9月,标准起草工作组在天津与日产(中国)投资有限公司与日本东京电力公司进行了技术交流,了解了目前国外标准制定情况。 4.2010年1月13—14日,在天津召开标准讨论会,会后,对标准草案进

动力电池、燃料电池相关技术指标测试方法(试行)

动力电池、燃料电池相关技术指标测试方法(试行) 1、动力电池能量密度(PED)测试方法 1.1测试对象 测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。 1.2测试步骤 室温(25℃±2℃)环境下,按照如下步骤测试: 1)按照企业规定的且不小于I 3(A)的电流放电至企业规 定的放电终止条件,静置不小于30min; 2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min; 3)重复步骤1),计量放电能量E(以Wh计); 4)重复步骤2)~3)2次,取3次放电能量E的平均值E average 。 5)用衡器测量测试对象的质量M(以kg计,称重时至少包括GB/T 31467.3-2015附录A.1规定的组成部分); 6)计算测试对象放电能量密度PED(以Wh/kg计),计算公式如下: /average PED E M 2、动力电池(含超级电容器)最大充电倍率(CR)测试方法

2.1测试对象 测试对象为电池系统或电池子系统,且应和GB/T 31467.3-2015的测试对象保持一致。 2.2测试步骤 室温(25℃±2℃)环境下,按照如下步骤测试: 1)按照企业规定的且不小于I 3(A)的电流放电至企业规 定的放电终止条件,静置不小于30min; 2)按照企业规定的充电方式充电至企业规定的充电截止条件(充电时间不大于8h),静置不小于30min; 3)重复步骤1),计量放电容量Q 0(以Ah计); 4)按照企业规定的最快充电方式(该充电方式应不高于GB/T 31484-2015的6.1.1.3使用的充电方式)充电至80%SOC(SOC值为电池管理系统上报数值),静置30min,计量充电时间t(以s计); 5)按照步骤1)相同的电流放电至20%SOC(SOC值为电池管理系统上报数值),静置30min,计量放电容量Q 1(以Ah 计),如果Q 1低于0.55Q 0,则终止试验; 6)重复步骤4)~5)10次,如果测试过程中测试对象温度超过企业规定的最高工作温度,则终止试验; 7)取步骤6)10次充电时间t的平均值t average ,并计算测 试对象最大充电倍率CR(以C计),计算公式如下: 2160/average CR t 3、燃料电池系统(发动机)额定输出功率测试方法

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

BMS电池管理系统使用说明书user's guide of BMS

BMS电池管理系统 Battery Management System 使用说明书 User’s Guide 上海妙益电子科技发展有限公司 Shanghai Mewyeah Technology Development Co.,Ltd.

目录 1 概述Introductio (4) 2 特点Features (4) 3 系统构成Composition of System (5) 4产品命名规则Package Information (5) 4.1终端模块Terminal Modules (5) 4.2中控模块Central Module (6) 4.3集成模块Integral Module (6) 4.4显示模块Display Module (6) 4.4.1组合仪表Dashboard (6) 4.4.2液晶显示器LCD Display (7) 5 技术参数Parameters (7) 5.1终端模块 (7) 5.1中控模块 (7) 5.3集成模块 (8) 5.4显示模块Display Module (8) 5.4.1组合仪表Dashboard (8) 5.4.2液晶显示器LCD Display (8) 6 安装Installing (9) 6.1终端模块Terminal Module (9) 6.1.1 DX201, DX101 (9) 6.1.2 DX202,DX102 (9) 6.2中控模块Central Module (10) 6.3集成模块Integral Module (10) 6.4显示模块 (10) 6.4.1仪表 (10) 6.4.2 液晶显示器 (11) 6.4.2.1 XS201-70,XS101-70 (11) 6.4.2.2 XSQ201-35,XSQ101-35 (12) 7配线(Wiring) (12) 7.1终端模块Terminal Module (13) 7.1.1 DX201-12, DX101-12 (13) 7.1.2 DX202-8, DX102-8 (14) 7.1.3 DX203-20, DX103-20 (15) 7.2中控模块Central Module (15) 7.3集成模块Integral Module (17) 7.3.1 DKX201-8, DKX101-8 (17) 7.3.2 DKX201-16, DKX101-16 (18) 7.3.3 DKX201-20, DKX101-20 (19) 7.4显示模块Display Module (19) 7.4.1仪表Dashboard (19) 7.4.2 液晶显示器LCD Display (20)

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

纯电动车BMS与整车系统CAN通信协议书范本

文件类型:技术类密级:保密 正宇纯电动车 电池管理系统与整车系统CAN通信协议 (GX-ZY-CAN-V1.00) 版本记录 版本制作者日期说明 V1.00 用于永康正宇纯电动车系统姓名日期签名 拟定 审查 核准

1 范围 本标准规定了电动汽车电池管理系统(Battery Management System ,以下简称BMS)与电机控制器(Vehicle Control Unit ,简称VCU)、智能充电机(Intelligent Charger Unit ,简称ICU)之间的通信协议。 本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换。 本标准的CAN 标识符为29位,通信波特率为250kbps 。 本标准数据传输采用低位先发送的格式。 本标准应用于正宇纯电动轿车电池管理系统。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 11898-1:2006 道路车辆 控制器局域网络 第1部分:数据链路层和物理信令(Road Vehicles – Controller Area Network (CAN) Part 1:Data Link Layer and Physical Signalling). SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议 第11部分:物理层,250Kbps ,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair). SAE J1939-21:2006商用车控制系统局域网络(CAN )通信协议 第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer). 3 网络拓扑结构说明 电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。电池管理系统内部主控单元与电池管理单元之间通过内部CAN 总线进行数据通信。电机控制器将BMS 的提供的总电压、电流及最高单体电压、最低单体电压、温度及关键状态显示在车载仪表上。 BMS-CCU BMS-BMU (1#)BMS-BMU (2#) 电池组远程监控终端(BWT) 彩色显示屏 (HMI)电机控制器(MCU ) 智能充电机 (ICU) INCAN CAN2 CAN1 RS232 RS485 图一 整车总线拓扑

BMS电池管理单元用户手册

电池管理单元BMU-L3224 用户手册

1 功能简介 1.实时监测单体电池的电压、温度; 2.实时计算单体电池的SOC、SOH; 3.模块具有主动无损均衡,提高电池组的一致性,有效延长了电池寿命; 4.模块具有干接点输出,可现场报警或控制; 5.模块具有CAN和RS485通讯接口,实时上送数据和告警信息,达到远程监控电池组; 6.模块化设计,方便安装、使用及维护,且模块间相互隔离、可靠性高。 2 技术参数 技术参数 额定规格 备注 模块供电电压 DC24V±15% 最大供电功率 5W 均衡供电电压 DC24V±15% 均衡供电功率 25W 电池监测节数 24节 单台最大支持 电压检测范围 1.0~5.0V 电压检测精度 ±5mV 温度检测数量 24个 单台最大支持 温度检测范围 -20~85℃ 温度检测精度 ±1℃ 电池均衡方式 充放电无损均衡 电池均衡电流 2A±0.2A

输入绝缘电阻 ≥10MΩ,1000VDC 数据通讯接口 RS485,CAN 各1路 通讯波特率 9600bps,500Kbps(默认) 干接点输出 2A@250VAC/30VDC 2路 尺寸及重量 370×206×44(mm)/2.5Kg 安装方式 机架、壁挂 3安装接线说明 3.1安装尺寸图 尺寸图 3.2设备端口定义

端口 端口说明 功能描述 线束推荐 Balanced Power 均衡电源接口 给模块均衡提供外部电源, 接24VDC 1方铜芯线 BI24~BI13- 13~24节电池均衡接口均衡线接电池极柱 0.5方铜芯线BI12~BI1- 1~12节电池均衡接口 均衡线接电池极柱 0.5方铜芯线BV24~BV0 1~24节电池采集接口 采集线接电池极柱 0.5方铜芯线注:BI1-和BV0指该电池组的电压最低点。 端口 端口说明 功能描述 线束推荐 Temperature 温度接口 接NTC温度探头 0.5方平行线 DIP 6位拨码开关 设置模块站址及其他功能 CAN CAN通讯口 通过CAN总线接监控主机 0.3方屏蔽双绞线 250Kbps 通过RS485总线接监控主机 0.3方屏蔽双绞线 RS485 RS485通讯口 9600bps DO1、DO2 干接点输出接口 开关量输出,如干接点报警 1方铜芯线 Power Supply 供电电源接口 为模块提供工作电源, 接24VDC 1方铜芯线 3.3设备接线说明 (1)电池配置: 模块采集部分由4片采集IC组成,支持的常用电池节数配置如下: 采集IC 电压采样线 第1片 BV0~BV6 第2片 BV7~BV12 第3片 BV13~BV18 第4片 BV19~BV24 电池节数 接线方式 第4片 第3片 第2片 第1片 24 6-6-6-6 6 6 6 6 23 5-6-6-6 5 6 6 6 22 5-5-6-6 5 5 6 6 21 5-5-5-6 5 5 5 6 20 5-5-5-5 5 5 5 5 19 4-5-5-5 4 5 5 5

Keysight 智能电池管理系统 Battery Management System

SL1091A BMS BMS BMS SOC BMS BMS BMS BMS BMS

? BMS ? ? BMS ? SOC SOH ? ? ? BMS HiL HiL Scienlab BMS HiL 1 Gbps HiL BMS ± 1 mV ± 2 μA BMS 80 μs 1 MHz

BMS BMS BMS BMS CAN BMS BMS SOC SOH

BMS BMS // PE 1 KV BMS

BMS BMS ? ? ? ? / ? ? BMS SOC SOH SOF ? SOC ? SOH ? SOF ? ? ? ? ? ? / SOC ? ? ? ? ? ? ? ? Pt50Pt100 ? ? ? ? ? ? ? ? / CAN ? ? ? ? dSpace National Instruments ? ? ? ? CAN ? ? ? HiL

0 ... 8 V <1 mV ± 5 A± 10 A ± 40 W± 80 W (3 V –> 5 V)< -80 μs 1 kV PE ±10 mA ±2 μA + 0.05% ±5 A ±1 mA + 0.05% RTD Pt100Pt500Pt1000Ni KTY 1 kV PE 0 … 5 kΩ 0.1 Ω ±0.1 Ω ± 0.1% ±100 mV ±10 μV ±0.1% 1 kV PE 1 kΩ … 100 MΩ 1 kΩ … 1 MΩ 1% 1 MΩ … 100 MΩ 2% 1 kV PE 0 … 650 V 24 V / /PWM HiL EtherCAT 1 kHz CAN BMS BMS

蓄电池使用手册

湖北骆驼蓄电池股份有限公司 蓄电池使用手册 第一章基本知识 安全防护 防护:操作安装蓄电池需佩戴防护眼睛。 防短路:避免金属工具和导线同时接触正负极,以防止短路。 防爆:蓄电池在充电、搬运或震动过程中会产生易爆气体,并从排气孔中排出。环境中氢气浓度超过4%. 遇明火即会发生爆炸。故需保持环境通风,严禁明火。 蓄电池在充电时严禁在未断开电源的情况下搬动或挪动电池;刚充电完毕的电池禁止附近有明火和撞击及摔置。 防酸:蓄电池内的液体为稀硫酸,需小心搬运,垂直放置,防止硫酸溢出。如皮肤接触硫酸,需立即脱去受污染衣物,并立即用大量清水冲洗;如眼睛接触硫酸,需立即用干净的清水冲洗至少2分钟后立即就医;如意外吞食硫酸,立即饮用大量的清水和牛奶,必要时就医。 两极断开及连接顺序 断开:先负后正 连接:先正后负 心法诀窍:任何情况下避免负极单独连接蓄电池! 蓄电池的运输 运输过程中避免过度颠簸、避免撞击 运输环境避免高温(不超过45℃)。 蓄电池不可以倒置或斜置。 搬运时蓄电池避免倾斜超过40度角,以防止酸液从排气孔中流出 蓄电池存储 叠放:蓄电池叠放层次不超过6层,层与层之间要求增加软质绝缘隔离板,严禁挤压,以防蓄电池外壳变形破裂。 环境:高温(≥45℃)会导致蓄电池自放电和电解液中散发加快。避免在高温环境中存放蓄电池,并保持通风。 库存:对蓄电池的库存管理,需坚持先进先出的原则。以防止蓄电池因存储时间过长而失效,产生不必要的损失。 补充电:请定期检测蓄电池,如电压小于12.4V或电眼变黑,必须进行一次完全补充电。 故障名称的解释 硫化:电池6个单格中正极板表面呈黄色或黄白色(正常为棕褐色),板栅酥脆,解剖电池见正负极板活性物质坚硬结实,一折就断,电压明显低于标准,且不能检出其它故障。 电解液污染:加入杂质(铜、铁、氯、锰等)不符合要求的电解液或杂质超标的补加液(如以塘水.河水. 井水.溪水.田水.自来水.饮用矿泉水等作为电池的补加液)。会出现极板、隔板出现异常颜色,有时会有异味产生。 寿命到:电池出厂日期至退回公司的日期超过公司规定的时间,加水帽发黑,池壳色泽变暗,明显陈旧,池壳底部活性物质脱落较多,隔板变黑(炭化),电液混浊,板栅腐蚀。 用户损坏:端子烧损,电池槽盖非制造质量原因引起的爆裂,使用不当造成的电池槽盖损坏,用户更改端子的形状,恶意的损坏电池的极板、隔板、汇流排、铅件等。 过充电:电池壳盖上附有铅沉积物,隔板变黑(炭化)、有高温变形收缩现象;电解液面降低于水位线以

电动汽车电池管理系统(BMS)的研究

电动汽车电池管理系统的研究 摘要 在电动汽车中,电池系统是其中不可或缺的重要组成部分它对电动汽车的续航里程、加速能力和最大爬坡度都会产生直接的影响,由于蓄电池特性高度的非线性、结构的特殊性故容易导致电池寿命的缩短以致损坏。所以电池管理系统是电动汽车的必备重要部件,与电池系统、整车控制系统共同构成电动汽车的三大核心技术。它能保护电动汽车电池的安全可靠使用,发挥电池的能力和影响其使用寿命,通过一系列的管理和控制,从而保障了电动汽车的正常运行。目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一。为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国内外均投入大量的人力物力开展广泛深入的研究。 关键词:电动汽车;电动汽车电池;电池管理系统;功能 目录

1前言 (3) 1.1本研究的意义 (3) 1.2电池管理系统在国内外的发展概况及存在问题 (3) 2电动汽车电池管理系统 (4) 2.1电池管理系统的运行模式 (4) 2.2电池管理系统的技术 (5) 3本文结论 (8) 参考文献 (9)

1前言 随着能源紧缺、石油涨价、城市环境污染的日益严重,替代石油的新能源的开发利用越来越被各国政府所重视。所以说随着各国対新能源汽车的推广,电动汽车会被越来越多的关注,电池系统是电动汽车的关键部件,由于电动汽车的显著特点和优势,各国都在发展电动汽车。根据汽车的使用特点,其实用的动力电池一般应具有比能量高、比功率大、自放电少、工作温度范围宽、能快速充电、使用寿命长和安全可靠等特点,因此,电池管理系统对电动汽车的性能起到了决定性的作用。 1.1本研究的意义 综合各国的电动汽车研究情况,可以发现共同存在的一个现象,即电池是整个电动汽车研究中出问题最多的部件。电动汽车用电池的使用性能和寿命远不能满足电动汽车运营的要求制约着电动汽车事业的发展。能源短缺和环境污染是现今世界汽车工业发展面临的两大挑战,因此开展新能源汽车的研究已经刻不容缓。虽然电池电动汽车有良好的前景,但目前技术门槛比较高尚未产业化,同时燃料电池的可靠性、寿命有待改进,氢气的基础设施有待建立,氢气的来源和供应有待解决。 本研究通过对电动汽车电池和电池管理系统的存在的问题,技术难题和前景来分析动力电池及其管理系统的现状和发展趋势。 1.2电池管理系统在国内外的发展概况及存在问题 近年来,我国的汽车行业发展迅速,已成为世界第四大汽车生产国和第三大汽车消费国。但是我国的石油资源短缺,目前石油进口量以每年两位数字的百分比增长,预计到2010年进口依存度将接近50%。因此大力发展新能源汽车,用电代油是保证我国能源安全的战略措施。因此大力发展新能源汽车是实现我国能源安全、环境保护以及中国汽车工业实现跨越式、可持续发展的需要。 车用动力蓄电池是电动汽车产业化的关键。B电动汽车电池管理系统(BMS)是电动汽车中一个越来越重要的关键部分,近年来已经有了很大提高,但在采集数据的可靠性、SOC的估计精度、均衡技术和安全管理等方面都有待进一步改进和提高。所以,大部分企业在电动汽车研制中曾遭遇尴尬,车用动力电池不仅是制约电动汽车规模发展的技术瓶颈,而且是电动汽车价格居高不下的关键因素,其成本占整车成本的30%~50%。因此,动力BMS的性能对电动汽车使用成本、节能和安全性至关重要。 我国在这方面的研究还刚刚起步,即使美国等汽车工业发达国家的研制工作也不完善我国在“十五”期间设立电动汽车重大研究项目,积极推进BMS研究、开发和工程化应用,取得了一系列的成果和突破。在电动汽车领域,我国与发达国家的科技水平差距不是很大,决定电动汽车产业成熟度的关键因素是动力电池技术,目前中国企业在电

锂电池管理系统功能介绍

1.ABMS-EV系列电池管理系统 概述: ABMS-EV系列锂电池管理系统应用于纯电动大巴、混合动力大巴、纯电动汽车、混合动力汽车。采用层级设计,严格执行汽车相关标准,硬件平台全部采用汽车等级零部件,软件符合汽车编程规范。 2、ABMS-EV01电池管理系统: 2.1)概述: ABMS-EV01系列锂电池管理系统主要用于低速电动车,物流车,环卫车等,采用一体化设计,集电池电压温度检测,SOC估算,绝缘检测,均衡管理,保护,整车通信,充电机通信,及交流充电桩接口检测为一体,结构紧凑,功能完善。 2.2) 选型号说明: 2.3)技术参数: 2.4)产品外观:

3、ABMS-EV02电池管理系统: 3.1)概述: ABMS-EV02系列锂电池管理系统主要用于电动叉车,电动搬运车等快速充放电场合,采用一体化设计,集电池电压温度检测与保护,SOC估算,均衡管理,通信等功能。 3.2) 选型号说明: 3.3)技术参数:

3.4)产品外观:

4、ABMS-EV03电池管理系统: 4.1)概述: ABMS-EV03系列锂电池管理系统主要用于电动叉车,电动搬运车等需要快速充放电场合,采用一体化设计,集电池电压温度检测,SOC估算,均衡管理,保护,通信,LED电量指示,制热,制冷管理,双电源回路设计,充电机,车载电源独立供电。 4.2) 选型号说明:

4.3)技术参数: 4.4)产品外观: 5、ABMS-EK01电池管理系统:

5.1)概述: ABMS-EK01系列锂电池管理系统主要用于电动自行车,电动摩托车等,采用软硬件多重冗余保护等,充电MOS控制,放电继电器控制,实现慢充快放,一体化设计,集电池检测,SOC估算,保护,通信为一体。 5.2)选型说明: 5.3)技术参数:

100AH直流屏技术协议投标书

100AH/220V微机智能直流电源屏 (技术部分) 投 标 书 一、总则 1.本技术标书适用于直流系统中采用高频开关电源的直流成套装置的功能 设计、结构、性能、安装和试验等方面的技术要求。 2.本技术标书充分引述有关标准和规范的条文,投标方提供产品符合本规范 书和工业标准。 3.本技术标书所使用的标准如遇与招标方所执行的标准不一致时,按较高标 准执行。 4.本技术文件作为订货合同的技术附件,与合同正文具有同等法律效力。 二、直流屏技术标准 本标书遵循的主要现行标准有: DL/T459-2000 《电力系统直流电源柜订货技术条件》 DL/T637-1997 《阀控式密封铅酸蓄电池订货技术》 GB/T17626-1998 《电磁兼容试验和测量技术》 GB/T7261-1987 《继电器及继电器保护装置基本试验方法》 国电公司文件《防止电力生产重大事故的二十五项重点要求继电保护实施细则》部颁《电力系统继电保护及安全自动装置反事故措施要点》GB7261-87 《继电器及继电保护装置基本试验方法》 GB2681-81 《电工成套装置中导线颜色》 GB/17478-1998 《低压直流设备的特性及安全要求》

DL/T720-2000 《电力系统继电保护柜、屏通用技术条件》 GB50062-92 《电力装置的继电保护及安全自动装置设计规范》 GB50171-92 《电气装置安装工程盘、柜及二次回路结线施工及验收规范》GB/14537-93 《量度继电器和保护装置的冲击和碰撞试验》 三、直流屏使用环境环境条件 1.使用环境条件 1) 海拔高度:≤1500m; 2) 耐地震能力:地面水平加速度:0.3g地面垂直加速度:0.15g; 3) 不结露的最大相对湿度:≤90 %。 2.室内安装条件 室内的温度和湿度; 1) 最高气温:40℃; 2) 最低气温:-15℃; 3) 相对湿度(25℃):≤85%; 4) 室内接地电阻:≤0.5Ω; 5) 供电电压:AC380V; 6) 供电频率:50Hz。 四、直流屏技术性能 1. 设备概况 1)直流系统额定电压:220V; 2)高频开关电源:采用3个ST-230D10充电模块,一套充电装置; 3)直流系统接线:单母分段接线,馈出8回路; 4)蓄电池组数: 一组,电池间采用完全绝缘的连接方式,中间无焊接; 5)蓄电池型式:铅酸免维护蓄电池; 6)蓄电池组充电方式:以浮充电、均衡充电运行; 7)蓄电池组容量:100AH ; 8)交流输入:2路380V,自动切换; 9)直流输出:控制回路4路20A,合闸回路4路32A (选用施耐德直流回 路专用开关); 10)柜内充电回路和蓄电池回路装设数显电流、电压等表计。 2.直流屏基本技术条件 交流输入电压:AC380V±15%; 交流电源频率:50±2% Hz; 稳流精度:≤±0.5 %; 稳压精度:≤±0.5 %; 纹波系数:<±0.5 %; 效率:≥ 92 %; 噪声:≤ 40 dB(距装置1m处); 通信接口:RS485串行口; 冷却方式:风自冷。 3.设备技术性能 1)系统结构:N+1模块化结构热备份,采用带电热插拔;

相关文档
最新文档