GPS定位定向系统的研究

GPS定位定向系统的研究
GPS定位定向系统的研究

第21卷第4期宇航学报Vol121No14 2000年10月JOURNAL OF ASTRONAUTICS Oct12000 GPS定位定向系统的研究

胡国辉范胜林袁信

(南京航空航天大学自控系#南京#210016)

摘要本文提出一种综合模糊度搜索算法和余度测量的周跳检测法。采用该方法进行模糊度搜索,保证了初始化时间最短的组合能在300秒以内出现,使初始化时间大大缩短。

主题词载波相位整周模糊度Cholesky分解姿态测量Kalman滤波

RESEARCH OF GPS POSITIONING

AND HEADING SYSTEM

Hu Guohui Fan Shenlin Yuan Xin

(Department of Automatic Control of Nan j ing Universi ty of Aeronautics&Astronautics#Nai jing#210016)

Abstr act The paper present a kind of ambiguity search algor ithm and a kind of cycle slip detec2 tion algor ithm with redundant measur ements.The test results show t hat the method can ensure the combination of t he shortest intial time will appear within300seconds and the initial time can r educe r apidly.

Key words Carrier phase Ambiguity Cholesky facetor ization Attitude deter mination Kalman filt ering

1引言

采用载波相位差分测量姿态,需要解决快速、准确、可靠地确定模糊度的问题。载波相位差分用于静态定位则是确定相对地球坐标系静止不动的用户接收天线与基准站之间的相对位置,其相对基准站的位置和模糊度可以通过多个历元、多个时刻的观测数据求解,求解方法相对简单。在动态定位中,由于载波相位观测值在不发生周跳的情况下,其模糊度数值不变,因而可以利用静态定位的方法首先进行静态观测,待模型度正确求解之后再进行动态测量,或者占据一条已知基线,利用已知的基线向量来反求模糊度。静态定位方法应用于动态定位中,原理简单,软件实现方便,在早期的载波相位动态定位软件中得到了广泛的应用。但这种方法均需在动态定位开始之前进行,并在动态定位中连续跟踪4颗以上卫星,而一旦因周跳或失锁使连续跟踪的卫星少于4颗,则高精度的动态定位无法继续,限制了载波相位在GPS动态定位和姿态测量中的应用。因而国内外GPS专家开始寻

收稿日期:1999年7月21日,修回日期:2000年3月15日

*国防预言基金资助项目

找能在运动中求解模糊度的方法,即整周模糊度的在航解算(Ambiguity Resolution On the Fly 或者On the Fly),称为AROF 或OTF 。

OTF 近年来已成为国内外GPS 专家研究的热点问题。总的说来可分为四类,双频伪距法,模糊函数法,最小二乘法和模糊度协方差法。其中最为著名的有优化Cholesky 分解算法[1],快速模糊度滤波法,LAMBDA 法,整数非线性规划法和基因法。

以上各种模糊度的搜索算法均有其优缺点,优化Cholesky 分解算法能有效地利用以前的信息,但由于换星(主星变化、可见星变化),纬数不确定,采用所有可见星的Cholesky 分解算法编程复杂,且搜索范围较大,难以满足实时性。最小二乘法[2]将卫星分为两组,选4颗主星作为基本搜索组,其余卫星作为检验组。但这种方法搜索量较大,且不能有效采用Kalman 滤波器利用以前信息。结合两种方法,我们探索出/综合模糊度搜索算法0,采用Kalman 滤波器将模糊度作为状态估计,选5颗主星进行Cholesky 分解,利用其余卫星进行检验。

周跳检测和修复是载波相位动态定位中的另一关键问题。由于载波相位测量只能测量相位中不足一整周的小数部分,连续整周部分由多普勒记数得到,信号的遮挡、信噪比低以及接收机故障都可引起整周记数的突变)周跳。如果利用OTF 技术能在一个历元之内确定整周模糊度,则对周跳的检测、修复的研究可不必继续下去。由于卫星数、卫星图形、观测条件等的不同,在一个历元内实现OTF 解算模糊度还存在困难,因而对周跳的检测和修复进行研究仍具有重要意义。

动态环境中周跳的检测和修复与静态测量相比较更为困难。动态定位中由于运载体在不断运动中,且相对每一动态方位观测值较少,在静态定位中十分有效的高次差法、双差法等均难以适用。Wei [3]利用Kalman 滤波新息序列来进行周跳探测,然而探测周跳的能力与载体的动态变化有关,动态变化越剧烈探测能力越低。

以上周跳检测和修复方法,受载体的动态影响大。在研制样机时我们除了在静态采用多式拟合法进行周跳检测外,还探索出在动静态都能运用的/余度测量的故障检测法0。2 综合模糊度搜索算法

为了充分利用以前的测量信息,仍然利用Kalman 滤波器求取模糊度的浮点解[1],对于双天线GPS 载波相位测量,系统的状态方程和观测方程为:

X k =AX k-1+N k-1

y k =HX k +G

k

(1)

其中: X T k =[x y z ?x

?y ?z N 1N 2,N n ]y T k =[U 1U 2,

U n ]

A =

I 3@3

03@303@n $TI 3@3I 3@303@n 0n @3

0n @3

I n @n

112

宇航学报第21卷

I i@j、0i@j分别为i@j单位矩阵、零矩阵。

H=e11e12e1301@3-K

e21e22e2301@3-K ,,,w

e n1e n2e n301@3-K

X x=[x y z?x?y?z]为基线向量和基线速度,X N=[N1N2,N n]为双差模糊度,

y k为

载波相位的双差测量值。

e11e12e13

e21e22e23

,,,

e n1e n2e n3

为指向卫星的方向余弦矩阵。

对于式(1)的状态方程和观测方程可以采用卡尔曼滤波器进行估计。

X^k+1/k=X^k/k(2)

P k+1/k=AP k/k A T(3)

X^k+1/k+1=X^k+1/k+K k+1[y k+1-H k+1X^k+1/k](4)

K k+1=P k+1/k H T k+1[H k+1P k+1/k H T k+1+R k+1]-1(5)

P k+1/k+1=(I+K k+1H k+1)P k+1/k(I-K k+1H k+1)T+K k+1R k+1K k+1(6) P0/0,X0/0初值的选取取决于对基线向量和初始模糊度范围的了解,如果上述初始范围完全不确定,可取无穷大。当卡尔曼滤波器的滤波达到一定精度后,可进行整周模糊度的搜索。

对于式(6)中的P k/k可以写成:

P k=

P x P xN

P N x P N

P x、P N分别为基线向量与整周模糊度误差的协方差矩阵。

P xN、P N x分别为它们之间的误差协方差矩阵。

这里选5颗主卫星进行Cholesky分解,利用其余卫星进行检验。

X^=[X^1X^2],N=[N1N2],P N=P11P12

P21P22

113

第4期胡国辉等:GPS定位定向系统的研究

N1、N2分别为主卫星与其余卫星整周模糊度的整数解,X^1、X^2分别为主卫星与其余卫星整周模糊度的浮点解,P11、P12分别为主卫星与其余卫星整周模糊度误差的协方差矩阵,P12、P21分别为它们之间的误差协方差矩阵。

整周模糊度求解应使

J=(X^1-N1)T P-111(X^1-N1)(7)

最小,其中N1为待确定的整周模糊度。

为了使搜索能满足树状规律,可进行下三角分解。

P-111=CC T(8)

其中C=c1100

0 c21c2200 c31c32c330 c41c42c43c44

将式(8)带入式(7)可得

J=(X^1-N1)T P-111(X^1-N1)

=(X^1-N1)T CC T(X^1-N1)

=f T f=f21+f22+f23+f24

(9)

其中:f=C T(X^1-N1)C[f1f2f3f4]

X^1=[x1x2x3x4],N1=[n1n2n3n4]

f4=(x4-n4)C44(10a)

f3=(x4-n4)C43+(x3-n3)C33(10b)

f2=(x4-n4)C42+(x3-n3)C32+(x2-n2)C22(10c)

f1=(x4-n4)C41+(x3-n3)C31+(x2-n2)C21+(x1-n1)C11(10d)由于X^1的误差方差阵为

P11=s11s12s13s

14 s21s22s23s24 s31s32s33s34 s41s42s43s44

N的取值范围为n j I[roung(x j-3s jj),round(x j+3s jj)](j=1,,,4)round为取整, 114宇航学报第21卷

如果round (x j -3s jj )=round (x j +3s jj )

则取n j I [round (x j -3s jj )-1,round (x j +3

s jj )+1](j =1,,,4)

计算量由f 4y f 1递减,由于f 2i 是大于零或等于零,在计算中式(9)和式(10)可以交替计算,当某一检测模糊度f 部分分量平方和已大于某一限值(可选为前面已经计算的J 次小值),则该模糊度组将被拒绝,而不用计算f 的剩余分量及其平方和,从而大大减少计算量。

最优剪枝法的搜索为一历元的模糊度搜索顺序应从搜索范围的中间向两边进行,这是因为越靠近搜索中心的模糊度组为正确模糊度的可能性越大,其J 数值一般较搜索空间的边缘要小,从而在上述搜索计算过程中可以进一步减小计算量。搜索过程中只要保留已搜索过的模糊度、模糊度组中J 为最小及次小的模糊度数值及相应的J 数值。

对于以上四层树状搜索图仍然采用最优剪枝法进行搜索,满足指标函数最小的解,被认为是整周模糊度的解,但仍需要经过检验,满足求解基线长度与已知知基线长度相吻合(实际中二者之差小于0102米即可认为二者相吻合),即认为通过第一次检验,然后利用前面求出的基线向量对所有载波相位测量求整周模糊度,由于模糊度是整数,因此可以对取整后剩余部分进行残差检验,通过已上两次检验即认为模糊度已固定。采用该方法进行模糊度搜索,保证了初始化时间最短的组合能在300秒以内出现,使被始化时间大大缩短;

3 余度测量的周跳检测法

当正确模糊度求解后,如果不发生周跳,则求解的基线向量的基线长度均为已知基线长度(附加测量噪声),当载波相位测量发生周跳后,则求解的基线长度均不与已知基线长度相吻合,这样可以探测到某个载波相位测量发生周跳,但究竟是哪一个载波相位测量发生周跳还需利用余度测量进一步探测,并修复。

在正确模糊度求解后,仅有四颗可见星的载波相位测量就可求出基线向量和基线长度。而一般可见星均在四颗以上。因此可以采用4颗星进行组合,如果某四颗星的组合求出的基线长度与已知基线长度吻合,即认为该四颗星的载波相位测量未发生周跳,然后利用这四颗星求出的基线向量可以求出其它的双差模糊度,并与原来的模糊度比较,即可探测出哪个载波相位测量发生周跳,并修复。4 试验结果及分析

采用两块GG 24OEM 板(Ashtech)公司生产)、PC 104586工控机及其接口板构成高精度的G PS 定位定向系统,人机对话方面采用薄膜触摸式键盘,液晶显示,操作简单,仅有几个功能键和10个数字键,菜单式显示,可以提供位置、速度、方位角和俯仰角,平均初始化时间小于180秒。

其方位角精度通过省计量测试技术研究所的技术标定,测设设备为九江6354所生产的精密多齿分度台(分度值015度,精密012角秒),试验在南京航空航天大学15号楼露天平台上进行,将天线架固定在精密多齿分度台上,精密多齿分度台每隔30度,停1分钟,读取GPS 定位定向系统方位角数据,其结果如表1,从试验结果可以看出GPS 定位定向系统方位的测量精度为01052度(RMS ),优于1mil 。表中受检点数值为精密多齿分度台示数,示值(平均值)为对应的GPS 定位定向系统显示的数值。相邻差为相邻两

115

第4期胡国辉等:GPS 定位定向系统的研究

次测量的误差(即为相邻两次测量结果之差减30度),累积误差为各次测量与第一次测量的误差。

表1GP S定位定向系统方位角测试数据(单位:度)

受检点示值(平均值)相邻差累积误差033171-01070

3063164+0105-0107

6093169+0109-0102

90123178-0105+0107

120153173-0102+0102

150 180183171

213163

-01080

+0103-0108

210243166+0112-0105

240273178-0109+0107

270303169-0115-0102

300333184+0103+0113

3303187+0115+0116

参考文献

1Hatch R,Euler H https://www.360docs.net/doc/f817673772.html,parison of sever AROF k i nematic technique.Proceeding of th e8th Internati onal T echnical Meet2 ing of the Satellite Divisi on of the Insti tute of Navigation.Palm Springs,California:1995,3632370

2胡国辉1载波相位差分整周模糊度的求解1南京大学学报(自然科学版)1997,33:1632165

3Wei M,Lapucha D and Martell H.Fault detection and estimati on in dynamic system,IAG symposia107,1990,2012 217

116宇航学报第21卷

GPS车辆监控系统方案

GPS车辆监控系统方案 车辆GPS监控管理系统方案书 Version 1.0标准版 - 1 - 目录 1 前 言 .............................................................................. ..................................................................... - 4 - 2 总体设 计 .............................................................................. ............................................................. - 5 - 2.1 总体目 标 .............................................................................. ............................................. - 5 - 2.2 设计原 则 .............................................................................. ............................................. - 5 - 2.2.1 经济实用 性 .............................................................................. ................................. - 5 - 2.2.2 技术先进 性 .............................................................................. ................................. - 5 - 2.2.3 系统开放 性 .............................................................................. ................................. - 5 - 2.2.4 系统可扩展 性 .............................................................................. ............................. - 6 - 2.2.5 系统高可靠稳定 性 .............................................................................. ..................... - 6 - 2.3 总体框 架 .............................................................................. ............................................. - 7 - 2.4 网络拓扑结 构 .............................................................................. ..................................... - 9 - 2.4.1 总监控中心网络 结 .............................................................................. ..................... - 9 -

卫星定位系统简介学习资料

卫星定位系统简介

卫星定位系统简介 卫星定位系统即全球定位系统(Global Positioning System)。简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。这个系统可以保证在任意时刻,地球上任意一点都可以同时观测到4颗卫星,以保证卫星可以采集到该观测点的经纬度和高度,以便实现导航、定位、授时等功能。 全球定位系统(GPS)是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。 一、常用术语 1.坐标(Coordinate)有二维和三维两种表示。 2.路标(Landmark or waypoint)

GPS内存的一个坐标值. 3.路线(Route) 路线是GPS内存中存储的一组数据,包括一个起点和一个终点的坐标,还可以包括若干中间点的坐标,每两个坐标之间的线段叫一条腿。 4.前进方向(Heading) GPS没有指北针的功能,静止不动时是不知道方向的。 5.导向(Bearing) 6.日出日落时间(Sun set/raise time) 7.足迹线(Plot trail) 二、构成 由三部分构成:地面控制部分(由主控站、地面天线、监测站和通讯辅助系统组成)、空间部分(由24颗卫星组成,分布在6个道平面上)、用户装置部分(主要由GPS接收机和卫星天线组成)。 1.空间部分 GPS的空间部分是由24 颗工作卫星组成,它位于距地表20 200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗),轨道倾角为55°。此外,还有4 颗有源备份卫星在轨运行。卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能保持良好定位解算精度的几何图象。这就提供了在时间上连续的全球导航能力。GPS 卫星产生两组电码,一组称为C/ A 码( Coarse/ Acquisition Code11023MHz) ;一组称为P 码(Procise Code 10123MHz),P 码因频率较高,不易受干扰,定位精度高,因此受美国军方管制,并设有密码,一般民间无法解读,主要为美国军方服务。C/ A 码人为采取措施而刻意降低精度后,主要开放给民间使用。

基于GPS定位的车辆调度管理系统

基于GPS和无线网络的车辆调度管理系统大唐高鸿数据网络技术股份有限公司 2005.1

前言 大唐高鸿公司提供的车辆调度管理系统(最新软件版本3.0),采用Client(客户机)/Server(服务器)模式,以gpsOne/GPS技术为基础,综合运用GIS(Geographic Information System,地理信息系统)技术、CDMA1X移动通信技术,可广泛用于各种车辆、船舶和其它移动目标的位置跟踪、指挥调度、应急救急等。同时,所配移动终端具有全球定位、防盗报警、监听录音、紧急求助、车况记录、车载电话、移动上网、图像传输等功能。 本系统最大的特点在于: ?采用gpsOne/GPS定位,gpsOne技术可以最大限度缩少定位盲区; ?支持CDMA1X数据传输; ?同时支持通过GSM/CDMA短信中心和GSM/CDMA前置机两种通讯方式,能满足位置 服务商和集团用户的不同需要; ?有C/S模式、B/S模式,人性化操作,自动换图,无缝拼接; ?支持手机短信查询。

目录 一、项目综述.................................................................................................................................... 二、系统方案.................................................................................................................................... 2.1系统简介 ................................................................................................................................ 2.2方案论证 ................................................................................................................................ 2.2.1 GPS定位原理 ................................................................................................................. 2.2.2 gpsOne定位原理 ........................................................................................................... 2.2.3 系统构架比较 ................................................................................................................ 2.3结论 ........................................................................................................................................ 三 GPSONE/GPS车辆调度管理系统................................................................................................. 3.1概述 ........................................................................................................................................ 3.2系统结构 ................................................................................................................................ 3.3系统功能 ................................................................................................................................ 3.3.1 系统实现功能 ................................................................................................................ 3.3.2 gpsOne/GPS定位终端功能 ........................................................................................... 3.4系统特点 ................................................................................................................................ 3.4.1 成熟的短信网关技术 .................................................................................................... 3.4.2 成熟的监控中心软件和终端硬件产品 ........................................................................ 3.4.3 完善的技术服务保障体系 ............................................................................................ 3.4.4 系统其他优点 ................................................................................................................ 3.5系统性能指标 ........................................................................................................................ 3.5.1 系统容量 ........................................................................................................................ 3.5.2 定位精度 ........................................................................................................................ 3.5.3 实时性 ............................................................................................................................ 3.5.4 移动定位终端工作参数 ................................................................................................ 附录A:公司情况简介..................................................................................................................... A.1公司简介 ................................................................................................................................ A.2技术、工艺、设备介绍......................................................................................................... A.2.1产品技术及工艺优势 ..................................................................................................... A.2.2 主要产品 ........................................................................................................................

GPS人员定位管理系统

GPS 人员人员定位管理系统定位管理系统定位管理系统 20132013--0505--0808 制作人制作人::人员定位事业部人员定位事业部

一、GPS人员定位系统概述 合创德GPS人员定位管理系统是一款基于移动通讯网络的GPS人员 管理系统 , 系统采用了先进的卫星全球定位系统、结合GIS地理信息系统和GPRS移动通讯网络,实现GPS实时定位和监控人员,加强了对人员的管理,提高人员管理的效率,并能提高人员的安全性和处理突发事件的能力。GPS作为一种高效的人员管理手段,对企业人员的有效管理,人力资源的整合有着重要的作用, 能够极大的为企业公司节约经营成本,提高人力资源效率,创造更多利润。 本系统成熟稳定,C/S运行模式可以作为运营平台、监控中心系统提供GPS监控调度服务,可广泛应用于野外作业人员、旅客旅途管理、老人、小孩、企业员工管理等。 二、GPS人员定位产生背景 早期由于我国煤矿事故多发,人员救助困难国家出台《煤矿井下作业人员使用管理与规范》的要求,煤矿井下人员位置监测系统具有:人员位置、携卡人员出入井时刻、重点区域出入时刻、限制区域出入时刻、工作时间、井下和重点区域人员数量、井下人员活动路线等监测、显示、打印、存储、查询、异常报警、路径跟踪、管理等功能。煤矿井下人员位置监测系统在遏制超定员生产、事故应急救援、领导下井带班管理、特种作业人员管理、井下作业人员考勤等方面发挥着 重要作用。 2

然而在人员定位的需求在不断得到社会各界的广泛关注,原来的煤矿人员定位的使用不能满足社会日益丰富的多种要求,在GPS定位应用有非常成熟,价格便宜的情况下,GPS人员定位的出现正好满足 ,移动式 移动式, ,全方位人员管理的需要。为此,我高精度, ,高精度 社会的低成本 低成本, 司研发的《GPS人员定位管理系统》正好能满足野外施工人员管理、旅客在途管理、医院病人定位管理、企业外勤人员管理、老人、小孩等各种人员定位需求。 企业失败的工作中,有超过80%领导的决策是正确的,是因为没有执行到位而失败,最终怪罪在决策者身上或决策者自身也认为是决策失误!如何随时掌握外勤人员、外出车辆每日的行程?如何对外出业务人员和车辆进行科学、系统的调度安排?如何实现提高人员效率和控制差旅费、燃油费用的最佳组合?如何保证按照决策者的意图,不折不扣的执行到位? 针对外勤人员和运输车辆难以考勤管理的弱点,我公司推出《GPS 人员定位管理系统》,针对企事业单位各个部门的外出人员和车辆,让管理者随时了解业务员和运输车辆在工作当中具体到访客户的位置、终端卖场等位置,上下班时间等精确管理,节约时间成本,节约车辆的燃油费,使工作透明,使员工出勤100%,提升业绩。 人员实时定位、历史活动记录查询、安全区域访问控制等系统融合一体,是国内技术领先,运行稳定,设计专业化的大型厂区综合管 3

车辆GPS监控管理系统方案

xxxx车辆GPS监控管理系 统设计方案 2011年03月2日

目录 一. 总体方案设计 (3) 二. 系统组成及基本原理 (4) 1、系统组成 (4) 2、车载定位系统终端功能 (4) 3、登录连接 (6) 4、样品说明 (7) 三. 产品优势及技术指标 (9) 四. 系统软件说明 (10) 1、登陆界面 (10) 2、系统控制 (10) 3、系统设置 (10) 4、地图操作 (10) 5、工具类型 (12) 6、紧急处理 (12) 五. 工程说明 (12) 六. 系统报价 (13)

一.总体方案设计 目的和目标 为实行车辆运输智能化管理体制的需要,确保车辆部门拥有完善的办公自动化能力和现代化综合管理水平,建立一套安全可靠、技术先进、功能完善、经济实用的办公自动化和安全防范保障系统。使各有关管理部门和工作人员对作业现场突发事件有快速反应及通过简单的操作进行各种处理,以达到工作高效、信息互通的目的。实现对车辆的定位管理、监控车辆,杜绝公车私用,节省油耗,降低车辆费用。 整套系统主要为加强车辆运输的安全系数,提高工作效率而设立,在此我们强调人机对话要简单、直观,不容易造成人为误操作、对设备的安装和维护要求更加方便、快捷,不能让工作人员觉得在进行人机结合工作时有门槛,为此我们选用在无需专业培训,只需看看操作说明便可立即操作的自动化监控系统。由于GPS监控系统属于ERP体系中的子系统,故此,必须考虑系统的互换性和兼容性。 针对xxxx的需求我公司认真研究,推荐使用我公司开发的两种产品:GT2内置天线型和GT9天线外置型机器。这两款机器内部软件相同所登录平台相同。该产品定位准确、安装简便、操作方便及其适合贵单位使用。

卫星导航仿真系统的研究与实现

ⅢⅢ川¨卅‘?t¨+Ⅲ…**?¨蝌.”“;一一悱*一坤?,”m诤.¨?t第四届全国虚舣现实与可视化学未台议论文集固 星座中卫星的数目和各卫星的ID、类型、工作状态、轨道根数及对应的历元时间。 空间3D显示部分采用SGI公司开发的通用图形库OpenGL实现,OpenGL不涉及具体的窗口函数,具有很好的平台移植性,各种操作的效率很高,显示流畅。 系统的实现结果如图2~5所示。 图2导航仿真服务器图3GPS.COn星座文件的空间显示结果图5.1为导航仿真服务器,图5.2和5.3是分别接收导航仿真服务器生成的卫星星历,然后进行可视化显示的结果。其中图5.1是对GPS卫星进行仿真的结果,图5.2是利用星座设计功能设计的一个新的星座,其中:红色轨道上的卫星为极轨卫星,绿色轨道上的卫星为中等圆形轨道,蓝色轨道上的卫星为地球同步轨道卫星。图5.4为用户定位仿真子系统的运行结果,图中5.4种采用的是地图视图。它是在地图上显示定位的结果;另外还可以显示统计视图,统计视图主要显示对定位的误差进行分析结果。在该部分,可以很方便地对是否考虑各种误差改正进行控制。除此之外,还可以对用于定位的卫星高度截止角进行设置,一般来说,卫星的高度截止交设为5。,对于GPS系统来说,总可以接受到4~9颗卫星的信号。 图4ScndNavCOn星座文件的空间显示结果圈5用户定位仿真予系统的运行结果 6结论 卫星导航系统的仿真是一件非常有意义的工作,它不仅可以为新的卫星导航系统的建立提供辅助设计,同时可以为在卫星导航系统建成以后的研究提供多方面的支持。但同时要看到,卫星导航系统的仿真是一个极其复杂的课题,主要是建模的工作量大、计算复杂,同时实现的工作量也很大,在后续的工作中必须进一步地研究和探讨。 参考文献 向开恒,肖业伦卫星星座的系统仿真研究.北京航空航天大学学报,1999t25(6) 刘俊,张思东张宏科GPS系统建模与仿真技术研究.系统仿真学报,2001t13(3) 袁建平,罗建军,岳晓奎,方群卫星导航原理与应用中国宇航出版社.2003 郗晓宁,王威等近地航天器轨道基础国防科技大学出版社 周忠谟,易杰军编GPS卫星测量原理与应用测绘出版社 葛茂荣,过静君.葛胜杰GLONASS卫星坐标的计算方法测绘通报t999(2) 王海丽,陈磊,任萱.卫星星座全球连续覆盖的仿真分析与优化中国空间科学技术t2001,(I)

公司公务车辆GPS定位监控管理系统方案

GPS移动目标管理系统公司车辆管理简介

目录 第一部分系统综述 (3) 一、查询方式 (3) 1、电脑软件查询 (3) 2、网站查询 (3) 3、手机查询 (3) 二、简介 (4) 1、公司简介 (4) 2、平台简介 (4) 二、系统简介 (4) 1、系统总体规划 (4) 2、GPS简介 (5) 3、系统架构 (5) 第二部分、系统操作简介 (6) 1.基本操作界面: (6) 2、车辆图标的设置: (7) 3、视图设置: (7) 4、功能设置: (8) 5、地图切换: (8) 6、点线轨迹: (8) 7. 车辆控制: (10) 8、手机查车操作说明: (11) 第三部分、车载机功能及性能指标 (12)

第一部分系统综述 一、查询方式 智勤车辆监控系统可同时提供三种查询方式:电脑软件、网站查询和手机查询。用户可任意选择或全部使用,不另外收费 1、电脑软件查询 为单位管理用户常用查询方式,采用c/s构架,运行速度快,功能强大,车辆运行报表一目了然。 2、网站查询 辅助查询方式,用于未安装软件查车客户端的电脑。只需打开浏览器输入.xinggps.,输入用户名密码即可查询相应车辆的位置、行驶轨迹等 3、手机查询 辅助便携查询方式,可在手机上安装查车软件,随时随地进行查看

二、简介 1、公司简介 潍坊智勤信息科技有限公司,是专业提供卫星定位服务、通信导航系统运营平台和应用软件的系统集成商。公司专注于定位服务、通信导航领域的运营系统开发,拥有丰富的GPS位置信息服务运营及开发经验,完善的售后服务体系和专业的开发运营团队。 2、平台简介 GPS管理调度平台有效采用GIS,GPS,GPRS等技术实现对车辆进行7x24小时的可视化管理调度。具有简洁易操作,数据稳定速度快,地图自动更新等特点。针对环卫车辆的运行特点,可实现对车辆的实时监控,轨迹回放,行驶报表、里程报表、速度报表等功能,亦可对车辆进行分别或者统一限速,车辆一旦超过所限制速度,平台就会出现超速报警。此外客户可根据需要使用自有地图或者对网络地图进行添加标注,方便管理调度。 二、系统简介 1、系统总体规划

GPS车辆监控系统使用管理办法(新)

GPS车辆监控系统使用管理办法 (QHSE-GL023) 第一章总则 第一条为了加强公司道路交通管理,贯彻落实“安全第一,预防为主”的方针,利用高科技手段实现“全程监控、实施调度、统一指挥、有效监管”的目标,杜绝特大交通事故的发生,特制定本办法。 第二章监控中心管理办法 第二条监控中心对公司所有已安装GPS车载终端的车辆实行24小时不间断监控,监控人员必须认真履行工作职责,工作期间不得擅离岗位。 第三条对营运车辆的违法违规行驶持续时间、里程和次数、不按规定路线或时段行驶等违章信息情况,认真详细做好记录、备份存档,便于随时查询。 第四条对营运车辆的违法违规情况每月整理、核实、汇总,及时同交警部门和车辆管理部门联系,并对处罚情况张榜公布。 第五条监控中心要制定行之有效的管理制度,建立健全下列制度及台帐: (1)岗位职责; (2)GPS车辆终端安装档案台帐; (3)车辆每日安全运行情况监控记录表; (4)GPS监控管理系统月报表。

第六条监控中心车辆运行情况及相关数据仅限公司主管领导和生产、安全等部门进行查阅(特殊情况请示领导),其他单位和个人无权查阅。 第三章监控人员管理办法 第七条熟悉掌握GPS安全监控系统的各项功能,并能熟练进行具体操作,及时应对事故的相应处理。 第八条GPS车载安装在监控中心存档,监控人员要做好所有原始记录资料的统计工作。 第九条认真负责地做好监控工作,监控过程中凡发现有下列情况的,应采取相应的措施: (1)车辆被盗抢,接到报警后立即向当地公安部门报警并向公司有关领导和车属部门报告,要求详细报出被盗抢车辆的车号、车型、车身颜色、准确位置及被盗抢时间。 (2)车辆不按规定的路线行驶或者驶出监控地段的,监控中心值班员应及时给予驾驶员语言警告,要求其立即停止违规行为。对无视劝告强行违规的,应同时向监控主管领导报告,并做好相应记录。 (3)车辆发生事故、故障或其它紧急情况时,接到报告后,应立即向监控主管领导及车属部门报告,并根据情况采取相应处理措施。 第十条认真做好日常监控记录,详细填写监控日志,对重要监控信息要及时汇报主管领导。

GPS定位管理系统简介

GPS定位管理系统解决方案

GPS定位管理系统简介 一、背景说明 随着手机性能的不断提升和3G网络的推广普及,无线应用业务得到了前所未有的发展,位置服务作为其中一项热门应用也得到了广泛推广,目前市场上已经推出了多款手机定位应用软件,能为个人出行提供便捷的查询服务,备受用户推崇。但是,这类软件基本上都是面向个人手机应用的客户端软件,而面向行业、面向职业的专业化定位系统管理软件却很难发现,这对于有着巨大需求空间和应用价值的位置服务行业来说无疑是种遗憾。 自从1994年GPS系统全面建成并投入使用以来,基于个人的移动定位服务便成了诸多行业及个人追求的梦想。尤其是近年来,随着人口的激增及城市规模的不断扩大,很多行业在日常业务上都面临着前所未有难度和压力,比如物流公司需要随时了解车辆当前位置以便及时调整运输业务,派出所需要及时了解当前警员的在岗情况以便应对突发事件,客服中心需要及时了解在外客服人员的位置以便为客户提供最及时的上门服务,这种对反应速度要求较高的行业及岗位对人员定位都有着极强的需求,一种能够直观的反映机动目标当前位置并带有辅助通讯及管理功能的定位管理软件呼之欲出,本GPS定位系统管理平台软件便是在这种需求下诞生的。 二、系统简介 该GPS定位管理系统的设计以面向行业、面向职业为出发点,努力为企事业单位用户提供最有效的定位管理系统解决方案。该系统主

要由两部分组成,一部分为客户端,可通过网络下载安装到手机上,另一部分为服务端,安装在服务器上并提供与企事业原有系统的对接服务。该系统采用先进的A-GPS定位技术,结合手机内置的GPS定位模块,定位功能精确高效。系统架构如下图所示: 管理平台系统架构 基于A-GPS技术的GPS定位系统管理平台的定位流程如下: 1、移动终端向服务端发送定位信号,将本身的基站地址通过网络传输到位置服务器。 2、位置服务器根据该终端的大概位置传输与该位置相关的GPS 辅助信息和移动终端位置计算的辅助信息,利用这些信息,终端的A-GPS模块可以很快捕获卫星,以提升GPS信号的第一锁定时间TTFF 能力,并接收GPS原始信号。 3、位置服务器根据传来的GPS伪距信息和来自其他定位设备的辅助信息完成对GPS信息的计算,并估算该终端的位置。 4、位置服务器将该终端的位置通过网络传输到应用平台和手机终端。 6、各应用平台(手机或服务器)通过解析并通过地图模块显示

GPS车辆监控管理系统的简介及解决方案

GPS车辆监控管理系统的简介及解决方案 GPS 系统简介GPS 管理系统的基本用途有:车辆实时定位、车辆监视控制、车辆调度管理、车辆报警处置、车辆物流管理、网上查车服务、 短信语音通信等。系统适用于城市、地区、以及全国联网使用,适用于政府、 集团、企事业单位以至私家车辆用户使用。它能监控车辆违章行驶、提升车辆 的防盗抢能力、提高车辆营运效率,增加车辆营运经济效益,促进我国车辆管 理现代化、信息化、智能化建设,系统的服务对象可为:运输车辆、出 租车辆、公交车辆、消防车辆、急救车辆、边防车辆、押钞车辆、危险品车辆、应急指挥车辆、贵宾车队、私家车辆、项目车辆等。数字金石GPS 车辆监管系统可为不同用户、不同用途的车辆提供不同的特殊使用功能。数字金石车 辆监管系统由七个子系统项目构成。即:?GPS 全球定位卫星系统;?GSM/GPRS 移动通信系统;?数据传输网络;?车辆数据服务平台;?用户监管中心系列;?车载设备;?电子地图。1、GPS 全球定位卫星系统(简称GPS)GPS 系统是GPS 车辆管理系统用来确定车辆位置的手段。 车载设备接收来自GPS 卫星的信号,经数据处理,获得车辆的实时经度、纬度位置数据。GPS 是美国1993 年建成的向全球用户开放使用的全球定位卫星系统,具有全球任何地点、任何时间、全天候、高精度定位、授时的特点。 2、GSM/GPRS 移动通信系统(简称GSM/GPRS)通信系统是车载设备与车辆数据服务平台之间的双向数据交换平台。车辆数据服务平台通过GSM/GPRS 移动通信平台获得车辆的位置数据及状态信息,用户监管中心通过车辆数据服务平台和GSM/GPRS 移动通信平台下达数据或话音方式的控制、 调度指挥指令。此外,数字金石GPS 车辆管理系统具有兼容多种通信平台能力,也可以使用电信部门已建或在建的CDMA、CDPD、集群等无线数据通信系统。

Galileo卫星导航定位系统及其应用研究

武汉大学 硕士学位论文 Galileo卫星导航定位系统及其应用研究 姓名:柳景斌 申请学位级别:硕士 专业:大地测量学与测量工程 指导教师:王泽民;程鹏飞 20040402

伽利略(Galileo)计划是由欧洲空间局和欧洲联盟共同发起的一项空间信息基础设施建设计划。旨在建设一个全球卫星导航定位系统(GNss)一Galileo系统。本文首先系统介绍了目前的几种卫星导航定位系统,分析了它们各自的优缺点以及Galileo系统建设的必要性,详细介绍了Galileo系统的星座参数设计、。频率设计、地面控制设施的配置、Galileo系统提供的服务以及系统建设的现状等。 本文以自行编制的“卫星导航定位仿真演示系统”为基础,分析了地面监测站对Galileo卫星定轨和钟差确定的影响以及在我国境内布设若干个Galileo地面核心监测站的必要性、可行性,并给出了在我国布设Galileo地面核心监测站的数量和分布的具体建议。 本文还进行了与Galileo/GNSS的应用相关的一些基础研究。首先系统地介绍了评价卫星星座对绝对定位精度影响的理论及方法,定义了各类DOP值以定量描述卫星几何图形强度因子,以各类DOP值作为主要评价指标,分析了卫星星座设计对导航定位精度的影响,并与GPS系统比较,证明了Galileo系统的星座设计的先进性。利用Galileo系统的四个载波观测值,可以形成诸多有良好特性的组合观测值,本文对用Galileo系统的相位组合观测值进行导航定位应用的模型进行了初步研究,介绍了四个频率进行组合的一般理论,在保持组合观测值模糊度的整周特性的前提下,得到了两组具有良好特性且有实用价值的组合观测值。 关键词:伽利略系统;全球卫星导航定位系统:GPS;组合观测值:误差分析:地面监测站;几何图形强度因子

车辆卫星定位监控系统管理制度(2020版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 车辆卫星定位监控系统管理制 度(2020版) Safety management is an important part of production management. Safety and production are in the implementation process

车辆卫星定位监控系统管理制度(2020版) “车辆卫星定位监控系统”作为动态监控手段,能有效监控运输车辆途中安全运行情况。公司根据《道路运输车辆动态监督管理办法》、《道路运输车辆卫星定位系统车载终端技术要求》(JT/T794-2011)、《道路运输车辆卫星定位系统平台技术要求》(JT/T796-2011)等规定制定本制度。一、适用范围 本制度适用于公司所有危险货物运输车辆、监控平台管理人员、值班监控人员、调度员和驾驶员、押运员以及卫星定位装置设备的管理工作。 二、实施主体及其职责分工 本项管理制度执行者为公司公司安技科,具体负责平台监控及卫星定位装置的管理工作。 监控管理人员负责实时监控公司运行车辆,实时警示和记录违章车辆,对严重违章或多次违章车辆的有关情况报公司相关部门处

理,并认真做好日常监控记录。 驾驶员、押运员职责:必需按照操作规程使用GPS,确保设备正常运行。不得擅自拆装、断线、断电、屏蔽和修改程序。在使用过程中若发现GPS不能正常使用,应及时通知安技科联系维修商。在行车过程中必需遵守交通法律法规和公司有关GPS管理规定驾驶车辆,操作GPS。 三、安装规范和管理要求 3.1凡公司所属危化品车辆,按照行业管理及上级主管部门的有关规定必须安装卫星定位车载终端系统,对危化车辆的地理位置,运行速度,运行轨迹以及运行时间情况进行全程实时监控。 3.2公司建立动态监控平台和卫星定位车载终端。安装使用的系统软件应符合交通行业标准要求,确保与运管部门监管平台互联互通,数据实时共享。 3.3配备专职监控人员,对营运车辆运行实时全过程监控。建立健全监控台账,落实24小时监控值班,及时发现违章超速、疲劳驾驶等行为。

全球四大卫星定位系统

全球四大卫星定位系统 一.GPS系统(美国) 二.北斗系统(中国) 三.GLONASS系统(俄罗斯) 四.伽利略卫星导航系统(欧盟) GPS系统(美国) GPS系统是美国从上世纪70年代开始研制,历时20年,耗资近200亿美元,于1994年全面建成的新一代卫星导航与定位系统。GPS利用导航卫星进行测时和测距,具有在海、陆、空全方位实时三维导航与定位能力。它是继阿波罗登月计划、航天飞机后的美国第三大航天工程。如今,GPS已经成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。 GPS系统概述GPS系统由空间部分、地面测控部分和用户设备三部分组成。 (1)空间部分GPS系统的空间部分由空间GPS卫星星座组成。 (2)控制部分控制部分包括地球上所有监测与控制卫星的设施。 (3)用户部分GPS用户部分包括GPS接收机和用户团体。 主要功能: 导航 测量 授时

标准:全球定位系统(GPS)测量规范GB/T 18314-2001 Specifications for global positioning system (GPS) surveys 种类: GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 北斗卫星导航系统 中国北斗卫星导航系统(BeiDou Navigation Satellite System, 统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。 段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户 度0.2米/秒,授时精度10纳秒。 系统构成 北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨 道卫星组成,中国计划2012年左右,“北斗”系统将覆盖亚太地区,

卫星定位系统原理及各国发展的历史

简述:卫星定位系统原理及各国发展的历史 1、子午卫星导航系统(NNSS) 该系统又称多普勒卫星定位系统,它是58年底由美国海军武器实验室开始研制,于6 4年建成的“海军导航卫星系统”(Navy Navigation Satellite System)。这是人类历史上诞生的第一代卫星导航系统。 1957年10月前苏联成功发射了第一颗人造卫星后,美国霍普金斯大学应用物理实验室的吉尔博士和魏分巴哈博士对卫星遥测信号的多普勒频移产生了浓厚的兴趣。经研究他们认为:利用卫星遥测信号的多普勒效应可对卫星精确定轨;而该实验室的克什纳博士和麦克卢尔博士则认为已知卫星轨道,利用卫星信号的多普勒效应可确定观测点的位置。霍普金斯大学应用物理实验室研究人员的工作,为多普勒卫星定位系统的诞生奠定了坚实的基础。而当时美国海军正在寻求一种可以对北极星潜艇中的惯性导航系统进行间断精确修正方法,于是美国军方便积极资助霍普金斯大学应用物理实验室开展进一步的深入研究。1958年12月在克什纳博士的领导下开展了三项研究工作:①研制卫星;②建立地球重力场模型以便卫星的精确定轨和准确预报卫星的空间位置;③研制多普勒接收机。经过众人的努力子午卫星导航系统于1964年1月正式建成并投入军方使用,直至1967年7月该系统才由军方解密供民间使用。此后用户数量迅速增长,最多达9.5万户,而军方用户最多时只有650个,不足总数的1%,可见因生产的需要民间用户远远大于军方。 1.1 子午卫星导航系统的组成 (1)卫星星座:子午卫星星座,由六颗独立轨道的极轨卫星组成。 在设计上要求卫星的轨道的偏心率为零,轨道倾角i =90°;卫星运行周期为T=107 m;卫星高度约为H=1075km;按理论上的设计,六颗卫星应当均匀分布在相互间隔为3 0度轨道平面上。但由于早期卫星入轨精度不高,各卫星周期、倾角、偏心率都存在不同程度的误差,故各卫星轨道进动的大小和方向也都不尽相同,这样经过一段时间后各卫星轨道间的间距就变得疏密不一。因而地面可观测卫星的时间分布就变得更加没有规律,中纬度地区的用户平均1.5小时左右可以观测到一颗卫星,有时在高纬上空可出现多颗卫星造成信号的互相干扰(此时必须将信噪比差的卫星关闭避免干扰);但在低纬度地区最不利时要等待10小时才能观测到卫星。

GPS车辆定位管理系统技术方案.doc

GPS车辆定位管理系统技术方案TO Unicom1 GPS车辆定位管理系统 技术实施方案 徐州力源电子信息技术有限公司 1 目录 第1章技术背景(5) 1.1 系统简介(5) 1.2 关于GPRS/GSM (5) 1.3 关于GPS (6) 1.4 关于GIS (7) 第2章GPRS/GPS系统及定位服务网络(9) 2.1 GPRS/GPS系统处理流程(9) 2.2 网上查车系统(11) 2.2.1 “网上查车系统”概述(11) 2.2.2 网络服务模式(11) 2.2.3 定位网络服务的系统功能(11)

2.2. 3.1 实时车辆监控与车辆查询(11) 2.2. 3.2 被监控车辆信息管理(12) 2.2. 3.3 对以注册的车辆的状态信息存取(12) 2.2. 3.4 区域查询与控制管理(12) 2.2. 3.5 提供网络化电子地图支持功能(12) 2.2. 3.6 专业客户化各级经营服务商服务监制软件支持(12) 2.2.3.7 特种行业客户化监制软件支持(12) 2.2.4 系统适应的范围(13) 2.2.5 网络拓扑结构(14) 2.2.5.1 GPS/GPRS组成原理图(14) 2.2.5.2 卫星定位服务网络拓扑结构图(15) 2.3 网络系统服务层次结构、功能及服务对象(16) 2.3.1 网络服务系统层次结构图(16) 2.3.2 各层次功能及服务对象(16) 2.3.2.1 联通GPRS/中心(16) 2.3.2.2 卫星定位服务网络中心(16) 2.3.2.3 各级网络运营服务商(17)

2.3.2.4 客户(17) 第3章产品技术优势(18) 3.1 主要技术特点(18) 3.1.1 产品是先进无线通讯技术的综合集成(18) 3.1.2 产品的模式配置灵活(18) 2 3.1.3 产品的有很强的双向通信能力强和通信信道的自由切换能力(18) 3.1.4 产品软硬件采用模块化结构设计,系统参数设置灵活方便,对用户友好(18) 3.1.5 具有良好的实时监控特性(19) 3.1.6 运营费用优势(19) 3.1.7 系统建设投资与使用方便性优势(19) 3.1.8 管理平台采用分布式的高效结构体系(20) 3.1.9 管理平台采用完整的数据安全体系(20) 3.1.10 管理平台具备丰富的GIS效果(20) 3.1.11 管理平台具备可定制的管理功能(20) 3.1.12 系统具备灵活的Web GIS能力(20) 3.1.13 产品具备很强的二次开发能力(20)

相关文档
最新文档