陶瓷烧成与烧结

陶瓷烧成与烧结
陶瓷烧成与烧结

陶瓷坯体在烧成过程中的物理化学变化

陶瓷坯体在烧成过程中一般经过低温阶段、氧化分解阶段和高温阶段。

1.低温阶段(由室温~300℃)

坯料在窑内进行烧成时,首先是排除在干燥过程中尚未除去的残余水分。这些残余水分主要是吸附水和少量的游离水,其量约为2~5%。

随着水分排除固体颗粒紧密靠拢,发生少量的收缩。但这种收缩并不能完全填补水分所遗留的空间,因此物料的强度和气孔率都相应的增加。

在120~140℃之前,由于坯体内颗粒间尚有一定的孔隙,水分可以自由排出,可以迅速升温,随着温度进一步提高,坯体中毛细管逐渐变小,坯体内汽化加剧,使得开裂倾向增大。例如,当加热至120℃时,一克水占有的水蒸气容积为:22.4×(1+120/273)/18=1.79(升)。如果坯体中含有4~5%的游离水,则100克坯体的水蒸气体积达7.16--8.95升,相当于坯体体积的155倍。这些水蒸气主要由坯体的边角部位排出。为了保证水分排出不致使坯体开裂,在此阶段应注意均匀升温,速度要慢(大制品30℃/时,中小制品50~60℃/时),尤其是厚度和形状复杂的坯体更应注意。此外,要求通风良好,以便使排出的水蒸气能迅速排出窑外,避免冷聚在坯体表面。

2.分解与氧化阶段(300~950℃)

此阶段坯体内部发生了较复杂的物理化学变化,粘土和其它含水矿物排除结构水;碳酸盐分解;有机物、碳素和硫化物被氧化,石英晶型转化等。这些变化与窑内温度气氛和升温速度等因素有关。

(1)粘土和其它含水矿物排除结构水

粘土矿物因其类型不同、结晶完整程度不同、颗粒度不同、坯体厚度不同,脱水温度也有所差别,见表11-1。

Al2O3·2SiO2·2H2O 加热——→Al2O3·2SiO2+2H2O↑

(高岭土) (偏高岭土)(水蒸气)

粘土矿物脱去结构水与升温速度有关。升温速度加快,结构水的排除转向高温,且排出集中。结晶不良的矿物脱水温度较低。高岭石类矿物含结构水较多,在500~650℃之间集中排出,而蒙脱石和伊利石类粘土结构水量较少,脱水速度较为缓和。

粘土类矿物在集中排除结构水后,残存部分结构水要在更高的温度下才能排除,甚至持续到1100℃才能完全排除干净。产生这种现象的主要原因是:①这一部分水的(OH)根与粘土结合较紧密;②加热时,排出的结构水部分地被吸附在坯体空隙中。

粘土脱水后,继而晶体结构被破坏,失去可塑性。

(2)碳酸盐分解

MgCO3——→MgO + CO2 ↑500~800℃

CaCO3——→CaO + CO2↑800~1050℃

MgCO3·CaCO3——→CaO + MgO + 2CO2 ↑650~1000℃

4FeCO3——→2Fe2O3+3CO2 ↑800~1000℃

碳酸盐的结晶程度,升温速度和气氛都会影响碳酸盐的分解温度。

(3)有机物、碳素和硫化物的氧化

可塑性粘土,如紫木节土、黑碱石、黑泥等都含有大量的有机物和碳素,同时在烧成的低温阶段,烟气中的CO被分解,析出的碳素被多孔的坯体所吸附,这些物质加热时都要被氧化,反应将持续至1000℃。

C + O2——→CO2 ↑350℃~600℃以上

坯料中夹杂的硫化物的氧化反应约在800℃左右才能完毕。

FeS2 + O2 ——→FeS + SO2 350~450℃

4FeS + 7O2——→2Fe2O3 + 4SO2 ↑500~800℃

Fe2(SO3)3 ——→Fe2O3 + 3SO2↑560~770℃

(4)石英的晶型转变和少量液相形成

石英在573℃发生β—SiO2 —→α—SiO2,体积膨胀0.82%。按照K2O-Al2O3-SiO2 三元相图,985℃时出现低共熔物。由于杂质的存在,该共熔点的温度较相图所示温度约低60℃以上。也就是说,900℃左右在长石与石英、长石和被分解后的粘土颗粒的接触部位将出现熔滴。

此阶段物料的物理化学变化:当结构水和分解气体排除时,重量减轻,气孔相应增加。后期强度提高,坯体体积变化特征表现为三种原料(粘土、石英和长石)的膨胀和收缩的综合效应。在300--500℃为受热膨胀;500--600℃,含高龄土多的收缩大,含伊利石多的呈膨胀,含石英多的晶型转变具有较大膨胀;650--850℃,粘土收缩较大,加上高温型石英膨胀系数是负值,虽然长石有较大膨胀,但含粘土多的显示收缩,长石多粘土少的显示平缓膨胀。850--900℃,由于长石显著膨胀,粘土收缩相对平缓,膨胀较小。因此,在此阶段,就坯体本身而言,危险性并不大,可以进行快速升温。决定本阶段升温速度的主要因素是窑炉的结构特点,如果窑炉的结构能保证工作截面上温度均匀,就可以快速升温,窑炉结构不能保证温度的均匀分布,快速升温将造成窑内较大温差,使温度较低部位的产品因氧化分解不充分而进入高温成瓷期后,产生烟熏、起泡的缺陷。为了加速此阶段化学反应的进行,应控制窑内为氧化气氛,并保持良好的通风。

3.高温阶段(950℃~烧成温度)

(1)氧化保温期(950--1050℃)

坯体在氧化分解期的氧化实际上是不完全的。由于水汽及其它气体产物的急剧排除,在坯体周围包围着一层气膜,它妨碍氧化继续往坯体内部渗透,从而使坯体孔隙中的沉碳难以烧尽。因此在进入还原操作之前,必须进行氧化保温,以使坯体中的氧化分解和结构水排除进行完毕,并使窑内温度均匀,为还原操作奠定基础。

所谓氧化保温,即采用低速升温或保温操作,加强烟气流通量,提高空气过剩系数。适宜的氧化保温的温度范围和时间取决于坯体的烧结温度、坯体的尺寸和窑炉的结构,对于在1300℃左右烧成的陶瓷坯体,在900--1050℃之间氧化保温较适宜。产品尺寸越大,坯体越厚,碳素含量越大,釉的软化温度越低,装窑密度越大,保温时间则越长。

在氧化保温期的主要化学反应是:①继续氧化分解反应并排除结构水;②偏高岭石转化为铝硅尖晶石和无定形的SiO2;③液相开始出现,并开始熔融石英;④在液相存在下,无定形石英和部分石英晶体转化为方石英;

伴随液相的出现和铝硅尖晶石的形成,坯体开始显著收缩,气孔率急剧降低,强度逐渐提高。

(2)还原期(1050--1180℃)

在此期间发生的主要反应是:由铝硅尖晶石形成一次莫来石和方石英;硫酸盐分解和高价铁的还原和分解;

氧化气氛还原气氛

MgSO4——→MgO + SO3↑900℃以上

CaSO4——→CaO + SO3 ↑1250~1370℃迅速分解1080~1100℃

Na2SO4——→Na2O + SO3 ↑1200~1370℃1080~1100℃

2Fe2O3——→4FeO + O2 ↑1250~1370℃1080~1100℃

Fe2O3+CO ——→2FeO + CO2 ↑1000~1100℃

液相大量生成石英进一步被熔融,三组分的共熔物亦不断增加,碱和碱土金属氧化物与低价铁、石英等形成另一系列的低共熔物,所以坯体中液相量大大增加。如FeO·SiO2在1170℃出现液相,2FeO·SiO2在1250℃出现液相,K2O·Fe2O3·SiO2在900+10℃出现液相。

二次莫来石的形成长石熔化后,熔体中的K+、Na+向高岭石残骸扩散形成少量熔质,从而促进高岭石的分解和生成莫来石。另一方面熔体中K2O、Na2O含量降低组成移向三元相图的莫来石析晶区,而且碱金属离子扩散激活了剩下的离子,导致长石熔体中形成细小针状莫来石。

由高岭石分解经固相反应形成的粒状及片状莫来石称为一次莫来石,由长石熔体形成的针状莫来石称为二次莫来石。至1200℃,莫来石达到最大值,随后由于温度升高,莫来石的溶解,又使其含量减少。

由上述化学反应可见,硫酸盐和Fe2O3一般在高于1300℃的氧化气氛中进行分解,此时已接近制品的烧成温度,这些物质的分解产生气体将对釉面产生严重的缺陷,Fe2O3显黑色将降低瓷的白度。如果采用还原气氛,这些物质的分解温度显著降低,Fe2O3被还原为FeO 有利于液相的生成,可促进坯体烧结温度的降低,FeO+SiO2——→FeSiO3呈青色,有利于瓷坯白度和半透明度的提高,因此,在此期间必须采用强还原气氛烧成。

还原期的起始温度一般比釉的软化温度低150℃左右,使气体在釉面气孔未被封闭前排出。升温速度平缓(30--35℃/小时),使分解反应充分进行。烟气中控制CO(0~4)%,游离

O2(0~1)%。釉面封闭时作为还原结束温度。

由于液相的粘滞流动和表面张力的拉紧作用,填充坯内孔隙,促进晶粒重新排列,颗粒互相靠拢,坯体显著收缩致密,气孔率降低,气孔数目减少。形状变圆,坯体强度显著提高。

(3)弱还原期(1180℃--止火温度)

由于还原气氛是在窑内空气不足的情况下供给了较多的燃料形成的,燃料的不完全燃烧不仅造成燃料浪费,而且坯体和釉面长期处于还原气氛中还会沉积一层未燃烧的碳粒,导致制品“烟熏”。因此,在还原烧成操作后要换成中性气氛或弱还原气氛,这样使沉积的碳粒能充分燃烧,防止釉面污染,更重要的是使液相继续发展,促进莫来石晶体进一步长大。由于中性气氛很难控制,为了防止铁的氧化使瓷器发黄,更不希望出现氧化气氛,所以大多采用弱还原气氛,此时废气的组成是:CO2(16~9)%;O2(0.5~1)%,CO(1~3)% 。

在弱还原的末期要进行高火保温,使坯体内部物理化学反应进行更完善,保证组织结构均一;同时还可以调整窑内各部位的温度差,使窑内温度趋于一致。一般高火保温维持2--4小时。弱还原期升温速度一般控制在10 ℃/小时左右。坯体中显气孔率小于5%(趋于0)时作为弱还原的结束温度。

通常将还原期和弱还原期合称为玻化成瓷期。这是由于液相的大量生成填充坯体空隙,将晶粒彼此粘结成为整体,形成了晶体均匀分布在大量基质中的显微结构,即所谓的玻化或瓷化。经过玻化成瓷后,坯体的气孔率趋于零;坯体急剧收缩;强度、硬度增大;具有所需的介电性能和化学稳定性;坯色由淡黄,青灰变成白色;显示光泽并且有半透明感。

在陶瓷的玻化成瓷阶段中液相具有重要作用。①填满坯体空隙,粘结晶粒,使瓷坯致密成为整体;②促进莫来石的生成和发育;降低烧成温度,促进烧结;③阻止或延缓多晶转变;

④长石熔体具有高的粘度,石英和粘土分解产物的熔解又不断的提高液相的粘度,使坯体具有很宽的烧成范围和对组分变化的较低敏感性。因此长石质瓷中液相量可高达50—60%。但液相量过多,将使瓷坯的骨架削弱,增加变形倾向;过少则不能填满坯体空隙,降低瓷的机电性能。

陶瓷坯体在烧成过程中形状的稳定性不能仅用液相的高粘度来说明,坯体中的结晶相含量也有很重要的作用。莫来石晶体的线性尺寸不断增大,交错贯穿,它与残余的石英粒子构成了“骨架”,增强了瓷坯的结构强度。

4.冷却阶段(烧成温度~室温)

瓷坯由高温时略呈可塑性状态转变为常温的固态,此时因熔体粘度大抑制了晶核的形成,且熔体中硅量并未达到饱和,所以一般地说,在冷却阶段不会有方石英晶相的析出。只有含SiO2多的瓷坯冷却周期较长时,可以从熔体中析出方石英,或者在粗大石英晶粒颗粒和与气泡相邻的石英粒子表面,未被液体润湿而可能由固相转变形成方石英。但在冷却过程中,莫来石晶体长大为粗大的针状晶体。这种莫来石所占的比例不大,还将发生石英的晶型转变。随着温度的降低,液相粘度增大,瓷坯固化。

冷却过程可分为两个阶段:

(1)由烧成温度至850℃

坯内液相由塑性状态开始凝固。由于液相的存在,快速冷却所引起的热应力在很大程度上被液相所缓冲,不会产生有害的作用。同时快速冷却可防止釉面被重新氧化时使制品发黄,还可以防止坯体中莫来石晶体不致长成粗大以及釉层析晶而失透。但冷却速度应能保证窑内温度均匀,并考虑匣钵所能承受的急冷应力。

(2)850℃以下

坯内液相完全凝固,此时必须注意坯体内外温度差所造成的热应力和石英晶型转变时体积收缩应力对坯体的不利影响,因此冷却不宜过快,降温速度应控制在40~70℃/时。

冷却至400℃以下,由于制品的各种物化反应已基本完成,冷却速度可以快些。

综上所述,坯体在烧成过程中的反应可见表11—2,具体的温度范围取决于坯釉配方、烧成条件、窑炉类型和结构、制品形状和尺寸等情况。

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

陶瓷材料烧结实用实用工艺和性能测试实验指导书

陶瓷材料烧结工艺和性能测试实验指导书 1实验目的和意义 1)了解陶瓷材料的烧结和性能检测的工艺流程,掌握吸水率,表面气孔率,实际密度,线收缩率的测定方法。 2)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间。 2 实验背景知识 2.1 烧结实验 在粉体变成的型坯中,颗粒之间结合主要靠机械咬合或塑化剂的粘合,型坯的强度不高。将型坯在一定的温度下进行加热,使颗粒间的机械咬合转变成直接依靠离子键,共价键结合,极大的提高材料的强度,这个过程就是烧结。 陶瓷材料的烧结分为三个阶段,升温阶段,保温阶段和降温阶段。 在升温阶段,坯体中往往出现挥发分排出、有机粘合剂等分解氧化、液相产生、晶粒重排与长大等微观现象。在操作上,考虑到烧结时挥发分的排除和烧结炉的寿命,需要在不同阶段有不同的升温速率。 保温阶段指型坯在升到的最高温度(通常也叫烧结温度)下保持的过程。粉体烧结涉及组成原子、离子或分子的扩散传质过程,是一个热激活过程,温度越高,烧结越快。在工程上为了保证效率和质量,保温阶段的最高温度很有讲究。烧结温度与物料的结晶化学特性有关,晶格能大,高温下质点移动困难,不利于烧结。烧结温度与材料的熔点有关系,对陶瓷而言是其熔点的0.7—0.9倍,对

金属而言是其熔点的0.4-0.7倍。 冷却阶段是陶瓷材料从最高温度到室温的过程,冷却过程中伴随有液相凝固、析晶、相变等物理化学变化。冷却方式、冷却速度快慢对陶瓷材料最终相的组成、结构和性能等都有很大的影响,所以所有的烧结实验需要精心设计冷却工艺。 由于烧结的温度如果过高,则可能出现材料颗粒尺寸大,相变完全等严重影响材料性能的问题,晶粒尺寸越大,材料的韧性和强度就越差,而这正是陶瓷材料的最大问题,所以要提高陶瓷的韧性,就必须降低晶粒的尺寸,降低烧结温度和时间。但是在烧结时,如果烧结温度太低,没有充分烧结,材料颗粒间的结合不紧密,颗粒间仍然是靠机械力结合,没有发生颗粒的重排,原子的传递等过程,那么材料就是不可用的。 2.2 性能检测 材料是否烧结良好,需要一定的检测手段。烧结的致密程度一般表现在密度是否高、材料内部的气孔的多少、表面的气孔多少和大小以及吸水能力的强弱。在本实验中,主要考察材料表面气孔率、相对密度、吸水率以及线收缩率。 2.2.1 目测 很多的实验,在烧结的过程中,可能由于很多的原因而出现表面裂纹,有些会出现表面的凹陷,所以,烧结后检测的第一步就是目测试样。如果出现以上的问题,则试样肯定是不合格的,其他的实验可以不用做了。目测的项目有是否出

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

陶瓷的生产工艺流程.

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO ),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时, 2 在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。

陶瓷烧制工艺说明书

陶瓷烧制工艺说明书 小组成员: 学生姓名方伟伟学号 0900102124 学生姓名黄文富学号 0900102135 学生姓名杜荣烈学号 0900102136 学生姓名何浩东学号 0900102137 学生姓名丁笠学号 0900107230 学生姓名李军学号 0900802115 2012年05月10日

目录 引言 (1) 2陶瓷的传统烧制工艺 (2) 3陶瓷的现代烧制工艺 3.1陶瓷粉体的制备 3.2 陶瓷的烧结 3.3 陶瓷的成型 3.3.1 注浆成型 3.3.2 注浆成型操作注意事项 3.4 陶瓷的精加工 3.4.1界面反应抛光 4结语 5参考资料

1引言 中国是瓷器的故乡,瓷器的发明是中华民族对世界文明的伟大贡献,在英文中“瓷器(china)”与中国(China)同为一词。大约在公元前16世纪的商代中期,中国就出现了早期的瓷器,经过发展形成了“定,邢,哥,汝,钧”等名噪一时的各类瓷器,其中有些直至今日仍旧享有盛誉。在物质文明高度发达的现代,瓷器也已经越来越多的朝功能性方面发展,在瓷器的制造过程中,现代机械及工艺也占着越来越重要的戏份。故而,笔者将秉着传承与发展中华优秀文明的原则,对陶瓷烧制的传统工艺与现代工艺做一简要的论述,以弘扬古朴、典雅的华夏美德。 以下对陶瓷传统与现代制作工艺加以介绍: 2 陶瓷的传统烧制工艺 传统的陶瓷烧制分工极其细致,最核心的包括拉坯、利坯、画坯、施釉和烧窑等五项工序。如下: 为了能让读者真正了解陶瓷的传统烧制工艺,笔者将从陶瓷原材料的采集到陶瓷成品的整个烧制工艺做简一介绍。 (一)采集瓷石瓷土:瓷器都是以瓷石和瓷土(高岭土)为基本原料烧制而成的。《天工开物·陶埏篇》说:“土出婺源、祁门两山:一名高梁山,出粳米土,其性坚硬;一名开化山,出糯米土。其性粢软。两土相合,瓷器即成。”所谓糯米土即指高岭土。 高岭土是陶瓷制品的坯体和釉料以及粘土质耐火材料的重要原料。它是我国瓷都景德镇古代瓷工首先发现并应用的瓷器原料,因为最早发现其产地是江西景德镇以东四十五公里处的高岭村而得名。现在已成为全世界制瓷原料的通用术语。也就是说“高岭土”已是世界同类粘土的统一名称,这是我国瓷工对世界的一个大贡献。 关于高岭土的来源,颇具迷人色彩。传说高岭村里有一对虽贫穷但心地极为善良的高姓夫妇,在一年冬天,北风呼啸,滴水成冰,一个衣衫破旧的白发老人晕倒在高家屋檐,高氏夫妇发现后,将其扶进屋给其暧身,并借熬粥给他喝......老人临走时,指点高家夫妇去高岭山山顶,不停息地一连挖九九八十一

陶瓷生产工艺设计

一陶瓷生产工艺流程 二原料 菱镁矿,煤矸石,工业氧化铝,氧化钙,二氧化硅,氧化镁。三坯料的制备 1原料粉碎 块状的固体物料在机械力的作下而粉碎,这种使原料的处理操作,即为原料粉碎。(1)粗碎 粗碎装置常采用颚式破碎机来进行,可以将大块原料破碎至40-50毫米的碎块,

这种破碎机是无机材料工厂广泛应用的醋碎和中碎机械。是依靠活动颚板做周期性的往复运动,把进入两颚板间的物料压碎,颚式破碎机具有结构简单,管理和维修方便,工作安全可靠,使用范围广等优点。它的缺点是工作间歇式,非生产性的功率消耗大,工作时产生较大的惯性力,使零件承受较大的负荷,不适合破碎片状及软状粘性物质。破碎比较大的破碎机的生产能力计算方法如下: G=0.06upkbsd/tanq 式中G破碎机生产能力,Kg/h u物料的松动系数,0.6-0.7 P物料的密度 K每分钟牙板摆动次数,次/MIN b进料口长度,单位米 S牙板之开程单位米 Q钳角D破碎后最大物料的直单位毫米 (2)中碎 碾轮机是常用的中碎装置。物料是碾盘与碾轮之间相对滑动与碾轮的重力作用下被碾磨与压碎的,碾轮越重尺寸越大,则粉碎力越强。陶瓷厂用于制备坯釉料的轮碾机常用石质碾轮和碾盘。一般轮子直径为物料块直径的14-40倍,硬质物料取上限,软质物料物料下限。 轮碾机碾碎的物料颗粒组成比较合理,从微米颗粒到毫米级粒径,粒径分布范围广,具有较合理的颗粒范围,常用于碾碎物料。 (3)细碎 球磨机是陶瓷厂的细碎设备。在细磨坯料和釉料中,其起着研磨和混合的作用。陶瓷厂多数用间歇式湿法研磨坯料和釉料,这是由于湿式球磨时水对原料的颗粒表面的裂缝有劈尖作用,其研磨效率比干式球磨高,制备的可塑泥和泥浆的质量比矸干磨得好。泥浆除铁比粉除铁磁阻小效率高,而且无粉尘飞扬。 (4)筛分 筛分是利用具有一定尺寸的孔径或缝隙的筛面进行固体颗粒的分级。当粉粒经过筛面后,被分级成筛上料和筛下料两部分。筛分有干筛和湿筛。干筛的筛分效率主要取决于物料温度。物料相对筛网的运动形式以及物料层厚度。当物料湿度和粘性较高时,容易黏附在筛面上,使筛孔堵塞,影响筛分效率。当料层较薄而筛面与物料之间相对运动越剧烈时,筛分效率就越高,湿筛和干筛的筛分效果主要却决于料将的稠度和黏度。 陶瓷厂常用的筛分机有摇动筛,回转筛以及振筛。 (5)除铁 (6)A磁选条件 坯料和釉料中混有铁质将使制品外观受到影响,如降低白度,产生斑点。因此,原料处理与坯料制备中,除铁是一个很重要的工序。 从物理学中,作用在单位质量颗粒上磁力为 F=RHdH/dh

陶瓷烧成过程及影响因素

陶瓷烧成过程及影响因素一。低温阶段温度低于300℃,为干燥阶段,脱分子水;坯体质量减小,气孔率增大。对气氛性质无要求二中温阶段温度介于300~950℃1.氧化反应:(1)碳素和有机质氧化;(2)黄铁矿(FeS2)等有害物质氧化。2.分解反应:(1)结构水脱出;(2)碳酸盐分解;(3)硫酸盐分解3.石英相变和非晶相形成。影响因素加强通风保持良好氧化气氛,控制升温速度,保证足够氧化反应时间,减少窑内温差。三。高温阶段1.氧化保温阶段温度大于950℃,各种反应彻底;2.强还原阶段CO浓度3%~5% 三价铁还原成二价铁之后与二氧化硅反应形成硅酸铁。3.弱还原阶段非晶态(玻璃相)增多,出现偏高岭石===模来石+ SiO2(非晶态)影响因素,控制升温速度,控制气氛,减小窑内温差四。高温保温阶段烧成温度下维持一段时间。物理变化:结构更加均匀致密。化学变化:液相量增多,晶体增多增大晶体扩散,固液分布均匀五。冷却阶段液相结晶晶体过冷强度增大急冷(温度大于850℃)→缓冷(850~400℃)→终冷(室温)一次烧成和二次烧成对比一次烧成又称本烧,是经成型,干燥或施釉后的生坯,在烧成窑内一次烧成陶瓷制品的工艺路线。特点:1 工艺流程简化;2 劳动生产率高;3 成本低,占地少;4 节约能源。二次烧成是指经过成型干燥的生坯先在素烧池中素烧,即第一次烧成然后拣选施釉在进入釉烧窑内进行釉烧第二次烧成特点:1 避免气泡,增加釉面的白度和光泽度;2 因瓷坯有微孔,易上釉;3 素烧可增加坯体的强度,适应施釉、降低破损率;4 成品变形小,(因素烧已经收缩);5 通过素检可降低次品率。对批量大,工艺成熟质量要求不是很高的产品,可一次烧成,但一次烧成要求坯釉一起成熟,否则损失大,质量下降,应用二次烧成耐火材料的宏观性质1.气孔:开孔、闭孔和贯通孔;2.气孔率:体积百分比 真气孔率Pt=(Vc+V o)/Vb×100% 闭气孔率Pc= Vc/Vb×100% 显气孔率Pa= V o /Vb×100%Vc---闭孔体积;Vo---开孔+贯通孔;Vb---材料总体积Pt= Pc+ Pa 3.密度(g/cm3)体积密度d=M/V视密度或表观密度da=M/(Vc+Vt)真密度dt=M/Vt Vc---闭孔体积;Vt---除气孔外的材料体积;V---总体积;M—质量 4.吸水率(%)是指全部显气孔被水填满时,水的质量与干燥材料的质量之比。Wa=(M-Mo)/Mo×100%Wa—吸水率;M—吸水后质量;Mo—吸水前质量 力学性质1.常温耐压强度S=P/A P—材料破坏时的最大压力;A—受压面积 2.高温耐压强度在高于1000~1200℃条件下,单位面积所承受的最大压力。 3.抗折强度(抗弯强度、断裂模量)材料单位面积所承受的极限弯曲应力。 4.耐磨性材料抗机械磨损作用的能力。 热学性质1.热膨胀性包括线膨胀系数和体积膨胀系数;2.导热性导热系数; 3.比热容常压下加热一公斤材料使之升高1℃所需要的热量(kJ) 4.导电性电阻率。碳质和碳化硅质材料为导体,一般耐火材料为不良导体,但温度大于1000℃时导电性明显提高,熔融时导电能力很强。 耐火材料的使用性质1.耐火度材料在高温作用下达到软化程度时的温度。 2.荷重软化温度普通材料加恒压0.2N/mm2下,升温测其软化温度。 3.高温体积稳定性材料重烧线变化率和体积变化率。 4.耐热震性(抗热震性)极限温差。 5.抗渣性材料在高温下抵抗熔渣及其它熔融液侵蚀而不易损毁的性能。 6. 耐真空性材料在真空和高温下服役时的耐久性,因高温减压时耐火材料中有些组分极易挥发。

陶瓷材料烧结技术的研究进展

Material Sciences 材料科学, 2017, 7(6), 628-632 Published Online September 2017 in Hans. https://www.360docs.net/doc/f818334429.html,/journal/ms https://https://www.360docs.net/doc/f818334429.html,/10.12677/ms.2017.76083 Research and Application on Sintering Technology of Ceramic Materials Haitao Zheng1, Tingting Pan2 1Harbin Aurora Optoelectronics Technology Co., Ltd., Harbin Heilongjiang 2Heilongjiang University of Finance and Economics, Harbin Heilongjiang Received: Sep. 3rd, 2017; accepted: Sep. 22nd, 2017; published: Sep. 28th, 2017 Abstract Advanced ceramic materials are widely used in aerospace, electronics, mechanical, biological, medical and other fields because of its fine structure and high strength, high hardness, high tem-perature resistant, corrosion resistance, wear-resisting property and a series of excellent features. The sintering technology of ceramic materials has an important influence on the structure and property of the material itself. This paper summarized the ceramic sintering mechanism, research progress and application, and indicated the future research direction. Keywords Sintering Technology, Mechanism, Research Development, Application 陶瓷材料烧结技术的研究进展 郑海涛1,潘婷婷2 1哈尔滨奥瑞德光电技术有限公司,黑龙江哈尔滨 2黑龙江财经学院,黑龙江哈尔滨 收稿日期:2017年9月3日;录用日期:2017年9月22日;发布日期:2017年9月28日 摘要 先进陶瓷材料由于其精细的结构组成及高强度、高硬度、耐高温、抗腐蚀、耐磨等一系列优良特性被广泛应用于航空航天、电子、机械、生物医学等各个领域。陶瓷材料的烧结技术对材料本身的结构及性能有着重要影响。本文对陶瓷材料的烧结机理、研究进展及应用进行了总结,并提出了今后的研究方向。

氧化铝陶瓷的烧结教材

氧化铝陶瓷的烧结 摘要:随着科学技术与制造技术日新月异的发展,氧化铝陶瓷在现代工业中得到了深入的发展和广泛的应用。本文就氧化铝陶瓷的烧结展开论述。主要涉及原料颗粒和烧结助剂两方面,以获得性能良好的陶瓷材料,对满足工业生产和社会需求有非常重要的意义。 关键词:氧化铝;原料颗粒;烧结助剂; 1 引言 在科学技术和物质文明高度发达的现代社会中,人类赖以制成各种工业产品的材料实在千差万别,但总体包括起来,无非金属、有机物及陶瓷三大类[1]。氧化铝陶瓷是目前世界上生产量最大、应用面最广的陶瓷材料之一,具有机械强度高、电阻率高、电绝缘性好、硬度和熔点高、抗腐蚀性好、化学稳定性优良等性能,而且在一定条件下具有良好的光学性和离子导电性。基于Al2O3陶瓷的一系列优良性能,其广泛应用于机械、电子电力、化工、医学、建筑以及其它的高科技领域[2]。在氧化铝陶瓷的生产过程中, 无论是原料制备、成型、烧结还是冷加工, 每个环节都是不容忽视的。目前氧化铝陶瓷制备主要采用烧结工艺[3],坯体烧结后,制品的显微结构及其内在性能发生了根本的改变,很难通过其它办法进行补救。因此,深入研究氧化铝陶瓷的烧结技术及影响因素,合理选择理想的烧结制度确保产品的性能、分析烧结机理、研究添加剂工作机理等对氧化铝陶瓷生产极有帮助,为氧化铝陶瓷的更广泛应用提供理论依据,为服务生产和社会需要非常重要。 2 氧化铝陶瓷简介 Al2O3是新型陶瓷制品中使用最为广泛的原料之一,具有一系列优良的性能[4]。Al O3陶瓷通常以配料或瓷体中的Al2O3的含量来分类,目前分为高纯型与2 普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料。由于其

陶瓷生产工艺技术概况

陶瓷生产工艺技术概况 第一节陶瓷生产及原料概况 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有 一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天 的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产 过程都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的 陶瓷生产方法制成的无机多晶产品。 陶瓷制品的品种繁多,它们之间的化学成分、矿物组成、物理性质、以及制造方法, 常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为 几个系统,详细的分类法各家说法不一,到现在国际上还没有一个统一的分类方法。整理 汇编如下: 一、根据陶瓷原料杂质的含量、和结构紧密程度把陶瓷制品分为陶质、瓷质和炻质三类 1、陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为 有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要 经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 2、炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。

3、瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。瓷器是陶瓷器发展的更高阶段。它的特征是坯体已完全烧结,完全玻化,因此很致密,对液体和气体都无渗透性,胎薄处星半透明,断面呈贝壳状,以舌头去舔,感到光滑而不被粘住。 二、陶瓷可简单分为硬质瓷,软质瓷、特种瓷三大类 1、硬质瓷 (hard porcetain) 具有陶瓷器中最好的性能。用以制造高级日用器皿,电瓷、化学瓷等。我国所产的瓷器以硬质瓷为主。硬质瓷器,坯体组成熔剂量少,烧成温度高,在1360℃以上色白质坚,呈半透明状,有好的强度,高的化学稳定性和热稳定性,又是电气的不良传导体,如电瓷、高级餐具瓷,化学用瓷,普通日用瓷等均属此类,也可叫长石釉瓷。 2、软质瓷(soft porcelain)与硬质瓷不同点是坯体内含的熔剂较多,烧成温度稍低,在1300℃以下,因此它的化学稳定性、机械强度、介电强度均低,一般工业瓷中不用软质瓷,其特点是半透明度高,多制美术瓷、卫生用瓷、瓷砖及各种装饰瓷等。这两类瓷器由于生产中的难度较大(坯体的可塑性和干燥强度都很差,烧成时变形严重),成本较高,生产并不普遍。至于熔块瓷 (Fritted porcelain) 与骨灰磁 (bone china),它们的烧成温度与软质瓷相近,其优缺点也与软质瓷相似,应同属软质瓷的范围。英国是骨灰瓷的着名产地,我国唐山也有骨灰瓷生产。 3、特种陶瓷是随着现代电器,无线电、航空、原子能、冶金、机械、化学等工业以及电子计算机、空间技术、新能源开发等尖端科学技术的飞跃发展而发展起来的。这些陶瓷所用的主要原料不再是粘土,长石,石英,有的坯体也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,多以各种氧化物为主体,如高铝质瓷,它是以氧化铝为主,镁质瓷,以氧化镁为主;滑石质瓷,以滑石为主;铍质瓷,以氧化铍或绿

陶瓷烧成缺陷及原因分析

陶瓷烧成缺陷及原因分析 发布时间:2008-8-4 15:07:14 阅读:52 次新闻来源:作者: (一)变形:产品烧成变形是陶瓷行业最常见、最严重的缺陷,如口径歪扭不圆,几何形状有不规则的改变等。主要原因是装窑方法不当。如匣钵柱行不正,匣钵底或垫片不平,使窑车运行发生震动,影响到产品的变形。另外,产品在烧成中坯体预热与升温快时,温差大易发生变形。烧成温度过高或保温时间太长也会造成大量的变形缺陷。使用的匣钵高温强度差、或涂料抹不平时也会造成烧成品的变形。 (二)开裂:开裂指制品上有大小不同的裂纹。其原因是坯体入窑水分太高(大于2%以上),预热升温和冷却太快,导致制品内外收缩不匀。有的是坯体在装钵前已受到碰撞有内伤。坯体厚薄不匀,配件(如壶把、咀等)重量过大或粘结不良也会造成制品开裂。防止的办法是:(1)入窑坯体水分小于2%,车速适当减少冷却量。(2)装窑时套装操作谨慎,垫片与坯体配方一致。配件大小、重量与粘接位置恰当。有的在粘接泥浆中加入10-15%的釉料,可以使咀、把与主体牢固熔接一体,如此可克服开裂缺陷。(三)起泡:烧制品起泡有"坯泡"与"釉泡"两种。坯泡分为"氧化泡"与"还原泡"两种。氧化泡指坯泡外面覆盖釉层,断面呈灰黑色,多形成于窑内低温部位。主要是瓷胎与釉料中的分解物未能充分氧化,烧失物未完全排除所致。予热升温快,氧化分解阶段时间短、氧化结束时窑内温度过低,上下温度差过大。在坯釉料中,碳酸盐。硫酸盐及有机杂质含量较多等都是造成产品起泡的主因。此外时装车密度不当、入窑水份高等原因亦须注意。 还原泡又称过火泡,断而发黄,多发生于高温近喷火口处的制品。主要由于坯体内硫酸盐与高价铁还原不足,强还原气氛不足及烧成温度过高造成。釉泡系沉积炭及分解物在釉熔前未能烧尽挥发,气体被阻于釉面层中形成。若延长釉熔时间或适当平烧即可解决。(四)阴黄:制品表面发黄或斑状发黄,有的断面也有发黄现象,多出现在高火位处。主要原因是升温太快,釉熔融过早,还原气氛不足、而使瓷胎中的Fe2O3未能还原成FeO。此外,装钵柱太低,窑顶局部产品温度偏高而还原不足也会形成阴黄缺陷。在产品原料中TiO2含量太高,也会导致产品发黄,如若在坯料中加入微量CoO,可遮盖产品的黄色。(五)烟熏:不论采用何种燃料都会发生烟熏现象。烟熏指产品表面呈灰色或不纯正的白色。主要由于坯体氧化不完全或还原过早使坯内炭素、有机物或低温碳未能烧尽在釉层封闭之前。有时烟气倒流也会熏蚀釉面。若釉料中钙含量偏高也易形成烟熏缺陷。(六)针孔:指产品釉面出现微小凹痕或小孔。形成此类缺陷一是坯料中有机物。碳素、氧化铁含量较高,当升温快时烧失物未能完全烧尽挥发而到后期高温阶段才逸出釉面,形成宛如微观火山状的针孔。此外,高温炉还原气氛太弱,喷火口部位产品再次被氧化也会造成针孔。再者,当釉料流动性差或施釉过薄时也会发生针孔缺陷。 (七)桔釉:制品釉面不平、呈桔皮状。一般发生于盘、碟类或瓷板砖类制品。主要原因是釉面波化时升温过快,烧成温度过高使釉面产生沸腾现象所致。另外釉浆厚薄不均、高温流动性差及釉料研磨不细等都是形成桔釉缺陷的症结所在。 (八)惊釉:产品釉面有发丝粗的裂纹。主要原因是坯、釉膨胀系数相差较大形成。这就需要重新调整坯。釉配料配方。此外烧成温度过高、冷却制度不合理或釉层过厚也会形成惊釉缺陷。

实验9-陶瓷材料烧结工艺和性能测试

瓷材料烧结工艺和性能测试实验指导书 1实验目的和意义 1)了解和掌握在实验室条件下制备功能瓷材料的典型工艺和原理,包括配方计算、称量、混料、筛分、造粒、成型、排塑、烧结、加工、物理与电学性能测试等基本过程,本实验以多功能TiO2 压敏瓷的制备和性能检测为实例。 2)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间。 2 实验背景知识 2.1 试样制备 2.1.1 敏感瓷的原理 敏感瓷材料是某些传感器中的关键材料之一,用于制作敏感元件,它是一类新型多晶半导体功能瓷。敏感瓷材料是指当作用于有这些材料制造的原件上的某一个外界条件,如温度、压力、湿度、气氛、电场、光及射线改变时,能引起该材料某种物理性能的变化,从而能从这种元件上准确迅速的获得某种有用的信号。按其相应的特性把这些材料分别称作为热敏、压敏、湿敏、光敏、气敏及离子敏感瓷。 敏感瓷就是通过微量杂质的掺入,控制烧结气氛(化学计量比偏离)及瓷的微观结构,可以使传统绝缘瓷半导体化,并使其具备一定的性能。 瓷是由晶粒、晶界、气孔组成的多相系统,通过人为掺杂,造成晶粒表面的组分偏离,在晶粒表层产生固溶、偏析及晶格缺陷;在晶界处产生异质相的析出、杂质的聚集,晶格缺陷及晶格各向异性等。这些晶粒边界层的组成、结构变化,显著改变了晶界的电性能,从而导致整个瓷电气性能的显著变化。 2.1.2 压敏瓷的原理 压敏半导体瓷是指电阻值与外加电压成显著的非线性关系的半导体瓷。使用时加

上电极后包封即成为压敏电阻器。制造压敏电阻器的半导体瓷材料主要有SiC、ZnO、BaTiO3、Fe2O3、SnO2、SrTiO3、TiO2 等。其中BaTiO3、Fe2O3 利用的是电极与烧结体界面的非欧姆特性,而SiC、ZnO、SrTiO3、TiO2 利用的是晶界的非欧姆特性,目前在高压领域中应用最广、性能最好的是ZnO 压敏瓷。 氧化锌压敏电阻器的I-V 特性曲线(左图)及其示意图(右图) 由于大规模集成电流的广泛使用,对变阻器的要更小更薄,具有更多功能和相对较低漏电流。根据这些新要求和压敏功能与瓷显微结构的关系,人们把研究的注意力集中到具有半导体晶界效应的TiO2材料方面。 2.1.3 材料的微观结构和设计 电子瓷的电阻是由晶粒和晶界的电阻组成的,压敏电阻器是利用电子瓷的晶界效应,晶粒的电阻率要很小。晶界实在瓷的烧结过程中,随着晶粒长大,部分添加剂偏析在晶粒之间形成的。 压敏电阻器的阻值是随着外加的电压而变化的,当外加电压低于压敏电压时,材料的晶界势垒高,压敏电阻表现为高阻状态,这时的电阻主要来源于晶界;当外加电压达到压敏电压时,电阻将随着电压的增加而急剧下降,这使得晶界势垒将被击穿,其阻值主要由晶粒电阻所决定。考虑到压敏电阻器的这种电阻变化特性,要求压敏瓷的晶界势垒B 要高,使境界称为一个高阻的晶界层,而晶层界的厚度t 要窄,即易发生隧道击穿,并且晶粒的电阻率要很小,有利于压敏瓷由高阻状突变为低阻状态。 2.1.4 试样的制备与性能 A.添加剂的掺杂 为了降低晶粒的电阻率,就必须使TiO2 晶粒半导体化。由于TiO2 材料存在

特种陶瓷制备工艺

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

陶瓷烧成工艺技术手册

江西烧成工艺技术手册

目录

第一节干燥基础知识 在斯米克实际生产过程中,玻化砖使用卧干器等设备对坯体进行烘干,卧干器,通称五层卧干器,每层全长23米,有的企业称之为多层烘道窑 一、干燥的作用 在斯米克内部,不管是玻化砖还是釉面砖,均采用干压(等静压)成型而成,其坯体所含的水分跟粉料水分基本一致,一般在5~6.5%。该状态下坯体的强度整体偏低,一般在3~5kg/cm2,不利于长距离的输送,也不利于后续的施釉和直接烧成。因此干燥的作用就是将坯体中所含的大部分结合水(通俗说,该水不参与粉料内部的结构组成)排出,赋予坯体一定的干坯强度,确保后续的走线传送、修坯及施釉等加工工序要求,也能避免在烧成时由于水分大量汽化膨胀导致砖坯炸裂等缺陷出现。 二、干燥过程 如上面所述,干燥过程就是排出坯体内部结合水的过程。在实际的干燥过程中,一般包含以下四个阶段: 1.升速干燥阶段: 在该阶段坯体表面首先被加热,外表水分开始逐步的向外排出; 2.等速干燥阶段: 随着干燥的逐步深入,坯体内部的水分在此阶段顺着坯体内部的毛细孔不断向外排出,程度也较为剧烈,坯体开始出现一定程度的收缩; 3.降速干燥阶段: 随着干燥的不断进行,坯体内部的水分不断外排,经历过前期的等速干燥阶段后,干燥的速度逐步下降,毛细孔的排水动力逐步减弱,进入降速干燥阶段; 4.平衡干燥阶段: 此阶段坯体表面排出和吸附处于动态平衡过程,坯体水分不再发生变化,坯体的表面湿度和烘干介质湿度基本一致。 三、干燥收缩与变形 随着坯体内部水分的排出,坯体也发生一定的体积变化——收缩。在整个坯体收缩过程中,因坯料的颗粒具有一定的取向性,导致了干燥收缩的各向异性,这种各向异性导致了坯体内外层及各部分收缩的差异,从而产生内应力。当这种内应力大于塑性状态坯体的屈服值时,坯体发生变形,若内应力过大,超过其弹性状态的坯体强度,会导致开裂。影响坯体干燥收缩与变形的主要因素有以下几个方面: 1、坯体含水率: 含水率越大,干燥后排出的水分越多,收缩越大,容易产生内部应力而导致变形和开裂; 2、坯体粉料的级配: 由于粉料颗粒级配的不同,粉料的堆积密度就有所差异。一般说,当坯体粉料的堆积密度越高时,

陶瓷高温烧成

实验5.5 陶瓷高温烧成 1 目的意义 1.1 意义 烧成是通过高温处理,使坯体发生一系列物理化学变化形成预期的矿物组成和显微结构,从而达到固定外形并获得所要求性能的工序。陶瓷烧成是制备陶瓷材料最重要的工艺步骤之一。 1.2 目的 ① 进一步了解陶瓷烧成温度和温度制度对材料性能的影响; ② 掌握实验室常用高温实验仪器、设备的使用方法; ③ 通过实验学会分析材料的烧成缺陷,制定材料合理的烧成温度制度。 2 基本原理 陶瓷材料在烧成过程中,随着温度的升高,将发生一系列的物理化学变化。例如,原料的脱水和分解,原料之间新化合物的生成,易熔物的熔融等。随着温度的逐步升高,新生成的化合物量不断变化,液相的组成、数量及粘度也不断变化,坯体的气孔率逐渐降低,坯体逐渐致密,直至密度达到最大值,此种状态称为“烧结”。坯体在烧结时的温度称为“烧结温度”。 陶瓷材料的烧结过程将成型后的可密实化的粉末,转化为一种通过晶界相互联系的致密晶体结构。陶瓷生坯经过烧结后,其烧结物往往就是最终产品。陶瓷材料的质量与其原料、配方以及成型工艺、陶瓷制品的性能、烧结过程等有很大关系。因此,一般建筑卫生瓷的烧结除了要通过控制烧结条件,以形成所需要的物相和防止晶粒异常长大外,还要严格控制高温下生成的液相量。液相量过少,制品难以密实;液相量过多,则易引起制品变形,甚至产生废品。 烧结后若继续加热,温度升高,坯体会逐渐软化(烧成工艺上称为过烧),甚至局部熔融,这时的温度称为“软化温度”。烧结温度和软化温度之间的温度范围称为“烧结温度范围”。 3 实验器材 ①坩埚钳,石棉手套、护目镜; ②高温电阻炉(最高温度1350℃±); ③垫砂(煅烧SiO2或A12O3粉)。 ④坯料:高岭土、滑石、长石、化学试剂等 4 实验步骤 ① 试样制备:参见实验九; ② 按编号将试样置人高温炉内。装炉时,试样与炉底间以煅烧过的石英粉或A12O3粉隔离。试 样之间的距离为10mm。

陶瓷工艺流程以及性能分类总结

主要成分是氧化硅、氧化铝、氧化钾、氧化钠、氧化钙、氧化镁、氧化铁、氧化钛等。陶瓷原料一般硬度较高,但可塑性较差。 机械密封所用的主要的典型陶瓷为:氧化铝、碳化硅。 氧化铝陶瓷:是一种以氧化铝(AL2O3)为主体的材料。有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件. 制作工艺:1)粉体制备将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量

比在10-30%的热塑性塑胶或树脂,有机粘结剂应与氧化铝粉体在150-200温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法(引入聚乙烯醇作为粘结剂)对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂,如硬脂酸,及粘结剂PVA。 2)成型方法氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件,粉体颗粒均匀分布对模具充填非常重要,充填量准确与否对制造的氧化铝陶瓷零件尺寸精度控制影响很大,粉体颗粒以大于60μm、介于60~200目之间可获最大自由流动效果,取得最好压力成型效果;注浆成型是氧化铝陶瓷使用最早的成型方法。由于采用石膏模、成本低且易于成型大尺寸、外形复杂的部件。注浆成型的关键是氧化铝浆料的制备;3)烧结技术将颗粒状陶瓷坯体致密化并形成固体材料的技术方法叫烧结。烧结即将坯体内颗粒间空洞排除,将少量气体及杂质有机物排除,使颗粒之间相互生长结合,形成新的物质的方法。4)精加工与封装工序。

相关文档
最新文档