对称信道容量的求解1

对称信道容量的求解1
对称信道容量的求解1

课程设计任务书

2011—2012学年第一学期

专业:通信工程学号:姓名:

课程设计名称:信息论与编码课程设计

设计题目:对称信道容量的求解

完成期限:自2011 年12 月19 日至2011年12 月25 日共 1 周一.设计目的

1、深刻理解信道容量的概念;

2、理解对称信道的概念与容量公式;

3、使用MATLAB或其他语言进行编程。

二.设计内容

给定信道的概率矩阵,编程判断其是否为对称信道,并求解其信道容量。三.设计要求

1、任意给定矩阵;

2、如矩阵不满足信道矩阵的要求,要能提示错误。

四.设计条件

计算机、MATLAB或其他语言环境

五.参考资料

[1]曹雪虹,张宗橙.信息论与编码.北京:清华大学出版社,2007.

[2]王慧琴,数字图像处理.北京:北京邮电大学出版社,2007.

[3]张德丰,MATLAB通信工程仿真北京:机械工程出版社,2010

[4]陈鲁生,信息论与编码北京:科学出版社,2010

指导教师(签字):教研室主任(签字):

批准日期:年月日

摘要

本课程设计主要以给定信道的概率矩阵1/2 1/2 0 0;0 1/2 1/2 0;0 0 1/2

1/2;1/2 0 0 1/2通过计算机利用MATLAB软件编辑判断其是否为对称信道,如不是对称信道,则提示错误。并利用互信息量二等函数来求平均互信息量,并最终得到信道容量的结果。

关键字:信道;信道容量;信道容量计算

目录

1绪论 (1)

2信道容量概念 (1)

3单用户信道 (2)

4多用户信道 (3)

5信道容量计算 (4)

5.1离散单符号信道及其信道容量 (4)

5.2信道容量计算思路 (5)

5.3信道容量定理 (5)

5.4离散多符号信道及其信道容量 (5)

6组合信道及其信道容量 (6)

7程序设计 (7)

8程序运行与分析 (9)

总结 (11)

致谢 (12)

参考文献 (13)

1.绪论

通信系统一般由信源、信道和信宿三部分组成,信道是信息传递的通道,承担信息的传输和储存的任务,是构成通信系统的重要组成部分。信道容量是指信道能够传输信息量的大小,我们经常需要考虑如何去计算信道容量,这也是香农信息论一个很重要的方面。信道的种类有多种,信道容量也是一个非常复杂的问题。

2.信道容量概念

信息论不研究信号在信道中传输的物理过程,它假定信道的传输特性是已知的,这样信道就可以用抽象的数学模型来描述。在信息论中,信道通常表示成:{X, P(Y|X), Y},即信道输入随机变量X、输出随机变量Y以及在输入已知的情况下,输出的条件概率分布P(Y|X)。

图1信道容量

根据信道的统计特性是否随时间变化分为:

①恒参信道(平稳信道):信道的统计特性不随时间变化。卫星通信信道在某种意义下可以近似为恒参信道。

②随参信道(非平稳信道):信道的统计特性随时间变化。如短波通信中,其信道可看成随参信道。

信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。对不同的输入概率分布,互信息一定存在最大值。我们将这个最大值定义为信道的容量。一但转移概率矩阵确定以后,信道容量也完全确定了。尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。我们将不同的输入概率分布称为试验信源,对

不同的试验信源,互信息也不同。其中必有一个试验信源使互信息达到最大。这个最大值就是信道容量。

信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。

通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。接收到了信号,不确定度小了,我们也就在一定程度上消除了发端信源的不确定性,也就是在一定程度上获得了发端信源的信息,这部分信息的获取是通过信道传输信号带来的。如果在通信的过程中熵不能够减小(不确定度减小)的话,也就没有通信的必要了。最理想的情况就是在接收信号条件下信源熵变为0(不确定度完全消失),这时,发端信息完全得到。

通信信道,发端X,收端Y。从信息传输的角度看,通过信道传输了I(X;Y)=H(X)-H(X|Y) ,( 接收Y前后对于X的不确定度的变化)。I该值与两个概率有关,p(x),p(y|x),特定信道转移概率一定,那么在所有p(x) 分布中,max I(X;Y)就是该信道的信道容量C(互信息的上凸性)。

3.单用户信道容量

信道是由输入集A、输出集B和条件概率P(y│x),y∈B,x∈A所规定的。当B是离散集时,归一性要求就是:

当B是连续集时,P(y│x)应理解为条件概率密度,上式就成为积分形式。如A和B都是离散集,信道所传送的信息率(每符号)就是输出符号和输入符号之间的互信息:

错误!未找到引用源。

互信息与P(y│x)有关,也与输入符号的概率P(x)有关,后者可由改变编码器来变动。若能改变P(x)使I(X;Y)最大,就能充分利用信道传输信息的能力,这个最大值就称为单用户信道容量C,即:

式中∑为所有允许的输入符号概率分布的集。

当A或B是连续集时,相应的概率应理解为概率密度,求和号应改为积分,其他都相仿。

4.多用户信道容量

多用户信道容量问题要复杂一些。以二址接入信道为例,这种信道有两个输入X2∈A1和X2∈A2,分别与两个信源联结,发送信息率分别为R1和R2;有一个输出Y,用它去提取这两个信源的信息。若信道的条件概率为P(y│x1,x2),则

式中I(X1;Y│X2)为条件互信息,就是当X2已确知时从Y中获得的关于X1的信息;I(X2;Y│X1)的意义相仿;I(X1,X2;Y)为无条件互信息,就是从Y 中获得的关于X1和X2的信息。E1和E2分别为所有允许的输入符号的概率分布P1(x1)和P2(x2)的集。

当X1和X2相互独立时,这些条件互信息要比相应的无条件互信息大,因此两个信息率R1和R2的上界必为上面三个式子所限制。若调整P1(x1)和P2(x2)能使这些互信息都达到最大,就得到式中的C1,C2,C0。

因此R1和R2的范围将是一个截角四边形区域,其外围封闭线就是二址接入信道的容量上界。更一般的多用户的情况还要复杂。

要使信道容量有确切的含义,尚须证明相应的编码定理,就是说当信息率低于信道容量时必存在一种编码方法,使之在信道中传输而不发生错

误或错误可任意逼近于零。已经过严格证明的只有无记忆单用户信道和多用户信道中的某些多址接入信道和退化型广播信道。对某些有记忆信道,只能得到容量的上界和下界,确切容量尚不易规定。

5.信道的容量计算

5.1离散单符号信道及其信道容量

信道的输入、输出都取值于离散符号集,且都用一个随机变量来表示的信道就是离散单符号信道。由于信道中存在干扰,因此输入符号在传输中将会产生错误,这种信道干扰对传输的影响可用传递概率来描述。信道传递概率通常称为前向概率。它是由于信道噪声引起的,所以通常用它描述信道噪声的特性。有时把p(x)称为输入符号的先验概率。而对应的把p(x|y)称为输入符号的后验(后向)概率。

平均互信息I(X;Y) 是接收到输出符号集Y后所获得的关于输入符号集X的信息量。信源的不确定性为H(X),由于干扰的存在,接收端收到Y 后对信源仍然存在的不确定性为H(X|Y),又称为信道疑义度。信宿所消除的关于信源的不确定性,也就是获得的关于信源的信息为I(X;Y),它是平均意义上每传送一个符号流经信道的信息量,从这个意义上来说,平均互信息又称为信道的信息传输率,通常用R 表示。有时我们所关心的是信道在单位时间内平均传输的信息量。如果平均传输一个符号为t秒,则信道平均每秒钟传输的信息量为Rt一般称为信息传输速率。

对于固定的信道,总存在一种信源(某种输入概率分布),使信道平均传输一个符号接收端获得的信息量最大,也就是说对于每个固定信道都有一个最大的信息传输率,这个最大的信息传输率即为信道容量,而相应的输入概率分布称为最佳输入分布。

信道容量是信道传送信息的最大能力的度量,信道实际传送的信息量必然不大于信道容量。

要使信道容量有确切的含义,尚须证明相应的编码定理,就是说当信息率低于信道容量时必存在一种编码方法,使之在信道中传输而不发生错误或错误可任意逼近于零。已经过严格证明的只有无记忆单用户信道和多用户信道中的某些多址接入信道和退化型广播信道。对某些有记忆信道,

只能得到容量的上界和下界,确切容量尚不易规定。

5.2信道容量计算思路

为了评价实际信道的利用率,应具体计算已给信道的容量。这是一个求最大值的问题。由于互信息对输入符号概率而言是凸函数,其极值将为最大值,因此这也就是求极值的问题。对于离散信道,P(x)是一组数,满足非负性和归一性等条件,可用拉格朗日乘子法求得条件极值。对于连续信道,P(x)是一函数,须用变分法求条件极值。但是对于大部分信道,这些方法常常不能得到显式的解,有时还会得到不允许的解,如求得的P(x)为负值等。为了工程目的,常把信道近似表示成某些易于解出容量的模式,如二元对称信道和高斯信道。对于其他信道的容量计算曾提出过一些方法,但都有较多的限制。比较通用的解法是迭代计算,可借助计算机得到较精确的结果。

对于连续信道,只需把输入集和输出集离散化,就仍可用迭代公式来计算。当然如此形成的离散集,包含的元的数目越多,精度越高,计算将越繁。对于信息论中的其他量,如信息率失真函数,可靠性函数等,都可以用类似的方法得到的各种迭代公式来计算。

5.3信道容量定理

从求信道容量的问题实际上是在约束条件下求多元函数极值的问题,在通常情况下,计算量是非常大的。下面我们介绍一般离散信道的平均互信息达到信道容量的充要条件,在某些情况下它可以帮助我们较快地找到极值点。

信道容量定理只给出了达到信道容量时,最佳输入概率分布应满足的条件,并没有给出最佳输入概率分布值,也没有给出信道容量的数值。另外,定理本身也隐含着达到信道容量的最佳分布不一定是唯一的,只要输入概率分布满足充要条件式,就是信道的最佳输入分布。在一些特殊情况下,我们常常利用这一定理寻求输入分布和信道容量值。

5.4离散多符号信道及其信道容量

实际离散信道的输入和输出常常是随机变量序列,用随机矢量来表示,

称为离散多符号信道。

若在任意时刻信道的输出只与此时刻信道的输入有关,而与其他时刻的输入和输出无关,则称之为离散无记忆信道,简称为DMC(discrete memoryless channel)。

输入、输出随机序列的长度为N的离散无记忆平稳信道通常称为离散无记忆信道的N次扩展信道。

对于离散无记忆N次扩展信道,当信源是平稳无记忆信源时,其平均互信息等于单符号信道的平均互信息的N倍。

当信源也是无记忆信源并且每一时刻的输入分布各自达到最佳输入分布时,才能达到这个信道容量NC。

6.组合信道及其信道容量

前面我们分析了单符号离散信道和离散无记忆信道的扩展信道。实际应用中常常会遇到两个或更多个信道组合在一起使用的情况。例如,待发送的消息比较多时,可能要用两个或更多个信道并行发送,这种组合信道称为并联信道;有时消息会依次地通过几个信道串联发送,例如无线电中继信道,数据处理系统,这种组合信道称为级联信道。在研究较复杂信道时,为使问题简化,往往可以将它们分解成几个简单的信道的组合。这一节我们将讨论这两种组合信道的信道容量与其组成信道的信道容量之间的关系。

独立并联信道的信道容量才等于各信道容量之和。

级联信道是信道最基本的组合形式,许多实际信道都可以看成是其组成信道的级联。两个单符号信道组成的最简单的级联信道X→Y→Z 组成一个马尔可夫链。根据马尔可夫链的性质,级联信道的总的信道矩阵等于这两个串接信道的信道矩阵的乘积。求得级联信道的总的信道矩阵后,级联信道的信道容量就可以用求离散单符号信道的信道容量的方法计算。信道和高斯信道。对于其他信道的容量计算曾提出过一些方法,但都有较多的限制。比较通用的解法是迭代计算,可借助计算机得到较精确的结果。

对于连续信道,只需把输入集和输出集离散化,就仍可用迭代公式来计算。当然如此形成的离散集,包含的元的数目越多,精度越高,计算将

越繁。对于信息论中的其他量,如信息率失真函数,可靠性函数等,都可

以用类似的方法得到的各种迭代公式来计算。

7.程序设计

信道输入为等概率分布,即 p=1/4,I=1,2,3,4有如下信道转移矩阵

1/2 1/2 0 00 1/2 1/200 0 1/2 1/21/2 0 0 1/2p ??????=??????,求其信道容量。

求互信息量二等函数文件hmessage.m ,其源代码如下:

function r=hmessage(x,f,nx,my)

% x 为输出的概率分布,f 为转移概率矩阵,nx 为输出德符号的可选个数,

即x 的元素%个数,nx 同时也是矩阵f 的行数,my 是矩阵的列数,也即输

出概率空间中的元素个数

sum=0;

for i=1:nx

for j=1:my

t=f(i,j)*x(i)

%求平均互信息量

sum=sum-t*log(f(i,j))/log(2);

end

end

r=sum;

disp('平均互信息量');

double(r) %返回结果

用于计算离散信源平均信息量的函数为message.m 文件,其源代码如

下:

function r=message(x,n)

r=0;

for i=1:n

r=r-x(i)*log(x(i))/log(2);

end

disp

r

下面利用函数message来求信源的熵。利用函数message来求平均互信息量,并最终得到信道容量。其实现的MATLAB程序代码如下:>>clear all;

x=[0.25 0.25 0.25 0.25];

f1=[1/2 1/2 0 0;0 1/2 1/2 0;0 0 1/2 1/2;1/2 0 0 1/2];%定义信道概率的转移矩阵

Hf1=hmessage(x,f1,4,4)

hx=message(x,4)

disp('信道1的信道容量')

c1=hx-hf1

平均互信息量为

hf1=0.1250

此离散信源的平均信息量为

hx=0

信道1的信道容量

c1=0.1250

8.程序运行与分析

图2程序输入

图3信源的平均信息量

图4信源符号输入概率与信道容量关系

由运行图可以看出给定任意矩阵

1/2 1/2 0 00 1/2 1/200 0 1/2 1/21/2 0 0 1/2p ??????=??????输入本程序,经过MATLAB 软件运行判断其为对

称信道,利用函数message 来求平均互信息量,得出信道1的平均互信息量为hf1=0.1250,此时离散信源的平均信息量为:hx=0,最终得出信道1的信道容量:c1=0.125

总结

本次课程设计我的课题是对称信道容量求解的设计,开始的一个星期我针对这个课题的任务要求从图书馆、上网等渠道获取相关信息,查找相关的参考资料,然后设定了本课题的设计方案。经过近多日的努力,终于将本次课程设计做完了,但由于水平有限,文中肯定有很多不恰当的地方,请老师指出其中的错误和不当之处,使我能做出改正,我会虚心接受。在本次课程设计过程中,我增强了自己的动手能力和分析能力。通过跟同学的交流,也通过自己的努力,我按时完成了这次课程设计。在此过程中,我学会了很多,也看到了很多自己的不足之处。在以后的学习生活中,我会努力学习专业知识,完善自我,为将来的发展做好充分的准备。

总之,在这次课程设计中,我受益匪浅,学到了很多书本上所没有的东西,懂得了理论和实际联系的重要性。在以后的学习中,我不仅要把理论知识掌握牢固,更要提高自己的动手能力和分析能力。

致谢

通过两周的努力,终于将信息论与编码课程设计完成了。本次课程设计目的是让我们对所学的专业知识有更进一步的了解和巩固,让我们能灵活运用所学的专业知识。在这次设计里我学到了很多,这对我来说是一种进步,每个人只要自己和自己比,每一次小的进步就是大的突破。在这次设计中我还看的了同学的友爱,当遇到困难时只要他们知道的就会耐心地指导和帮助,在论文完成之际,我要特别感谢指导老师的热情关怀和悉心指导。每次当我有问题的时候去问老师,她都能耐心的帮我指导,和我一起解决困难。通过这次的课程设计,不仅使我学到了很多专业方面的知识,也让我明白了不畏困难、勇于攀登艰难的重要性,这对我未来的学习和生活产生很大的影响。所以我觉得这次课程设计既能增强我们的动手能力、思维能力、实践能力、还能增进友情。这次课程设计对我来说真可畏受益匪浅啊!

在此,再次感谢我的学校和指导老师。

参考文献

[1]曹雪虹,张宗橙.信息论与编码.北京:清华大学出版社,2007;

[2]王慧琴,数字图像处理.北京:北京邮电大学出版社,2007;

[3]张德丰,MATLAB通信工程仿真北京:机械工程出版社,2010;

[4]陈鲁生,信息论与编码北京:科学出版社,2010;

信道容量的计算

§4.2信道容量的计算 这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。而);(Y X I 是r 个变量 )}(),(),({21r x p x p x p 的多元函数。并且满足1)(1 =∑=r i i x p 。所以可用拉格朗日乘子法来 计算这个条件极值。引入一个函数:∑-=i i x p Y X I )();(λ φ解方程组 0) (] )();([) (=∑?-???i i i i x p x p Y X I x p λ φ 1)(=∑i i x p (4.2.1) 可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C 。因为 ) () (log )()();(11 i i i i i r i s j i y p x y Q x y Q x p Y X I ∑∑=== 而)()()(1 i i r i i i x y Q x p y p ∑== ,所以 e e y p y p i i i i i y p x y Q i x p i x p l o g l o g ))(ln ()(log ) ()()() (==????。 解(4.2.1)式有 0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q i i i i i r i s j i i i i s j i i (对r i ,,2,1 =都成立) 又因为 )()()(1j k k r k k y p x y Q x p =∑= r i x y Q s j i j ,,2,1,1)(1 ==∑= 所以(4.2.1)式方程组可以转化为 ),,2,1(log ) ()(log )(1r i e y p x y Q x y Q j i j s j i j =+=∑=λ 1)(1 =∑=r i i x p

实验三 信道容量计算

实验三信道容量计算 一、实验目的: 了解对称信道与非对称信道容量的计算方法。 二、实验原理: 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)=∑ i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i) 先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1

返回6判断循环条件是否满足。 四、实验内容: 假设离散无记忆二元信道如图所示,编程,完成下列信道容量的计算 2e 1. 令120.1e e p p ==和120.01e e p p ==,先计算出信道转移矩阵,分别计算该对称信道的信道容量和最佳分布,将用程序计算的结果与用对称信道容量计算公式的结果进行比较,并贴到实验报告上。 2. 令10.15e p =,20.1e p =和10.075e p =20.01e p =,分别计算该信道的信道容量和最佳分布; 四、实验要求: 在实验报告中给出源代码,写出信道对应的条件转移矩阵,计算出相应结果。并定性讨论信道容量与信道参数之间的关系。

信道及信道容量

第5章 信道及信道容量 教学内容包括:信道模型及信道分类、单符号离散信道、多符号离散信道、多用户信道及连续信道 5.1信道模型及信道分类 教学内容: 1、一般信道的数学模型 2、信道的分类 3、信道容量的定义 1、 一般信道的数学模型 影响信道传输的因素:噪声、干扰。 噪声、干扰:非函数表述、随机性、统计依赖。 信道的全部特性:输入信号、输出信号,以及它们之间的依赖关系。 信道的一般数学模型: 2、 信道的分类 输出随机信号 输入、输出随机变量个数 输入和输出的个数 信道上有无干扰 有无记忆特性 3、信道容量的定义 衡量一个信息传递系统的好坏,有两个主要指标: 图5.1.1 一般信道的数学模型 离散信道、连续信道、半离散或半连续信道 单符号信道和多符号信道 有干扰信道和无干扰信道 有记忆信道和无记忆信道 单用户信道和多用户信道 速度指标 质量指标

速度指标:信息(传输)率R ,即信道中平均每个符号传递的信息量; 质量指标:平均差错率e P ,即对信道输出符号进行译码的平均错误概率; 目标:速度快、错误少,即R 尽量大而e P 尽量小。 信道容量:信息率R 能大到什么程度; )/()()/()();(X Y H Y H Y X H X H Y X I R -=-== 若信道平均传送一个符号所需时间为t 秒,则 ) ;(1 Y X I t R t =(bit/s ) 称t R 为信息(传输)速率。 分析: 对于给定的信道,总存在一个信源(其概率分布为* )(X P ),会使信道的信息率R 达到 最大。 ();(Y X I 是输入概率)(X P 的上凸函数,这意味着);(Y X I 关于)(X P 存在最大值) 每个给定的信道都存在一个最大的信息率,这个最大的信息率定义为该信道的信道容量,记为C ,即 ) ;(max max Y X I R C X X P P ==bit/符号 (5.1.3) 信道容量也可以定义为信道的最大的信息速率,记为 t C ?? ? ???==);(1max max Y X I t R C X X P t P t (bit /s ) (5.1.4) 解释: (1)信道容量C 是信道信息率R 的上限,定量描述了信道(信息的)最大通过能力; (2)使得给定信道的);(Y X I 达到最大值(即信道容量C )的输入分布,称为最佳输入(概率)分布,记为* )(X P ; (3)信道的);(Y X I 与输入概率分布)(X P 和转移概率分布)/(X Y P 两者有关,但信道容量 C 是信道的固有参数,只与信道转移概率)/(X Y P 有关。 4、意义: 研究信道,其核心问题就是求信道容量和最佳输入分布。根据定义,求信道容量问题就是求平均互信息量);(Y X I 关于输入概率分布)(X P 的最大值问题。一般来说,这是一个很困难的问题,只有对一些特殊信道,如无噪信道等,才能得到解析解,对于一般信道,必须借助于数值算法。

寻呼空口信道容量及信道容量计算

寻呼空口信道容量及FACH 信道 容量计算方法

目录 1寻呼容量计算方法 (2) 1.1现网理论容量计算 (2) 1.2实际网络环境下的容量计算 (3) 2寻呼容量扩容方案 (3) 2.1寻呼拥塞产生的原因 (3) 2.2寻呼容量预警机制 (4) 2.3现网容量评估 (4) 2.4空口寻呼扩容方案 (5) 2.4.1方案原理 (5) 2.4.2目标容量 (6) 3FACH信道容量评估 (7)

1寻呼容量计算方法 首先需要明确寻呼容量的单位是个/时间/小区,也就是说衡量一个RNC支持多大的寻呼量是以小区为标准的,比如某RNC支持的寻呼容量应为XX个/小时/小区或者XX个/秒/小区。 RNC设备支持的理论寻呼量为45万TMSI/小时/小区,实际每小区支持的寻呼容量则取决于空口的寻呼容量配置。 空口寻呼容量配置计算方法如下(以小区为参考单位): PCH寻呼能力计算公式为:Ntfs×RoundDown[(TBSize-7)/Lue]×Npch/(Nr×Tpbp) IMSI寻呼时, Ntfs×RoundDown[(TBSize-7)/72]×Npch/(Nr×Tpbp) TMSI/PTMSI寻呼时,Ntfs×RoundDown[(TBSize-7)/40]×Npch/(Nr×T pbp) 注:RoundDown为向下取整。 如果空口环境不好,存在大量重传的时候,则上面的公式需要再除以(1+Nr),寻呼容量减半,通常情况下不考虑重传。 1.1现网理论容量计算 除西安网络进行寻呼信道扩容外,现网目前各项空口寻呼信道参数配置如下表: 协议参数说明备注现网配置 Ntfs PCH传输格式中 240bit块的个数(一 个寻呼子信道承载) 传输块个数 一般配置为0、1。Ntf与PCH所在 的SCCPCH的码道数目相关。 1 Tbsize PCH传输块大小240 Npch 每个寻呼块配置的寻 呼子信道数目 协议规定Npch<=8 8 Nr 重复因子相同寻呼的重发次数 1 Tpbp PICH的寻呼周期重复周期/ Tpbp 640ms/320ms 640

信道容量实验报告

湖南大学 信息科学与工程学院 实验报告 实验名称信道容量的迭代算法课程名称信息论与编码 第1页共9页

1.实验目的 (1)进一步熟悉信道容量的迭代算法; (2)学习如何将复杂的公式转化为程序; (3)掌握C 语言数值计算程序的设计和调试技术。 2、实验方法 硬件:pc 机 开发平台:visual c++软件 编程语言:c 语言 3、实验要求 (1)已知:信源符号个数r 、信宿符号个数s 、信道转移概率矩阵P 。 (2)输入:任意的一个信道转移概率矩阵。信源符号个数、信宿符号个数和每 个具体的转移概率在运行时从键盘输入。 (3)输出:最佳信源分布P*,信道容量C 。 4.算法分析 1:procedure CHANNEL CAPACITY(r,s,(ji p )) 2:initialize:信源分布i p =1/r ,相对误差门限σ,C=—∞ 3:repeat 4: 5: 6: C 221 1 log [exp(log )] r s ji ij r j p φ==∑∑ 7:until C C σ ?≤ 8:output P*= ()i r p ,C 9:end procedure 21 21 1 exp(log ) exp(log ) s ji ij j r s ji ij r j p p φφ===∑∑∑i p 1 i ji r i ji i p p p p =∑ij φ

5.程序调试 1、头文件引入出错 f:\visualc++\channel\cpp1.cpp(4) : fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory ————#include 纠错://#include f:\visualc++\channel\cpp1.cpp(5) : fatal error C1083: Cannot open include file: 'values.h': No such file or directory ————#include 纠错://#include 2、变量赋值错误 f:\visualc++\channel\cpp1.cpp(17) : error C2065: 'ij' : undeclared identifier f:\visualc++\channel\cpp1.cpp(17) : error C2440: 'initializing' : cannot convert from 'int' to 'float ** ' Conversion from integral type to pointer type requires reinterpret_cast, C-style cast or function-style cast ————float **phi_ij=ij=NULL; 纠错:float **phi_ij=NULL; 3、常量定义错误 f:\visualc++\channel\cpp1.cpp(40) : error C2143: syntax error : missing ';' before 'for' ————for(i=0;iDELTA) f:\visualc++\channel\Cpp1.cpp(84) : error C2021: expected exponent value, not ' ' ————if(fabs(p_j)>=DELTA) f:\visualc++\channel\Cpp1.cpp(100) : error C2021: expected exponent value, not ' ' ————if(fabs(phi_ij[i][j])>=DELTA) f:\visualc++\channel\Cpp1.cpp(116) : error C2021: expected exponent value, not ' ' ————while(fabs(C-C_pre)/C>DELTA); 纠错:#define DELTA 0.000001; F:\visualc++\channel\Cpp1.cpp(68) : error C2065: 'MAXFLOAT' : undeclared identifier F:\visualc++\channel\Cpp1.cpp(68) : warning C4244: '=' : conversion from 'int' to 'float', possible loss of data ————C=-MAXFLOAT; 纠错:#define MAXFLOAT 1000000; 3、引用中文逗号 f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xa1' f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xb1' f:\visualc++\channel\cpp1.cpp(60) : error C2065: 'Starting' : undeclared identifier f:\visualc++\channel\cpp1.cpp(60) : error C2059: syntax error : '.'

正式实验报告二—信道容量的计算

一、实验目的 1.掌握离散信道的信道容量的计算方法; 2.理解不同类型信道的不同特点与不同的计算方法; 二、实验内容 1.进一步熟悉一般离散信道的信道容量计算方法; 2.进一步复习巩信道性质与实际应用; 3.学习如何将复杂的公式转化为程序。 三、实验仪器、设备 1、计算机-系统最低配置256M内存、P4 CPU; 2、MATLAB编程软件。 四、实现原理 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)= i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i)

先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1 返回6判断循环条件是否满足。 五、实验步骤 1、计算非对称信道的信道容量 运行程序

准对称DMC信道容量的C++实现,程序说明书

准对称DMC信道容量的C++实现 程序说明书 山东**大学***科学与技术学院 **工程0704

一、程序功能概述 本程序使用C++程序语言编写,实现已知准对称DMC 信道的转移矩阵求信道容量。 已知:? ?? ?? ?? ?? ???=)|()|() |()|()|()|()|()|()|(][21222211121121|2 1 n m n n m m n X Y m a b p a b p a b p a b p a b p a b p a b p a b p a b p a a a P b b b 求: 准对称DMC 的信道容量 ?? ? ????--=∑=p p p s H r M r M k k k k ' s ' 2'1n 1 )log()(C ,,, bit/符号 二、程序结构概述 本程序共分三部分:主函数、类外函数、类。 各部分功能: 主函数:负责程序的启动,接收用户数据,创建对象,函数调用。 类外函数:负责程序的初始化,接收用户输入的数据。 类:完成数据计算,输出计算结果。 三、程序功能分析 1.主函数 创建一个二维数组y[][],用来存放转移矩阵。 采用数组的传址方式调用函数:input (),以实现对数组的初始化。

创建dmc类对象,并以转移矩阵的元素个数和数组地址作为实参。 依次调用dmc类的各成员函数,完成数值计算。均不返回计算结果,由成员函数直接输出到屏幕。 2.类外函数 用于接收用户输入的input函数:用for循环完成对主函数y[][]数组的赋值,因为采用传址方式,可以直接完成对主函数数组的修改,无须返回值。 用于初始化屏幕的Start函数。 3.类: dmc类内的成员函数有:构造函数dmc(),析构函数~dmc(),对矩阵进行列排序的函数paixu();条件熵计算函数H();子阵列计算分块、计算函数HDMC()。 (1)dmc():用主函数传递的参数对类的数据成员进行初始化,用数组atob[ ][ ]代表集合P(Y|X)。提取矩阵的第一行用Y[]存放。 for (int r1 = 0; r1 < r; r1++) { for (int n1 = 0; n1 < n; n1++) atob[r1][n1] = y[r1][n1]; } for (int n11 = 0; n11 < n; n11++) { Y[n11] = atob[0][n11]; } (2)paixu():对二维矩阵进行列降序排序。排序后的矩阵存放在新的

信道容量及其一般计算方法

实验一信道容量及其一般计算方法 1.实验目的 一般离散信道容量的迭代运算 2.实验要求 (1)理解和掌握信道容量的概念和物理意义 (2)理解一般离散信道容量的迭代算法 (3)采用Matlab编程实现迭代算法 (4)认真填写实验报告。 3.源代码 clc;clear all; //清屏 N = input('输入信源符号X的个数N='); //输入行数 M = input('输出信源符号Y的个数M='); //输入列数 p_yx=zeros(N,M); //程序设计需要信道矩阵初始化为零 fprintf('输入信道矩阵概率\n') for i=1:N //从第一行第一列开始输入 for j=1:M p_yx(i,j)=input('p_yx='); //输入信道矩阵概率 if p_yx(i)<0 //若输出概率小于0则不符合概率分布 error('不符合概率分布') end end end for i=1:N //各行概率累加求和 s(i)=0; for j=1:M s(i)=s(i)+p_yx(i,j); end end for i=1:N //判断是否符合概率分布 if (s(i)<=0.999999||s(i)>=1.000001) //若行相加小于等于0.9999999或者大于等于1.000001 Error //('不符合概率分布') end end b=input('输入迭代精度:'); //输入迭代精度 for i=1:N p(i)=1.0/N; //取初始概率为均匀分布(每行值分别为1/N,)end for j=1:M //计算q(j) q(j)=0; for i=1:N q(j)=q(j)+p(i)*p_yx(i,j); //均匀分布的值乘上矩阵值后+q(j),然后赋值给q(j)实现求和

信息论与编码理论-第3章信道容量-习题解答

第3章 信道容量 习题解答 3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3?? ?? ?? 解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和 (;)I X Y 。 i i 2 i=1 3311 H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-?-=∑符号 111121********* j j j=1 32117 p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125 p(b )=p(a )p(b |a )+p(a )p(b |a )=434312 7755 H(Y)=p(b )log(b )=log()log()0.9799(/) 12121212bit ?+?= ?+?= ---=∑符号 22 i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a ) 2211 log()log()0.9183(/) 3333 i j j bit -=-=-?-?=∑∑符号 I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号) (2)求该信道的信道容量及其达到信道容量时的输入概率分布。 二进制对称信息的信道容量 H(P)=-plog(p)-(1-p)log(1-p) 1122 C =1-H(P)=1+log()+log()=0.0817(bit/) 3333 符

信道带宽和信道容量

信道带宽 模拟信道: 模拟信道的带宽W=f2-f1 其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。当组成信道的电路制成了,信道的带宽就决定了。为了是信号的传输的失真小些,信道要有足够的带宽。数字信道: 数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。 一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。若信号码元宽度为T秒,则码元速率B=1/T。码元速率的单位叫波特(Baud),所以码元速率也叫波特率。早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。若信道带宽为W,则尼奎斯特定理指出最大码元速率为B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。 码元携带的信息量由码元取的离散值个数决定。若码元取两个离散值,则一个码元携带1比特(bit)信息。若码元可取四种离散值,则一个码元携带2比特信息。总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N 单位时间内在信道上传送的信息量(比特数)称为数据速率。在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。如果把两比特编码为一个码元,则数据速率可成倍提高。我们有公式: R=B log2N=2W log2N(b/s) 其中R表示数据速率,单位是每秒比特,简写为bps或b/s 数据速率和波特率是两个不同的概念。仅当码元取两个离散值时两者才相等。对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。而最高数据速率可随编码方式的不同而取不同的值。这些都是在无噪声的理想情况下的极限值。实际信道会受到各种噪声的干扰,因而远远达不到按尼奎斯特定理计算出的数据传送速率。香农(shannon)的研究表明,有噪声的极限数据速率可由下面的公式计算: C =W log2(1+s/n) 这个公式叫做香农定理,其中W为信道带宽,S为信号的平均功率,N为噪声的平均功率,s/n叫做信噪比。由于在实际使用中S与N的比值太大,故常取其分贝数(db)。分贝与信噪比的关系为: db=10log10s/n 例如当s/n为1000,信噪比为30db。这个公式与信号取的离散值无关,也就是说无论用什么方式调制,只要给定了信噪比,则单位时间内最大的信息传输量就确定了。例如信道带宽为3000HZ,信噪比为30db,则最大数据速率为 C=3000log(1+1000)≈3000×9.97≈30000b/s 这是极限值,只有理论上的意义。实际上在3000HZ带宽的电话线上数据速率能达到9600b/s就很不错了。 综上所述,我们有两种带宽的概念,在模拟信道,带宽按照公式W=f2-f1 计算,例如CATV电缆的带宽为600HZ或1000HZ;数字信道的带宽为信道能够达到的最大数据速率,例如以太网的带宽为10MB/S或100MB/S,两者可通过香农定理互相转换。

准对称信道实验报告

一、实验目的 1.掌握MATLAB 软件的使用,以及其设计流程; 2.掌握DMC 信道的实现方法; 3.用MATLAB 语言设计DMC 信道的实现方法。 二、实验仪器或设备 装MATLAB 软件的微机一台 三、总体设计 如果转移概率矩阵P 是输入对称而输出不对称,即转移概率矩阵P 的每一行都包含同样的元素,而各列的元素可以不同,则称该信道是准对称DMC 信道。其信道容量为: 1log (|)log log m ij ij i j C m H Y m p p a ==-=+∑ m 为信道输出符号集中符号的数目。 可以推出:()(|)C H Y H Y X =- 四、实验步骤(包括主要步骤、代码分析等) (一)主要步骤 1.打开MATLAB 集成调试软件 2.单击“File ”-“New ”,新建一个.M 文件,命名为“c ”。 3.保存后运行。 4.在MATLAB 的主窗口输入p1,p2;按Enter 后,输入c 再按Enter ,即可出现实验结果。 5.观察并分析实验结果。 输入:p1=[0.2 0.2 0.2 0.2 0.2] P1 = 0.2000 0.2000 0.2000 0.2000 0.2000 输入:p2=[0.1 0.2 0.3 0.4 ;0.2 0.3 0.4 0.1; 0.3 0.4 0.1 0.2;0.4 0.1 0.2 0.3;0.4 0.3 0.2 0.1] P2 = 0.1000 0.2000 0.3000 0.4000 0.2000 0.3000 0.4000 0.1000 0.3000 0.4000 0.1000 0.2000 0.4000 0.1000 0.2000 0.3000 0.4000 0.3000 0.2000 0.1000 输出结果: P3 = 0.2800 0.2600 0.2400 0.2200 H = 1.9942

信道容量

当一个信道受到加性高斯噪声的干扰时,如果信道传输信号的功率和信道的带宽受限,则这种信道传输数据的能力将会如何?这一问题,在信息论中有一个非常肯定的结论――高斯白噪声下关于信道容量的山农(Shannon)公式。本节介绍信道容量的概念及山农定理。 1、信道容量的定义 在信息论中,称信道无差错传输信息的最大信息速率为信道容量,记为。 从信息论的观点来看,各种信道可概括为两大类:离散信道和连续信道。所谓离散信道就是输入与输出信号都是取值离散的时间函数;而连续信道是指输入和输出信号都是取值连续的。可以看出,前者就是广义信道中的编码信道,后者则是调制信道。 仅从说明概念的角度考虑,我们只讨论连续信道的信道容量。 2. 山农公式 假设连续信道的加性高斯白噪声功率为(W),信道的带宽为(Hz),信号功率为(W),则该信道的信道容量为 这就是信息论中具有重要意义的山农公式,它表明了当信号与作用在 信道上的起伏噪声的平均功率给定时,具有一定频带宽度的信道上,理论上单位时间内可能传输的信息量的极限数值。

由于噪声功率与信道带宽有关,故若噪声单边功率谱密度为(W/Hz),则噪声功率。因此,山农公式的另一种形式为 由上式可见,一个连续信道的信道容量受、、三个要素限制,只要这三个要素确定,则信道容量也就随之确定。 3. 关于山农公式的几点讨论 山农公式告诉我们如下重要结论: (1)在给定、的情况下,信道的极限传输能力为,而且此时能够做到无差错传输(即差错率为零)。这就是说,如果信道的实际传输速率大于值,则无差错传输在理论上就已不可能。因此,实际传输速率一般不能大于信道容量,除非允许存在一定的差错率。 (2)提高信噪比(通过减小或增大),可提高信道容量。特别是,若,则,这意味着无干扰信道容量为无穷大; (3)增加信道带宽,也可增加信道容量,但做不到无限制地增加。这是因为,如果、一定,有

信息量及信道容量的计算

#include #include #include using namespace std; int main() { int i,j,k,m,n; char r; char A='Y',B='N'; double x[20],p[12][12],q[12][12],y[20]; cout<<"输入信源x的个数N="; cin>>n; cout<<"输入所需信源概率:"<>m; if(m==1) { double H=0,h; for(int j=1;j<=n;j++) { h=-x[j-1]*log10(x[j-1])/log10(2); H=H+h; } cout<<"信源熵为:"<

double H1=0,h1=0 ,H2=0,h2=0; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { q[i-1][j-1]=p[i-1][j-1]*x[i-1]; //cout<<"联合概率"<<"y"<

MIMO信道容量计算

实验一:MIMO信道容量计算 实验学时:3 实验类型:(演示、验证、综合、设计、√研究) 实验要求:(√必修、选修) 一、实验目的 通过本实验的学习,理解和掌握信道容量的概念和物理意义;了解多天线系统信道容量的计算方法;采用计算机编程实现经典的注水算法。 二、实验内容 MIMO信道容量; 注水算法原理; 采用计算机编程实现注水算法。 三、实验组织运行要求 以学生自主训练为主的开放模式组织教学 四、实验条件 (1)微机 (2)MATLAB编程工具 五、实验原理、方法和手段 MIMO(MIMO,Multiple Input Multiple Output)技术利用多根天线实现多发多收,充分利用了空间资源,在有限的频谱资源上可以实现高速率和大容量,已成为4G通信系统以及未来无线通信系统的关键技术之一。 图1平坦衰弱MIMO信道模型

1.MIMO 信道模型 MIMO 指多输入多输出系统,当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的,即不考虑频率选择性衰落。平坦衰弱的MIMO 信道可以用一个R T n n ?的复数矩阵H 描述: 1112 12122 212 T T R T R R n n n n n n h h h h h h h h h ?? ? ? ?? =? ??? ???? H (1) 其中T n 为发送端天线数,R n 为接收端天线数,H 的元素,j i h 表示从第i 根发射天线到第j 根接收天线之间的空间信道衰落系数。 窄带MIMO 信道模型(如图1所示)可以描述为: =+y Hx n (2) 其中,x 为发送信号;y 为接收信号;n 为加性高斯白噪声。 2.MIMO 信道容量 假设n 服从均值为0,协方差为单位阵的复高斯分布。根据信道容量 () max{(;)}p X C I X Y =的定义,可以证明当()p x 服从高斯分布时,达到MIMO 信道 容量。令x 的协方差矩阵为x R ,则MIMO 信道容量可表示为: ()()log det H C +x x R I HR H (3) 其中上标‘H ’表示复共轭,I 为单位阵,det 表示取行列式。()C x R 表示单位带宽下的MIMO 信道传输速率,单位为Nat/sec 。 发射机的传输功率可以表示为: {} (){}{}() () 2 H H P E E Tr Tr E Tr ===x x xx xx R

MIMO信道容量计算.docx

实验一: MIMO 信道容量计算 实验学时:3 实验类型:(演示、验证、综合、设计、√研究) 实验要求:(√必修、选修) 一、实验目的 通过本实验的学习,理解和掌握信道容量的概念和物理意义;了解多天线系统信道容量的计算方法;采用计算机编程实现经典的注水算法。 二、实验内容 MIMO 信道容量; 注水算法原理; 采用计算机编程实现注水算法。 三、实验组织运行要求 以学生自主训练为主的开放模式组织教学 四、实验条件 (1)微机 (2)MATLAB 编程工具 五、实验原理、方法和手段 MIMO (MIMO,Multiple Input Multiple Output )技术利用多根天线实现多发多收,充分利用了空间资源,在有限的频谱资源上可以实现高速率和大容量,已成为4G 通信系统以及未来无线通信系统的关键技术之一。 图1平坦衰弱MIMO 信道模型 1.MIMO 信道模型 MIMO 指多输入多输出系统,当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的,即不考虑频率选择性衰落。平坦衰弱的MIMO 信道可以用一个 R T n n ?的复数矩阵H 描述: 111212122212T T R T R R n n n n n n h h h h h h h h h ?? ? ??? =? ? ??????H (1) 其中T n 为发送端天线数, R n 为接收端天线数,H 的元素 ,j i h 表示从第i 根发射天线到第j 根接收天线之间的空间信道衰落系数。 窄带MIMO 信道模型(如图1所示)可以描述为: =+y Hx n (2) 其中,x 为发送信号;y 为接收信号;n 为加性高斯白噪声。 2.MIMO 信道容量 假设n 服从均值为0,协方差为单位阵的复高斯分布。根据信道容量() max{(;)} p X C I X Y =的定义,可以证明当 () p x 服从高斯分布时,达到MIMO 信道 容量。令x 的协方差矩阵为 x R ,则MIMO 信道容量可表示为: ()() logdet H C +x x R I HR H (3)

MIMO信道容量计算公式资料

MIMO系统容量的计算方法 上网时间:2007年11月06日打印版 推荐给同仁 发送查询 用于多输入多输出结构的天线单元会影响无线通信系统的容量并能对抗多径效应。提高性能的一个关键是为系统方案寻找MIMO 优化设计,使得无需增加天线单元,只优化现有天线就能达到目的。 Thaysen等人描述了互方向、位置以及互耦对在无限大地平面上两个相同天线间包络互相关性的影响,为确定包络相关与固定方向上距离的关系以及互耦合同固定距离时天线方向旋转的关系,他们还研究了使用两个彼此靠近,在同一地平面的相同PIFA时的对称和非对称耦合的情况,其结果(使用IE3D仿真软件仿真)阐明了如何确定天线指向与位置来使包络相关最小。研究了两种不同情形:一种是使用平行PIFA,另一种是天线间具有垂直关系,如图1所示(水平距离d的定义使得图1a的情形中,d为正值。)对于平行情况(图1a),天线间距为10毫米,这时包络相关系数是ρe=0.8,把其中一副天线简单地旋转180度,包络相关系数就降低到ρe=0.4。类似结果对于垂直天线结构(图1b)也能观察到,这时包络相关系数从ρe=0.5下降到ρe=0.25。在垂直结构中,当开路端与馈线垂直时包络相关系数最大。 研究者们发现在平行天线情况下中心频率偏移(|S11|最小)受影响最大,每副天线在相同端都有馈入点,可观察到12%的频偏变化。与单副PIFA 单元相比,另一种情形(两副天线互相垂直情况)变化量低于2%。平行结构的最大包络相关系数是ρe=0.8,当天线彼此交叠垂直时,馈线均在同一端的情况下包络相关系数取得最大值。 此外,可发现互耦与包络相关系数几乎呈指数关系。研究发现,互耦极限为-10dB,在该极限以下,包络相关系数几乎为恒定值,达到ρe=0.15,因此,降低互耦的努力将受限于这个水平。 把天线置于有限平面会影响其性能。图2给出的设计,是按照平面倒F天线(PIFA)的输入阻抗和带宽来优化天线(即改变馈入点跟到地点间的距离,这取决于PIFA在地平面的位置)。对一些性能参数(相关性和带宽)组合优化可选出最佳天线结构。不过,移动电话的外盖、人手、和头部的邻近效应也应包括进分析当中。这样,当把外盖、手、头的影响考虑进来时,最优结构的结果就可能稍有不同。

一般信道容量迭代算法

实验二一般信道容量迭代算法1.实验目的 一般离散信道容量的迭代运算 2.实验要求 (1)理解和掌握信道容量的概念和物理意义 (2)理解一般离散信道容量的迭代算法 (3)采用Matlab编程实现迭代算法 (4)认真填写实验报告。 3.算法 4.算法流程图 5.代码(要求写出关键语句的解释和运行结果) 6.计算下列信道的信道容量 例一: 0.980.02 0.050.95?????? 例二: 0.60.4 0.010.99?????? 例三: 0.790.160.05 0.050.150.8?????? 7.思考题: 迭代精度指的是什么?它对计算结果的影响?

3.实验的算法: 1. 初始化信源分布:p i =r 1 ,循环变量k=1,门限△,C (0)=-∞; 2. ∑== r i ji k i ji k i k ij p p p p 1 )()()(φ 3. ∑∑∑===+= r i s j k ij ji s j k ij ji k i p p p 1 1)(1 ) () 1(] log exp[] log exp[φ φ 4. ])log exp(log[1 1 ) () 1(∑∑==+=r i s j k ij ji k p C φ 5. 若 ?>-++) 1() ()1(k k k C C C ,则k=k+1,转第2步 6. 输出P *=()() r k i P 1+和()1+k C ,终止。 4.算法流程图如下: 5.代码如下: 否 是 ()()? ?? ??=+=+????? ?????=∑∑∑i i i i i j i i j i i j i j i a n n C a x p n n C x y p x p x y p x y p a max ln ,1)(ln ,1)/()()/(ln )/(exp 21 ()()ε <+-+n n C n n C ,1,121()n n C C ,11+= ∑= i i i i i i a x p a x p x p )()()( 输入 )()()0(i i x p x p = 结束

相关文档
最新文档