备战中考数学复习锐角三角函数专项易错题附答案

备战中考数学复习锐角三角函数专项易错题附答案
备战中考数学复习锐角三角函数专项易错题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,

【答案】(1)∠BPQ=30°;

(2)该电线杆PQ的高度约为9m.

【解析】

试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;

(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.

试题解析:延长PQ交直线AB于点E,

(1)∠BPQ=90°-60°=30°;

(2)设PE=x米.

在直角△APE中,∠A=45°,

则AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,BE=

3

3

PE=

3

3

x米,

∵AB=AE-BE=6米,

则3

解得:3

则BE=(33+3)米.

在直角△BEQ中,

QE=

3

3

BE=

3

3

(33+3)=(3+3)米.

∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).

答:电线杆PQ的高度约9米.

考点:解直角三角形的应用-仰角俯角问题.

2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.

(1)求证:△MED∽△BCA;

(2)求证:△AMD≌△CMD;

(3)设△MDE的面积为S1,四边形BCMD的面积为S 2,当S2=17

5

S1时,求cos∠ABC的

值.

【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .

【解析】

【分析】

(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;

(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以

2

1

1

4

ACB

S MD

S AB

??

==

?

??

,所以

S△MCB=1

2

S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=

2

5

S1,由于1

EBD

S ME

S EB

=,从而可

5

2

ME

EB

=,设ME=5x,EB=2x,从而可求出AB=14x,BC=

7

2

,最后根据锐角三角函数的

定义即可求出答案.【详解】

(1)∵MD∥BC,∴∠DME=∠CBA,

∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;

(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC , ∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,

∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,

MD MD AMD CMD AM CM =??

∠=∠??=?

, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,

由(1)可知:△MED ∽△BCA , ∴

2

114

ACB S MD S

AB ??== ???, ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =

1

2

S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=2

5

S 1, ∵

1EBD

S ME

S

EB

=

, ∴1125

S ME

EB S =

5

2

ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x , ∵

1

2

MD ME AB BC ==,

∴BC=10x , ∴cos ∠ABC=105

147

BC x AB x ==. 【点睛】

本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.

3.如图,反比例函数() 0k y k x

=

≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=?. (1)求k 的值及点B 的坐标; (2)求tanC 的值.

【答案】(1)2k =,()1,2B --;(2)2. 【解析】

【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数

()0k

y k x

=

≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;

(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=? , 90BHC ∠=? ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C

tan 即可.

【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴

A (1,2),

把A (1,2)代入 k

y x

= 得2k =, ∵反比例函数()0k

y k x

=

≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,

∴()1

2B --, ;

(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,

90ABC ∠=? , 90BHC ∠=? ,∴C ABH ∠∠=,

∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=,

∴AD 2

2OD 1

tanC tan AOD =∠=

==.

【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.

4.如图,抛物线C 1:y=(x+m )2(m 为常数,m >0),平移抛物线y=﹣x 2,使其顶点D 在抛物线C 1位于y 轴右侧的图象上,得到抛物线C 2.抛物线C 2交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C ,设点D 的横坐标为a .

(1)如图1,若m=.

①当OC=2时,求抛物线C 2的解析式;

②是否存在a ,使得线段BC 上有一点P ,满足点B 与点C 到直线OP 的距离之和最大且AP=BP ?若存在,求出a 的值;若不存在,请说明理由; (2)如图2,当OB=2

﹣m (0<m <

)时,请直接写出到△ABD 的三边所在直线的距

离相等的所有点的坐标(用含m 的式子表示). 【答案】(1) ①y=﹣x 2+x+2.②.(2)P 1(﹣m ,1),P 2(

﹣m ,﹣3),P 3(﹣

﹣m ,3),P 4(3﹣m ,3).

【解析】

试题分析:(1)①首先写出平移后抛物线C 2的解析式(含有未知数a ),然后利用点C

(0,2)在C2上,求出抛物线C2的解析式;

②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;

(2)解题要点有3个:

i)判定△ABD为等边三角形;

ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;

iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.

试题解析:(1)当m=时,抛物线C1:y=(x+)2.

∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,

∴D(a,(a+)2).

∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).

①∵OC=2,∴C(0,2).

∵点C在抛物线C2上,

∴﹣(0﹣a)2+(a+)2=2,

解得:a=,代入(I)式,

得抛物线C2的解析式为:y=﹣x2+x+2.

②在(I)式中,

令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);

令x=0,得:y=a+,∴C(0,a+).

设直线BC的解析式为y=kx+b,则有:

,解得,

∴直线BC的解析式为:y=﹣x+(a+).

假设存在满足条件的a值.

∵AP=BP,

∴点P在AB的垂直平分线上,即点P在C2的对称轴上;

∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,

∴OP⊥BC.

如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,

则OP⊥BC,OE=a.

∵点P在直线BC上,

∴P(a,a+),PE=a+.

∵tan∠EOP=tan∠BCO=,

∴,

解得:a=.

∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"

(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,

∴D(a,(a+m)2).

∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.

令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,

∴2a+m=2﹣m,

∴a=﹣m.

∴D(﹣m,3).

AB=OB+OA=2﹣m+m=2.

如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.

∵tan∠ABD=,

∴∠ABD=60°.

又∵AD=BD,∴△ABD为等边三角形.

作∠ABD的平分线,交DE于点P1,则P1E=BE?tan30°=×=1,

∴P1(﹣m,1);

在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.

在Rt△BEP2中,P2E=BE?tan60°=?=3,

∴P2(﹣m,﹣3);

易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.

∴P3(﹣﹣m,3)、P4(3﹣m,3).

综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,

其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【考点】二次函数综合题.

5.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以

为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:

(1)点的坐标(用含的代数式表示);

(2)当点在运动过程中,所有使与菱形的边所在直线相切的的

值.

【答案】解:(1)过作轴于,

,,

,,

点的坐标为.

(2)①当与相切时(如图1),切点为,此时,

,,

②当与,即与轴相切时(如图2),则切点为,,

过作于,则,

,.

③当与所在直线相切时(如图3),设切点为,交于,

则,,

过作轴于,则,

化简,得,

解得,

所求的值是,和.

【解析】

(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标

⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC,

等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.

6.如图,直线y=1

2

x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣

1

2

x2+bx+c经过

A、B两点,与x轴的另一个交点为C.

(1)求抛物线的解析式; (2)根据图象,直接写出满足

12x +2≥﹣1

2

x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.

【答案】(1)213

222

y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3). 【解析】 【分析】 (1)由直线y =1

2

x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式;

(2)观察图象,找出直线在抛物线上方的x 的取值范围;

(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE CO

AE BO

=,最后分类讨论确定点D 的坐标. 【详解】 解:(1)由y =

1

2

x +2可得: 当x =0时,y =2;当y =0时,x =﹣4, ∴A (﹣4,0),B (0,2),

把A 、B 的坐标代入y =﹣12x 2+bx +c 得: 322

b c ?=-?

??=?,,

∴抛物线的解析式为:213

222y x x =-

-+ (2)当x ≥0或x ≤﹣4时,12x +2≥﹣1

2

x 2+bx +c

(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,

由213

222

y x x =

-+令y =0, 解得:x 1=1,x 2=﹣4, ∴CO =1,AO =4,

设点D 的坐标为(m ,213

222

m m --+),

∵∠DAC =∠CBO ,

∴tan ∠DAC =tan ∠CBO , ∴在Rt △ADE 和Rt △BOC 中有

DE CO

AE BO

=, 当D 在x 轴上方时,213

2

12242

--+=

+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去), ∴点D 的坐标为(0,2).

当D 在x 轴下方时,213

(2)

12242

---+=

+m m m 解得:m 1=2,m 2=﹣4(不合题意,舍去), ∴点D 的坐标为(2,﹣3),

故满足条件的D 点坐标为(0,2)或(2,﹣3).

【点睛】

本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.

7.如图,已知二次函数2

12

y x bx c =

++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P . (1)求这个二次函数解析式;

(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标;

(3)作直线AP ,在抛物线的对称轴上是否存在一点M ,在直线AP 上是否存在点N ,使AM +MN 的值最小?若存在,求出M 、N 的坐标:若不存在,请说明理由.

【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-

7 5,

14

5

).

【解析】【分析】

(1)将点A、

B坐标代入二次函数表达式,即可求解;

(2)利用S△ABC= 1

2

×AC×BH=

1

2

×BC×y A,求出sinα=

22

2105

BH

AB

==,则tanα=

1

2

,在

△PMD中,tanα= MD

PM

=

1

2

22

x

=

+

,即可求解;

(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.

【详解】

(1)将点A、B坐标代入二次函数表达式得:

9

633

2

1

2

b

b c

?

=-+

??

?

?=--+

??

,解得:

1

3

2

b

c

=-

?

?

?

=-

??

故:抛物线的表达式为:y=1

2

x2-x-

3

2

令y=0,则x=-1或3,令x=0,则y=-3

2

故点C坐标为(3,0),点P(1,-2);

(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,

由题意得:AB=210,AC=62,BC=4,PC=22,

S△ABC=1

2

×AC×BH=

1

2

×BC×y A,

解得:BH=22,

sinα=BH

AB

=

22

210

=

5

,则tanα=

1

2

由题意得:GC=2=PG,故∠PCB=45°,

延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,

在△PMD中,tanα=MD

PM

=

22

x+

=

1

2

解得:x=22,则CD=2x=4,

故点P(7,0);

(3)作点A关于对称轴的对称点A′(5,6),

过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,

直线AP表达式中的k值为:8

4-

=-2,则直线A′N表达式中的k值为

1

2

设直线A′N的表达式为:y=1

2

x+b,

将点A′坐标代入上式并求解得:b=7

2

故直线A′N的表达式为:y=1

2

x+

7

2

…①,

当x=1时,y=4,

故点M(1,4),

同理直线AP的表达式为:y=-2x…②,

联立①②两个方程并求解得:x=-7

5

故点N(-7

5

14

5

).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.

8.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为

60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)

【答案】工件如图摆放时的高度约为61.9cm.

【解析】

【分析】

过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.

【详解】

解:如图,过点A作AP⊥CD于点P,交BC于点Q,

∵∠CQP=∠AQB,∠CPQ=∠B=90°,

∴∠A=∠C=60°,

在△ABQ中,∵AQ=(cm),

BQ=AB tan A=20tan60°=20(cm),

∴CQ=BC﹣BQ=60﹣20(cm),

在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,

∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),

答:工件如图摆放时的高度约为61.9cm.

【点睛】

本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.

9.如图①,在菱形ABCD 中,60B ?∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作

//PN AC ,且3

PN PQ =

,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S . (1)用含t 的代数式表示线段PQ 的长. (2)当点M 落在边BC 上时,求t 的值. (3)当0t 1<<时,求S 与t 之间的函数关系式,

(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值

【答案】(1)23PQ t =;(2)

45

;(3)2193403163t t -+-;(4) 2

3t = 或

8

7

t = . 【解析】 【分析】

(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;

(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得3

,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,PN=

3

2

PQ=3t ,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当

4

5

<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;

(4)分两种情况:当0<t≤4

5

时,△ACD是等边三角形,AC=AD=4,得出OA=2,OG是

△MNH的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可;

当4

5

<t≤2时,由平行线得出△OEF∽△MEQ,得出

EF OF

EQ MQ

=,即

2

3

3

t

t

EF t

-

=

+

解得EF=

2

33

2t t

-

,得出EQ=

2

33

2

3

t t

t

-

+,由三角形面积关系得出方程,解方

程即可.

【详解】

(1)∵在菱形ABCD中,∠B=60°,

∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,

∵PQ⊥AC,

∴△APQ是等腰三角形,

∴PF=QF,PF=PA?sin60°=2t×3

2

=3t,

∴PQ=23t;

(2)当点M落在边BC上时,如图2所示:

由题意得:△PDN是等边三角形,

∴PD=PN,

∵333t=3t,

∴PD=3t,

∵PA+PD=AD,

即2t+3t=4,

解得:t=4

5

(3)当0<t≤4

5

时,如图1所示:

PQ=23t,PN=

3

2

PQ=

3

2

×23t=3t,

S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;

当4

5

<t<1时,如图3所示:

∵△PDN是等边三角形,

∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,

∴NE=PN-PE=3t-(4-2t)=5t-4,

∴FN=3NE=3(5t-4),

∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×1

2

×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;

(4)分两种情况:当0<t≤4

5

时,如图4所示:

∵△ACD是等边三角形,

∴AC=AD=4,

∵O是AC的中点,

∴OA=2,OG是△MNH的中位线,

∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,

∴△MNH 的面积=12MN×NH=12×23t×(8t-4)=1

3

×63t 2, 解得:t=23

; 当

4

5

<t≤2时,如图5所示:

∵AC ∥QM , ∴△OEF ∽△MEQ ,

∴EF OF EQ MQ =233t

t EF t -=+, 解得:2332t t -,

∴2

332

34t t t t --+,

∴△MEQ 的面积=12×3t×2

3322

34t t t t -+)=1332,

解得:t=

87

; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为

23

或87

. 【点睛】

本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.

10.如图,AB 是⊙O 的直径,PA 、PC 与⊙O 分别相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E . (1)求证:∠EPD=∠EDO ; (2)若PC=3,tan ∠PDA=

3

4

,求OE 的长.

【答案】(1)见解析;(25.【解析】

【分析】

(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=3

4

,可求出CD=2,进而求得

OC=3

2

,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.

【详解】

(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,

∵DE⊥PO,

∴∠PAO=∠E=90°,

∵∠AOP=∠EOD,

∴∠APO=∠EDO,

∴∠EPD=∠EDO.

(2)连接OC,

∴PA=PC=3,

∵tan∠PDA=3

4

∴在Rt△PAD中,

AD=4,22

PA AD

+,∴CD=PD-PC=5-3=2,

∵tan∠PDA=3

4

∴在Rt△OCD中,

OC=3

2

22

OC CD

+

5

2

∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,

∴PD

DO =

PE

DE

=

DE

OE

=2,

∴DE=2OE,

中考数学易错题专题训练-二次函数练习题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积. 【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15. 【解析】 【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式; (2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标; (3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积. 【详解】(1)设抛物线顶点式y=a(x+1)2+4, 将B(2,﹣5)代入得:a=﹣1, ∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3; (2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3), 令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1, 即抛物线与x轴的交点为:(﹣3,0),(1,0); (3)设抛物线与x轴的交点为M、N(M在N的左侧), 由(2)知:M(﹣3,0),N(1,0), 当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5), ∴S△OA′B′=1 2 ×(2+5)×9﹣ 1 2 ×2×4﹣ 1 2 ×5×5=15. 【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的

锐角三角函数专题

如有帮助欢迎下载支持 锐角三角函数专题 共100分 命题人:王震宇 张洪林 一、选择题(30分) 1、如果∠A 是锐角,且A cos A sin =,那么∠A=_______。 A. 30° B. 45° C. 60° D. 90° 2. CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=________。 A. 5 3 B. 4 3 C. 3 4 D. 5 4 3、如果130sin sin 22=?+α,那么锐角α的度数是________。 A. 15° B. 30° C. 45° D. 60° 4、已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是________。 A. 32B sin = B. 32B cos = C. 3 2 B tan = 5、在Rt △AB C 中,如果各边长度都扩大2倍,那么锐角A 的正切值( ) A. 没有变化 B. 扩大2倍 C.缩小2倍 D. 不能确定 6、 在△ABC 中,∠C =90°,AC =BC ,则sin A 的值等于( ) A. 2 1 B. 22 C. 2 3 D. 1 7、已知α为锐角,下列结论 ①1cos sin =+αα ②如果?>45α,那么ααcos sin > ③如果2 1 cos > α,那么?<60α ④ααsin 1)1(sin 2-=- 正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8、 △ABC 中,∠C =90°,53 sin = A ,则BC ∶AC 等于( ) A. 3∶4 B. 4∶3 C. 3∶5 D. 4∶5: 9、 如果α是锐角,且5 4 sin = α,那么)90cos(α-?=( ) A. 54 B. 43 C. 53 D. 5 1. 10、如右图,CD 是平面镜,光线从A 点出发经过CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为( )

初中数学锐角三角函数的难题汇编及解析

初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin ∠E 的值为( ) A . 12 B . 2 C . 3 D . 3 【答案】A 【解析】 【分析】 首先连接OC ,由CE 是⊙O 切线,可证得OC ⊥CE ,又由圆周角定理,求得∠BOC 的度数,继而求得∠E 的度数,然后由特殊角的三角函数值,求得答案. 【详解】 如图,连接OC , ∵CE 是⊙O 的切线, ∴∠OCE=90°, ∵OA=OC , ∴∠OCA=∠A=30°, ∴∠COE=∠A+∠OCA=60°, ∴∠E=180°-90°-60°=30°, ∴sinE=sin30°=12 . 故选A. 2.如图,在ABC ?中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且1 2 MN BC = ,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ?的面积减去CNE ?的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )

A . B . C . D . 【答案】A 【解析】 【分析】 设a =1 2BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD ?S △CNE ,即可求解. 【详解】 解:设a = 1 2 BC ,∠B =∠C =α,则MN =a , ∴CN =BC?MN?BM =2a?a?x =a?x ,DM =BM·tanB =x·tanα,EN =CN?tanC =(a?x )·tanα, ∴y =S △BMD ?S △CNE = 1 2 (BM·DM?CN·EN )=()()2 21tan tan 22 2x a x a tan x a ααα????-?=? ? --, ∵ 2 a tan α ?为常数, ∴上述函数图象为一次函数图象的一部分, 故选:A . 【点睛】 本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.

第28章_锐角三角函数全章教案

课题锐角三角函数——正弦 一、教学目标 1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 2、能根据正弦概念正确进行计算 3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。 二、教学重点、难点 重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实. 难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。 三、教学过程 (一)复习引入 操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片) 小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。 你想知道小明怎样算出的吗? 师:通过前面的学习我们知道,利用相似三角形的方法可以测 算出旗杆的大致高度; 实际上我们还可以象小明那样通过测量一些角的度数和一些线 段的长度,来测算出旗杆的高度。 这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。 下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m,那么需要准备多长的水管? 分析: 问题转化为,在Rt△ABC中,∠C=90o,∠A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即 34 1米 10米 ?

中考数学易错题精选-锐角三角函数练习题及答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3AB DE ADE = ==≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC. (1)求证:∠AEC=90°; (2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由; (3)若DC=2,求DH的长. 【答案】(1)证明见解析; (2)四边形AOCD为菱形; (3)DH=2. 【解析】 试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得 ,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出 ∠AEC=90°; (2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形); (3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由 DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长. 试题解析:(1)连接OC,

锐角三角函数专项练习题

1 锐角三角函数专项练习题 在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

) 正切的邻边的对边Atan??baA?tan0tan?A (∠A为锐角) 任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 30°、45°、60°特殊角的三角函数值 三角函数 30° 45° 60° ?cos232221 ?tan33 1 3

基础练习 1.如图,在Rt△ABC中,∠C为直角,CD⊥AB于D,已知AC=3,AB=5,则tan∠BCD等于( ) A.43; B.34; C.53; D.54 2.Rt△ABC中,∠C为直角,AC=5,BC=12,那么下列∠A的四个三角函数中正确的是( ) A. sinA=135; B.cosA=1312; C. tanA=1213; D.tanB=125 )90cot(tanAA???)90tan(cotAA??? BAcottan? BAtancot?)90cos(sinAA???)90sin(cosAA??? BAcossin?BAsincos?A90B90??????????得由BA 对边 邻边斜边 A C B b a c A90B90??????????得由BA D C A B 2

3 ..在Rt△ABC中,∠C为直角,AC=4,BC=3,则sinA=(). A. 43; B. 34; C. 53; D. 54. 4 在Rt△ABC中,∠C为直角,sinA=22,则cosB的值是( ). A. 21; B. 23; C.1; D. 22. 5. 4sintan5????若为锐角,且,则为( ) 933425543ABCD. 6.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式 是() A. c =sinaA B. c =cosaA C.c = a·tanA D. c = tan aA 7、??45cos45sin?的值等于() A.2 B. 213? C. 3 D. 1 8.在△ABC中,∠C=90°,BC=2,2sin3A?,则边AC的长是() A5 B.3 C43 D13 9.如图,两条宽度均为40m的公路相交成α角,那么这两条公路在相交处的公共部分(图 中阴影部分)的路面面积是() A.?sin1600(m2) B.?cos1600(m2) C.1600sinα(m2) D.1600cosα(m2) 10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=31,则 tanA=()

深圳市初中数学锐角三角函数的解析含答案

深圳市初中数学锐角三角函数的解析含答案 一、选择题 1.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是() A.4 B.83C.6 D.43 【答案】B 【解析】 【分析】 设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案. 【详解】 设三角板与圆的切点为C,连接OA、OB, 由切线长定理知,AB=AC=3,AO平分∠BAC, ∴∠OAB=60°, 在Rt△ABO中,OB=AB tan∠OAB3 ∴光盘的直径为3 故选:B. 【点睛】 本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数. 2.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图: (1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C; (2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D; (3)连接BD,BC. 根据以上作图过程及所作图形,下列结论中错误的是()

A.∠ABD=90°B.CA=CB=CD C.sinA= 3 2 D.cosD= 1 2 【答案】D 【解析】 【分析】 由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论. 【详解】 由作法得CA=CB=CD=AB,故B正确; ∴点B在以AD为直径的圆上, ∴∠ABD=90°,故A正确; ∴点C是△ABD的外心, 在Rt△ABC中,sin∠D=AB AD = 1 2 , ∴∠D=30°,∠A=60°, ∴sinA= 3 2 ,故C正确;cosD= 3 2 ,故D错误, 故选:D. 【点睛】 本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形. 3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为() A.23B.3C.33D.3 【答案】A 【解析】

锐角三角函数全章教案

锐角三角函数全章教案 单元要点分析 内容简介 本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容.第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用. 相似三角形和勾股定理等是学习本章的直接基础. 本章属于三角学中的最基础的部分内容,而高中阶段的三角内容是三角学的主体部分,无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础.教学目标 1.知识与技能 (1)通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值. (2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角. (3)运用三角函数解决与直角三角形有关的简单的实际问题. (4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题. 2.过程与方法 贯彻在实践活动中发现问题,提出问题,在探究问题的过程中找出规律,再运用这些规律于实际生活中. 3.情感、态度与价值观 通过解直角三角形培养学生数形结合的思想. 重点与难点 1.重点 (1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,?应该牢牢记住. (2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题. 2.难点 (1)锐角三角函数的概念.

(2)经历探索30°,45°,60°角的三角函数值的过程,发展学生观察、分析,?解决问题的能力. 教学方法 在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解.?讲课时应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.故教学中应注意以下几点: 1.突出学数学、用数学的意识与过程.三角函数的应用尽量和实际问题联系起来,减少单纯解直角三角形的问题. 2.在呈现方式上,突出实践性与研究性,三角函数的意义要通过问题经出,?再加以探索认识. 3.对实际问题,注意联系生活实际. 4.适度增加训练学生逻辑思维的习题,减少机械操作性习题,?增加探索性问题的比重.课时安排 本章共分9课时. 28.1 锐角三角函数4课时 28.2 解直角三角形4课时 小结1课时 28.1 锐角三角函数 内容简介 本节先研究正弦函数,在此基础上给出余弦函数和正切函数的概念.通过两个特殊的直角三角形,让学生感受到不管直角三角形大小,只要角度不变,那么它们所对的边与斜边的比分别都是常数,这为引出正弦函数的概念作好铺垫.这样引出正弦函数的概念,能够使学生充分感受到函数的思想,由于教科书比较详细地讨论了正弦函数的概念,因此对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比着正弦函数自己完

中考数学易错题汇编及答案

初中数学选择、填空、简答题 易错题集锦及答案 一、选择题 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有( B ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( C ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2 -(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2 ,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

《锐角三角函数》题型分析

《锐角三角函数》题型分析 【经典范例引路】 例1(考察基本的三角函数关系)在Rt △ABC 中,∠C =900,AC =12,BC =15。 (1)求AB 的长;(2)求sinA 、cosA 的值;(3)求A A 22cos sin +的值;(4)求tanA ?tanB 的值。 变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。 (2)在Rt △ABC 中,∠A =900 ,如果BC =10,sinB =0.6,那么AC = 。 解题关键:熟记锐角三角函数的基本概念及公式: 特别要熟记的内容:当∠A+∠B =900时,(1)sinA =cosB =cos (900-A ); (2)sin 2A+ sin 2B =1或sin 2A+ cos 2A =1;cos 2 A+ cos 2B =1 (3)tanA ?tanB=1 例2(考察特殊角的计算)计算:020045sin 30cot 60sin +? 解题关键:扎实的实数计算能力是关键,尤其是分数及含有根号的无理数计算化简 例3(考察锐角三角函数值的转换)已知,在Rt △ABC 中,∠C =900,2 5 tan = B ,那么cosA ( ) A 、 25 B 、35 C 、5 5 2 D 、32 变式:已知α为锐角,且5 4 cos = α,则ααtan sin += 。 解题关键:已知任意一个锐角三角函数值都可以转换出其它两个锐角三角函数值 例4(考察锐角三角函数的增减性及二次根式、绝对值的化简问题) 已知009030<<<βα,则αβαβcos 12 3 cos )cos (cos 2-+- --= 。 解题关键:(1)理解锐角三角函数的增减性:sinA 和tanA 的值随∠A 的增大而增大,即角度越大,sinA 和tanA 的值就越大,而cosA 的值随∠A 的增大而减小(反之也成立)。 (2)记得公式==a a 2

第二十八章 锐角三角函数全章测试(一)

第二十八章 锐角三角函数全章测试 一、选择题 1.Rt △ABC 中,∠C =90°,若BC =4,,3 2sin =A 则AC 的长为( ) A .6 B .52 C .53 D .132 2.⊙O 的半径为R ,若∠AOB =α ,则弦AB 的长为( ) A .2 sin 2α R B .2R sin α C .2 cos 2α R D .R sin α 3.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .312 B .12 C .324 D .348 4.若某人沿倾斜角为α 的斜坡前进100m ,则他上升的最大高度是( ) A . m sin 100 α B .100sin α m C . m cos 100 β D .100cos β m 5.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( ) A .15m B .12m C .9m D .7m 6.P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 点,若∠APB =2α ,⊙O 的半径为R ,则AB 的长为( ) A . α α tan sin R B . α α sin tan R C . α α tan sin 2R D . α α sin tan 2R 7.在Rt △ABC 中,AD 是斜边BC 上的高,若CB =a ,∠B =β ,则AD 等于( ) A .a sin 2β B .a cos 2β C .a sin β cos β D .a sin β tan β 8.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么 AB DC 的值为( ) A .sin ∠APC B .cos ∠APC C .tan ∠APC D . APC ∠tan 1 9.如图所示,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆的仰角∠ECA 为30°,旗杆底部的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )

中考数学易错题专题训练及答案

中考数学易错题专题训练 班级: 姓名: 一、选择题。 1、在实数123.0,330tan ,60cos ,7 22 , 2121121112.0,,14.3,64,3,80032---- π中,无理数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、算式2222 2222+++可化为( ) A 、42 B 、28 C 、82 D 、16 2 3、关于x 的一元二次方程(a -5)x 2 -4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 4、如果关于x 的一元二次方程0962 =+-x kx 有两个不相等的实数根,那么k 的取值范围是( ) A 、1k 5、不等式2)2(2-≤-x x 的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组2x 3 x +12x 2>-??≥-? —的最小整数解是( ) A 、-1 B 、0 C 、2 D 、3 7、如图,反比例函数y=在第二象限的图象上有一点A ,过点A 作AB ⊥x 轴于B ,且S △AOB =2,则k 的值为( ) A.﹣4 C.﹣2 8、如图,在函数中x y 1 = 的图象上有三点A 、B 、C ,过这三点分别向x 轴、y 轴作垂线,过每一点所作两条垂线与x 轴、y 轴围成的矩形的面积分别为S 1、S 2、S 3,则( ) A 、S 1>S 2>S 3 B 、S 1<S 2<S 3 C 、S 1<S 3<S 2 D 、S 1=S 2=S 3 9、方程,可以化成( ) A. B.

人教数学 锐角三角函数的专项 培优易错试卷练习题含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP. (1)求证:直线CP是⊙O的切线. (2)若BC=2,sin∠BCP=,求点B到AC的距离. (3)在第(2)的条件下,求△ACP的周长. 【答案】(1)证明见解析(2)4(3)20 【解析】 试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可; (2)利用锐角三角函数,即勾股定理即可. 试题解析:(1)∵∠ABC=∠ACB, ∴AB=AC, ∵AC为⊙O的直径, ∴∠ANC=90°, ∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB, ∵∠CAB=2∠BCP, ∴∠BCP=∠CAN, ∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°, ∵点D在⊙O上, ∴直线CP是⊙O的切线; (2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°, ∴CN=CB=, ∵∠BCP=∠CAN,sin∠BCP=, ∴sin∠CAN=, ∴ ∴AC=5, ∴AB=AC=5, 设AF=x,则CF=5﹣x, 在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2, 在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2, ∴25﹣x2=2O﹣(5﹣x)2, ∴x=3, ∴BF2=25﹣32=16, ∴BF=4, 即点B到AC的距离为4. 考点:切线的判定 2.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点 F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60) 【答案】2.5m. 【解析】

初中数学锐角三角函数的易错题汇编含答案

初中数学锐角三角函数的易错题汇编含答案 一、选择题 1.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是() A.﹣5 B.﹣4 C.﹣3 D.﹣2 【答案】C 【解析】 分析:根据题意可以求得点B的坐标,从而可以求得k的值. 详解:∵四边形ABCD是菱形, ∴BA=BC,AC⊥BD, ∵∠ABC=60°, ∴△ABC是等边三角形, ∵点A(1,1), ∴OA=, ∴BO=, ∵直线AC的解析式为y=x, ∴直线BD的解析式为y=-x, ∵OB=, ∴点B的坐标为(?,), ∵点B在反比例函数y=的图象上, ∴, 解得,k=-3, 故选C. 点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答. 2.如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地起飞,垂直上升1000米到

达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( ) A .1000sin α米 B .1000tan α米 C .1000tan α米 D .1000sin α 米 【答案】C 【解析】 【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB α= ,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米, ∴tan AC AB α= , ∴1000tan tan AC AB αα ==米. 故选:C . 【点睛】 本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.在Rt △ABC 中,∠C=90°,如果AC=2,cosA= 23,那么AB 的长是( ) A .3 B .43 C 5 D 13【答案】A 【解析】 根据锐角三角函数的性质,可知cosA= AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A. 点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边 斜边,然后带入数值即可求解. 4.如图,在ABC ?中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重

省优秀课一等奖:锐角三角函数全章教案

【锐角三角函数全章教案】 锐角三角函数(第一课时) 教学三维目标: 一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。 二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。 三.情感目标:提高学生对几何图形美的认识。 教材分析: 1.教学重点: 正弦,余弦,正切概念 2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动 1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。 2.归纳三角函数定义。 siaA= 斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边 的对边 A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。 4.学生练习P21练习1,2,3 二.探究活动二 1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°

2. 求下列各式的值 (1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)0 4530cos sia +ta60°-tan30° 三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=2 3 ,AC=23,求AB 四.小结 五.作业课本p85-86 2,3,6,7,8,10

解直角三角形应用(一) 一.教学三维目标 (一)知识目标 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法. 2.难点:三角函数在解直角三角形中的灵活运用. 3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=b a (2)三边之间关系 a 2 + b 2 = c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动 1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情. 2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析

中考数学易错题专题训练及答案

A 、 S > S > S B S V S^V S? C 、 S V S 3V S> D S = S2= S3 3x 1 4一 工 9方程 -, 可以化成( ) 0.5 0.4 30x 14-10x “ 30x 14 - A. - -10 5 4 5 4 中考数学易错题专题训练 、选择题。 1、在实数.8,3 = 3 —64,3.14,—「0.2121121112 ,-2,cos600,tan30° —3,0.123 中,无理 7 数有( ) A 、 3个 B 、4个 C 、5个 D 、6个 2 、 算式 小2 小2 小2 2 2 2 小2 -2可化为( ) A 、 24 B 、82 C 、28 D 、216 3、关于x 的一元二次方程(a — 5)x 2— 4x — 1 = 0有实数根,则a 满足( ) A. a > 1 B . a > 1 且 a ^5 C . a > 1 且 a *5 D . a *5 4、 如果关于x 的一元二次方程kx 2 -6x ?9=0有两个不相等的实数根,那么 k 的取值 范围是( ) A 、 k 1 B 、 k = 0 C 、 k : 1 且 k = 0 D 、 k 1 5、 不等式2(x -2)乞x - 2的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组 2x _3 的最小整数解是( ) x =— K2x —2 班级: 姓名: _____________ A 、一 1 B 、0 C 、2 7、如图,反比例函数 y=在第二象限的图象上有一点 X 轴于B,且 S A AO =2 , 则k 的值为( ) A. - 4 B.2 C. - 2 D.4 A ,过点A 作A B 丄x 1 &如图,在函数中y 的图象上有三点 A 、B 、C,过这三点分 x 别向x 轴、y 轴作垂线,过每一点所作两条垂线与 x 轴、y 轴围 成的矩形的面积分别为 S 、S 、6,则( )

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

中考数学易错题集锦汇总及答案

中考数学易错题集锦汇总及答案 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 1.如图,能判定 AB ∥CD 的条件是( ) A .∠1=∠2 B .∠1+∠2= 180° C .∠3=∠4 D .∠3+∠1=180° 2.下列各式中从左到右的变形,是因式分解的是( ) A .(a+3)(a-3)=a 2-9; B .x 2+x-5=(x-2)(x+3)+1; C .a 2b+ab 2=ab (a+b ) D .x 2+1=x (x+ x 1) 3.用科学记数方法表示0000907.0,得( ) A .4 1007.9-? B .5 1007.9-? C .6 107.90-? D .7 107.90-? 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( ) A .2 2 2 )(b a b a -=- B .6 2 34)2(a a =- C .5232a a a =+ D .1)1(--=--a a 5.方程 x 3=2 2-x 的解的情况是( ) A .2=x B .6=x C .6-=x D .无解 6.已知2 35x x ++的值为 3,则代数式2 391x x +-的值为( ) A .-9 B .-7 C .0 D .3 7.下列事件中,届于不确定事件的是( ) A .2008年奥运会在北京举行

B.太阳从西边升起 C.在1,2,3,4中任取一个教比 5大 D.打开数学书就翻到第10页 8.下列长度的三条线段能组成三角形的是() A.5cm,3cm,1cm B.6cm,4cm,2cm C. 8cm, 5cm, 3cm D. 9cm,6cm,4cm 9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是() A.B.C.D. 10.下列说法中,正确的是() A.一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点 B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖 C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨 D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为() A.1.5万元 B.5万元 C.10万元 D.3.47万元 12.三角形的一个外角小于与它相邻的内角,这个三角形是() A.直角三角形B.锐角三角形 C.钝角三角形D.属于哪一类不能确定 13.下列图形中,由已知图形通过平移变换得到的是()

相关文档
最新文档