泛素-蛋白酶体通路与癌症关系的研究进展

泛素-蛋白酶体通路与癌症关系的研究进展
泛素-蛋白酶体通路与癌症关系的研究进展

泛素-蛋白酶体通路与癌症关系的研究进展

张海满

(山东农业大学生命科学学院山东泰安201018)

摘要:泛素化过程是真核细胞内重要的蛋白质质控系统,参与细胞的多种生理活动过程,对维持细胞正常的生理功能具有十分重要的意义。泛素-蛋白酶体途径(UPP)的异常改变不仅与癌症的病因学有着直接关素,并且与癌症的发展和预后有着密切的关系。本文综述了泛素的构成、泛素链的形成过程、UPP的生理和病理功能及UPP与癌症的关系的研究进展。

关键词:泛素-蛋白酶体通路;UPP;癌症;研究

细胞内蛋白质的产生和降解必须保持着动态平衡,才能维持细胞的稳态和正常功能。泛素-蛋白酶体途径( ubiquitin-pro-teasome pathway, UPP)是细胞内蛋白质选择性降解的重要途径,泛素分子主要通过泛素活化酶、泛素结合酶和泛素-蛋白连接酶与靶蛋白结合形成一条多泛素链,将底物蛋白泛素化,使靶蛋白被26S蛋白酶体所识别和降解。UPP可高效并高选择性地降解细胞内蛋白质,尤其是一些短寿命的细胞周期调节蛋白、癌基因和抑癌基因产物以及变性变构蛋白等。

1.泛素-蛋白酶体途径(UPP)的构成

UPP成分十分复杂,主要包括泛素( ubiquitin, Ub)、泛素活化酶( ubiquitin-activatingenzyme, E1)、泛素连接酶( ubiquitin-conjugatingenzyme, E2)、泛素蛋白连接酶( ubiquitin-protein ligating enzyme, E3)、26S蛋白酶体及去泛素化酶( deubiquitinating enzyme, DUBs)等。UPP存在于所有真核生物的细胞内,是蛋白质选择性降解的主要方式。

1.1泛素( ubiquitin, Ub)

泛素是一种广泛分布在真核细胞中的高度保守的小分子球状蛋白质。1975年由Goldstein首次提出,此后不断出现有关报道[1]。单个泛素分子由76个氨基酸残基组成,相对分子质量约8.5×103,有一个明显的疏水核心和大量的氢键,表现出特殊的稳定性,能够防止其自身在结合和靶向性降解循环中变性失活,从而保证泛素循环的进行。依赖于ATP的酶促反应,E1通过在Ub的羧基末端和E1自身激活位点半胱氨酸之间形成一个硫酯键而激活Ub,激活的Ub被转到E2结合酶上,然后E2在E3作用下共价结合到需要降解的胞质或胞核的蛋白上,使底物蛋白发生泛素化,形成Ub单体,多个Ub单体通过异肽键连接形成多聚Ub链,每个多聚Ub链至少含有4个Ub单体。

1.2泛素活化酶( ubiquitin-activating enzymes, E1)

泛素活化酶是单基因编码的相对分子质量分别为110×103和117×103的2个亚基,存在于细胞核

和细胞质中,可以催化所有的泛素化反应。泛素活化酶是泛素与底物蛋白结合所需要的第一个酶,对靶蛋白的特异性没有影响。在结构上含有位置固定的保守的半胱氨酸残基,通过半胱氨酸残基与泛素的C端形成高能硫酯键而激活泛素。

1.3泛素结合酶( ubiquitin-conjugating enzymes, E2)

泛素结合酶是由许多相对分子质量为14~35的蛋白质所组成的一个超家族。所有的泛素结合酶都含有一个保守的约150个氨基酸残基的核心结构域,结构域的中央是决定其酶活性的半胱氨酸残基。E1和E3通过相同的基序与E2连接,所以E2在反应循环过程中必须在E2和E3之间穿梭往返运行。

1.4泛素-蛋白连接酶( ubiquitin-protein ligases, E3)

高等生物的泛素-蛋白连接酶总数为数百到一千以上,其结构域主要包括HECT( homologous to E6-associated protein car-boxy1 terminus)结构域、指环状( RING finger)结构域和U-box结构域。正是由于这些复杂多变的E3家族成员可以对不同底物进行特异性识别,才呈现出蛋白降解的高度选择性。泛素-蛋白连接酶在泛素化途径中起到关键的作用,它连接泛素结合酶和特异性底物,将活化的泛素链转移到特异性底物的赖氨酸残基上,通过识别多聚泛素链而有目的地降解蛋白质。

1.5蛋白酶体

26S蛋白酶体是降解泛素化底物的ATP依赖型蛋白水解复合体,由20S核心颗粒、19S调节颗粒和11S调节因子构成。

1.5.1 20S核心颗粒( core protease, CP)

CP是由4个七聚体蛋白环层叠在一起形成的空心圆柱体样结构,是26S蛋白酶体的水解核心。活性位点位于20S圆柱体空心结构中心的2个β环上,有胰蛋白酶、糜蛋白酶和谷氨酰样肽水解活性,可以将大多数肽键断裂。2个α亚基的N端封住蛋白水解腔隙的入口,对蛋白酶体CP的活性具有自身抑制作用,这样只有进入蛋白酶体圆柱体内部的蛋白才能够被水解。

1.5.2 11S调控因子( regulator, REG)

11S调控因子有3个亚单位,相对分子质量为28×103,其亚单位的氨基酸序列大部分具有同源性,但17~34残基为易变区,赋予亚单位一定的特异性。REG结合在20S CP末端,本身不具催化和降解大分子蛋白的功能,但可以激活蛋白酶体的蛋白酶活性。

1.5.3 19S调节颗粒( regulatory particle, RP)

19S调节颗粒由基底(base)和盖子(lid)2个亚单位组成,分别与CP两端的α环结合。基底含有ATP 酶亚基,可以水解ATP释放能量,在α环上形成一个通道(gate),以便底物能够进入催化中心被催化。盖子能够识别泛素化的蛋白质和蛋白酶体的其他底物。

1.6.泛素解离酶(DUBs)

虽然泛素与细胞内快速降解的蛋白连接在一起,但是其本身却是长寿命蛋白,这是由于泛素蛋白偶连物在水解之前DUBs将泛素从底物上解离下来。DUBs能够识别最接近的泛素基序,特异性地在泛素和与其C末端最后一个残基(Gly76)相连的分子之间断开。半胱氨酸蛋白酶型DUBs根据泛素-蛋白酶结构域又可分为4个亚类:泛素特异性蛋白酶(USP)、碳末端水解酶(UCH)、卵巢肿瘤蛋白酶(OTU)和MJD蛋白酶。金属蛋白酶型DUBs的泛素-蛋白酶结构域称为JAMM ( JAB1/MPN/Mov34metalloenzyme)。半胱氨酸蛋白酶的活性信赖于活性位点中的一个半胱氨酸的硫醇基团。这个半胱氨酸在邻近组蛋白的辅助下去质子化,在一个天门冬氨酸残基的作用下产生极性,这三个氨基酸残基构成催化三联体。在催化过程中,半胱氨酸表现出亲质子作用,攻击靶蛋白与泛素之间易断裂肽键的羰基端,结果将靶蛋白释放出来,泛素与UDBs形成一个共价连接的中间体。中间体与水分子反应释放出游离的酶和泛素。

2.与靶蛋白多聚泛素链的形成

靶蛋白的泛素链最少需要四个泛素分子的长度才能够被蛋白酶体有效降解。关于靶蛋白的泛素链是如何形成的还不清楚,推测可能存在以下4种模型[2]:

2.1有序增加模型(sequential addition model)

也称为标准模型,即E3通过不同的结构域与E2和底物结合,形成E2-E3-底物复合体,E3促使与E2连接的泛素分子直接转移到底物的赖氨酸残基,然后E2-E3-底物复合体中的E2再接受来自E1分子传递的新的泛素分子,在E3的作用下将泛素分子直接转移到与底物相连的第一个泛素分子,接下来循环此过程,完成靶蛋白泛素链的组装。

2.2指数模型( indexationmodel)

是指在形成E2-E3-底物复合体后,E2上的第一个泛素分子首先与E3s的HECT结构域的半胱氨酸活化位点结合,然后依次在此位置形成一条泛素链,最后泛素链从E3上转移到底物的赖氨酸残基。

2.3秋千模型(seesawmodel)

是指E3与2个E2和底物形成复合体后,泛素链的组装发生在2个E2的活化位点上,即一个E2上的泛素分子转移到另一个E2上后,新转移过来的泛素位于最底层直接与E2连接的位置,而原来与E2直接连接的泛素则与新转移过来的泛素相连,依此从后向前的方式形成一条泛素链,最后泛素链直接从E2转移到底物上。

2.4杂和模型(hybrid model)

是指E2-E3-底物复合体形成后,E2上的泛素分子首先转移到E3上,在E3上形成一条泛素链,然后泛素链按照E3→E1→E2→底物的传递顺序连接到靶蛋白上。不同的E3s可能通过不同的机制组装靶蛋白的多泛素链。

3. UPP的生理及病理功能

近年来,随着对UPP研究不断深入,发现其在人类的许多生理活动中起着非常重要的作用。细胞周期的调控。细胞生长周期受各种周期蛋白(cycline)和细胞周期依赖性激酶(cycline-dependentkinase, CDK)及CDK抑制剂的调节,分别促进和抑制细胞周期的运行。UPP可调节CDK和CDK抑制剂活性,CDK抑制剂p27及细胞周期素D和E均是UPP作用的重要底物[3]。

3.1转录的调控。

一些转录调节因子如核因子ΚB(NF-κB)、细胞周期重要调节因子(E2F)、原癌基因产物c-Fos和c-jun等都可以作为底物接受UPP调节,使其基因表达活化或失活。NF-κB是多亚基调节因子,多以失活方式存在于细胞质。在对乳腺癌的研究中发现,NF-κB需经过两条蛋白酶体依赖性蛋白裂解反应才能激活,而细胞对一些细胞毒因子的刺激出现抗凋亡的原因就在于NK-κB的激活,活化的NF-κB进入核内与相应的DNA位点结合,调节多基因的转录。

3.2凋亡的调控。

UPP在细胞凋亡的调控中可能起着重要的作用,一些与凋亡有关的调节分子如Bcl-2和srp60等都是通过UPP降解的。有研究显示,不同类型的脑肿瘤组织中有不同程度的srp60的表达,同时Ub的出现频率上升,支持上述观点。

3.3抗原提呈。

UPP是主要组织相容性复合物限制性I类抗原(MHC-I)提呈所必需的环节。抗原提呈细胞内的内源性蛋白被26S蛋白酶体降解成多肽,并在内质网中与MHC-I类分子结合转运至细胞膜表面,被细胞毒T细胞识别。

3.4细胞周期的调控

细胞周期因子首先被泛素化,然后由26S蛋白酶体降解,导致周期因子依赖的激酶失活,从而使细胞有丝分裂期中止。细胞周期因子—周期因子依赖的激酶复合体可由它们特定的抑制因子使其失活。这些抑制因子也是由UPP途径降解[4]。

3.5肿瘤发生的调控

在肿瘤细胞中,p53失活一方面是由基因突变造成的,另一方面与UPP对其异常的降解有关。

在高危型人乳头瘤状病毒(HPV)引起的宫颈癌中,p53蛋白的表达水平明显降低,这是由于16或18型HPV编码的癌蛋白E6促进含有HECT结构域的泛素蛋白连接酶E6-AP与p53结合,促进p53通过UPP 被降解。

4. UPP在癌症关系的研究进展

贾永侠[5]等指出病毒侵染宿主细胞后,细胞的泛素蛋白酶体途径与一些重要的病毒蛋白相互作用,参与调节病毒的生命周期。同时,病毒的某些蛋白也会影响泛素蛋白酶体途径,以逃避宿主的防御机制。

郭卉[6]等指出泛素-蛋白酶体途径在各种不同的癌蛋白或者转录调节因子的降解方面发挥重要作用,比如C-M yc,C-Fos,C-Jun,研究的最多的是核转录因子NF-κB。最近新的蛋白酶抑制剂的开发进展和对细胞周期的更好的理解可以帮助我们更好的掌握UPP的功能,对治疗由泛素系统紊乱而引起的各种疾病,尤其是恶性肿瘤具有重要意义。

倪晓光[7]等指出UPP可以精细的调节细胞周期的进程、抑制或促进细胞凋亡以及激活转录因子的表达等。当泛素-蛋白酶体系统的酶或识别特异性底物的基序发生功能性突变时,其对靶蛋白的调控能力丧失可以引起癌蛋白聚集、抑癌蛋白异常降解、突变细胞凋亡受阻和增值加速,从而导致肿瘤的发生。在理论上,针对UPP最有效的治疗点是阻断E3s对底物的特异性识别。然而这项工作是非常困难的,因为开发小分子药物和阻断蛋白-蛋白相互作用极其复杂,至今仍停留在实验室水平。MDM2由于和p53联系在一起可以作为治疗的靶标而受到广泛的关注。

王帅[8]等指出UPP在细胞内普遍存在,其功能的改变可直接导致或诱发人类的许多主要的疾病,特别是癌症相关疾病。通过对UPP的干预以防止特定蛋白的降解,或通过激发此通路以实现靶蛋白活性的调节,无疑将成为肿瘤治疗的新方向。免疫组化显示,在肝癌细胞核和胞质中,泛素呈阳性,泛素化蛋白的标记指数显著高于其他慢性肝病,并与肝癌细胞分化不良相关。

吴怡[9]指出泛素化与去泛素化的改变和多种肿瘤的发生密切相关,恶性肿瘤多伴随癌基因和抑癌基因产物的表达异常。肿瘤可以起因于癌基因蛋白/生长促进因子的稳定或由于肿瘤抑癌基因的不稳定。某些常规通过蛋白酶体降解的癌基因蛋白,如果不能及时地从细胞中清除,就会诱导细胞恶变。一些抑癌基因的不稳定如P27也已经证实与泛素化降解密切相关。细胞周期依赖激酶抑制因子P27是CDK2/Cyclin E和CDK2/CyclinA复合物活性的负调节因子,可阻止细胞从G1期进入S期。P27也是由泛素介导降解的。实验表明,在肠癌、前列腺癌及乳腺癌中P27水平降低。P27的低水平与肿瘤的侵袭性、肿瘤的恶性度、临床分期及不佳预后密切相关。动物实验证明肿瘤中SKp2 (一种F-box蛋白)水平明显升高,而后者可促进P27泛素化。去泛素化作用可以稳定抑癌基因,从而抑制了肿瘤的发生。

p53的稳定性对于其发挥抑制肿瘤发生的作用是至关重要的。目前的研究已证实疱疹病毒相关性泛素特异性蛋白酶(HAUSP)是一种新的p53相互作用蛋白。即使在Mdm2大量存在的情况下,HAUSP仍能够发挥其强烈的稳定作用,并且还能诱导p53依赖细胞生长受抑制以及凋亡。有意义的是,HAUSP 有内源性的酶活性,无论是在体内还是体外,都能够将p53去泛素化。相反,在细胞内HAUSP的点突变基因的表达增加了p53泛素化的水平及其不稳定性。这些结果表明能够通过直接的去泛素化使p53稳定,同时也表明通过使p53稳定,HAUSP在体内作为肿瘤抑制因子发挥功能。

吕会增[10]指出VHL(the von Hippel-Lindau)肿瘤抑制蛋白(pVHL)是泛素连接酶E3的底物识别亚基!常氧条件下作用于促血管生成素转录因子(HIF)的α亚基,通过快速的泛素-蛋白酶体降解途径对HIF-1α蛋白水平进行调节。用HIF的α亚基氧解结构域的肽对pVHL的底物识别位点进行竞争性抑制!细胞致瘤表现与有VHL缺陷的肿瘤细胞表型相一致!这证明pVHL的底物识别对VHL发挥肿瘤抑制作用是必要的"常氧下单纯HIF-1α的非泛素化不是VHL缺陷细胞致瘤的决定性因素HIF-1α亚基的非泛素化在VHL缺陷的肾透明细胞癌中导致HIF-1α的高表达与肿瘤血管内皮因子VEGF mRNA上调和蛋白及微血管密度增加显著相关,说明HIF-1α的非泛素化可能与VHL缺陷肿瘤的侵袭和转移有关。在乏氧条件下,HIF-1α对VHL产生的泛素-蛋白酶体依赖性降解抵抗,稳定表达HIF-1α蛋白。在VHL功能缺失的肾癌细胞系中,分子伴侣.Hsp90拮抗剂格尔德霉素促进.HIF-1α通过一个新的非氧依赖E3泛素连接酶降解。

综上所述,泛素-蛋白酶体途径不仅在癌症的发生、发展中起重要作用,而且有可能作为一种新的治疗靶点。目前研究已逐渐从动物实验水平向临床应用研究过渡,随着相关基因、细胞因子和药物通过泛素蛋白酶体途径对肿瘤作用机制的深入研究,泛素-蛋白酶体途径抑制剂可能成为一种新型的临床分子靶点抗癌药物。

参考文献

[1]张旭红.泛素-蛋白酶体复合通路在妇科恶性肿瘤中的研究[J].国外医学妇产科学分册,2006,33,(4):225-228.

[2]倪晓光,赵平.泛素-蛋白酶体途径的组成和功能[J].生理科学进展,2006,37(3):255-258.

[3]沈子琭,许啸声,李稻.泛素-蛋白酶体及其抑制剂[J].现代肿瘤医学,2006,14(11):1454-1457.

[4]赵天锁,任贺,郝继辉.泛素—蛋白酶体通路的研究进展[J].山东医药,2009,39(42):113-114.

[5]贾永侠,黄蓓,钟辉.病毒攻击泛素蛋白酶体逃逸先天免疫的策略[J].生物技术通讯,2008,19(5):371-373.

[6]郭卉,张雪竹.泛素-蛋白酶体途径及其生物学作用的研究进展[J].现代生物医学进展,2008,8(9):1786-1788.

[7]倪晓光,赵平.泛素-蛋白酶体途径与恶性肿瘤关系的研究进展[J].中华肿瘤防治杂志,2007,14(19):1512-1515.

[8]王帅,初亮,胡晓薇.肝细胞癌相关因子与泛素-蛋白酶体通路关系的研究[J].中国临床药理学与治疗学,2009,14(9):1068-1073.

[9]吴怡.蛋白质泛素化、去泛素化与肿瘤发生的关系[J].沈阳医学院学报,2008,10(1):56-57.

[10]吕会增.泛素(蛋白酶体途径在恶性肿瘤中的研究进展[J].中国肿瘤,2003,12(2):97-100.

跨膜丝氨酸蛋白酶研究进展

跨膜丝氨酸蛋白酶研究进展 郭晓强 (解放军白求恩军医学院生物化学教研室,石家庄050081) 摘要 跨膜丝氨酸蛋白酶(T MPRSSs),又名II型跨膜丝氨酸蛋白酶(TTSPs)是一类定位于细胞膜上具有保守丝氨酸蛋白酶结构域的蛋白家族,哺乳动物中已发现二十多个成员。T MPRSSs基本结构类似,C端蛋白酶结构域在胞外,N端位于胞内,还拥有单跨膜结构域,差异之处在于主干区。T MPRSSs具有多种重要生理功能,功能异常可造成耳聋、癌症、贫血和高血压等多种疾病。本文对T MPRSSs基本特征、结构、生理功能及相关疾病进行综述。 关键词 跨膜丝氨酸蛋白酶;耳聋;癌症;贫血;高血压 中图分类号 Q55 蛋白酶是一类水解蛋白质的酶类,最早于上世纪初在胃液中发现(胃蛋白酶),至今已鉴定多个成员。最早认为蛋白酶主要通过非特异性水解蛋白质参与食物消化,然而一系列研究表明哺乳动物体内还存在一些具有底物选择性的蛋白酶,它们参与更为多样的生理过程,如细胞周期、形态建成、细胞增殖和迁移、排卵、血管生成和细胞凋亡等,功能异常可造成代谢性疾病、神经退行性疾病、心血管疾病、关节炎和癌症等的发生(Puente等.2003)。相对于传统水溶性蛋白酶,新近发现一类特殊蛋白酶———具有单跨膜结构域的丝氨酸蛋白酶,并且C端位于胞外,因此被称为II型跨膜丝氨酸蛋白酶(type II trans me mbrane serine p r oteases,TTSPs)(Hooper等. 2001),又称跨膜丝氨酸蛋白酶(trans me mbrane p r o2 tease serines,T MPRSSs),这些新成员的发现和深入研究使人们对蛋白酶有了全新的认识[1]。 一、T M PRSS结构与基本特征 自1988年发现第一个跨膜丝氨酸蛋白酶T M2 PRSS1(hep sin)(Leytus等.1988)以来,至今已在人、小鼠和大鼠中发现二十多个成员,仅人类就有十几种(表1)。T MPRSS表达具有明显组织特异性,T M2 PRSS6主要在胎儿和成年肝脏中表达(Velasco等. 2002),而T MPRSS10主要存在于心脏(Yan等. 1999),这种表达模式说明不同T MPRSS参与不同生理过程。T MPRSS家族成员在分子量上差别巨大,如人T MPRSS1包含417个氨基酸残基,而T M2 PRSS10由1042个氨基酸构成,两者相差1倍以上,但基本结构却高度相似,均含四部分,从N端到C 端依次为短细胞质结构域、跨膜结构域、主干区和丝氨酸蛋白酶结构域,后两者位于胞外,不同成员区别主要集中于主干区。 根据主干区不同,T MPRSS可被进一步分为四个亚家族:HAT/DESC、hep sin/T MPRSS、matri p tase 和corin[1]。HAT/DESC亚家族包括T MPRSS11d (HAT)和T MPRSS11e(DESC1),它们结构最为简单,主干区仅由单一SE A(sea urchin s per m p r otein, enter opep tidase,agrin)结构域构成[2](图1)。hep2 sin/T MPRSS亚家族包括T MPRSS1~5和T MPRSS13等,是包含种类最多的一个亚家族,主干区包含清道夫受体富含半胱氨酸(scavenger recep t or cys2rich, SRCR)结构域和低密度脂蛋白A类受体(l ow densi2 ty li pop r otein recep t or class A,LDLa)结构域。matri p tase亚家族包括T MPRSS14(matri p tase21)、T MPRSS6(matri p tase22)和T MPRSS7(matri p tase23),其主干区除含有SEA结构域外,还包含2个CUB (comp le ment p r otein subcomponents C1r/C1s,urchin e mbryonic gr owth fact or and bone mor phogenetic p r o2 tein1)结构域及3到4个串联重复LDLa结构域。corin亚家族目前只发现一个成员T MPRSS10(cor2 in),其结构最为复杂,主干区包含8个LDLa结构域,2个frizzled结构域和1个SRCR结构域。 图1 几个典型T MPRSS结构特点[1]

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

泛素-蛋白酶体通路和癌症关系的研究进展

泛素-蛋白酶体通路与癌症关系的研究进展 张海满 (山东农业大学生命科学学院山东泰安201018) 摘要:泛素化过程是真核细胞内重要的蛋白质质控系统,参与细胞的多种生理活动过程,对维持细胞正常的生理功能具有十分重要的意义。泛素-蛋白酶体途径(UPP)的异常改变不仅与癌症的病因学有着直接关素,并且与癌症的发展和预后有着密切的关系。本文综述了泛素的构成、泛素链的形成过程、UPP的生理和病理功能及UPP与癌症的关系的研究进展。 关键词:泛素-蛋白酶体通路;UPP;癌症;研究 细胞内蛋白质的产生和降解必须保持着动态平衡,才能维持细胞的稳态和正常功能。泛素-蛋白酶体途径( ubiquitin-pro-teasome pathway, UPP)是细胞内蛋白质选择性降解的重要途径,泛素分子主要通过泛素活化酶、泛素结合酶和泛素-蛋白连接酶与靶蛋白结合形成一条多泛素链,将底物蛋白泛素化,使靶蛋白被26S蛋白酶体所识别和降解。UPP可高效并高选择性地降解细胞内蛋白质,尤其是一些短寿命的细胞周期调节蛋白、癌基因和抑癌基因产物以及变性变构蛋白等。 1.泛素-蛋白酶体途径(UPP)的构成 UPP成分十分复杂,主要包括泛素( ubiquitin, Ub)、泛素活化酶( ubiquitin-activatingenzyme, E1)、泛素连接酶( ubiquitin-conjugatingenzyme, E2)、泛素蛋白连接酶( ubiquitin-protein ligating enzyme, E3)、26S蛋白酶体及去泛素化酶( deubiquitinating enzyme, DUBs)等。UPP存在于所有真核生物的细胞内,是蛋白质选择性降解的主要方式。 1.1泛素( ubiquitin, Ub) 泛素是一种广泛分布在真核细胞中的高度保守的小分子球状蛋白质。1975年由Goldstein首次提出,此后不断出现有关报道[1]。单个泛素分子由76个氨基酸残基组成,相对分子质量约8.5×103,有一个明显的疏水核心和大量的氢键,表现出特殊的稳定性,能够防止其自身在结合和靶向性降解循环中变性失活,从而保证泛素循环的进行。依赖于ATP的酶促反应,E1通过在Ub的羧基末端和E1自身激活位点半胱氨酸之间形成一个硫酯键而激活Ub,激活的Ub被转到E2结合酶上,然后E2在E3作用下共价结合到需要降解的胞质或胞核的蛋白上,使底物蛋白发生泛素化,形成Ub单体,多个Ub单体通过异肽键连接形成多聚Ub链,每个多聚Ub链至少含有4个Ub单体。 1.2泛素活化酶( ubiquitin-activating enzymes, E1) 泛素活化酶是单基因编码的相对分子质量分别为110×103和117×103的2个亚基,存在于细胞核

泛素-蛋白酶体与蛋白酶体抑制剂

泛素-蛋白酶体及其抑制剂 沈子珒许啸声李稻审校 上海交通大学医学院病理生理学教研室 摘要:蛋白酶体与泛素化信号系统一起构成的泛素—蛋白酶体(UPP)是哺乳动物细胞内主要的蛋白水解酶体系,参与和调控细胞的增殖、分化和凋亡。蛋白酶体是一个由20S 催化颗粒、11S调控因子和2个19S调节颗粒组成的ATP依赖性蛋白水解酶复合体。蛋白酶体的活性状态对细胞功能正常维持是非常重要的。26S蛋白酶体对蛋白的降解依赖于靶蛋白的泛素化和泛素化蛋白识别。蛋白酶体抑制剂能通过抑制蛋白酶体活性进而干扰和影响细胞原有的功能,尤其对肿瘤细胞生长有明显的抑制作用。同时,利用蛋白酶体抑制剂改变蛋白酶体的酶切位点活性也成为免疫、炎症等研究的热点。蛋白酶体的抑制剂可分为天然化合物和合成化合物两类,其中Bonezomib(Velcade,PS-341)是近年研究较多的一种蛋白酶体抑制剂。 关键词:肿瘤蛋白酶体泛素蛋白酶体抑制剂PS-341 泛素—蛋白酶体通路(Ubiquitin–proteasome pathway,UPP)的蛋白酶体(proteasome)是一种具有多个亚单位组成的蛋白酶复合体,蛋白酶体沉降系数为26S,故又称26S蛋白酶体。蛋白酶体水解蛋白的前提是靶蛋白的泛素化。在UPP中,各种靶蛋白质泛素化后,先被26S蛋白酶体的19S亚单位识别,随后泛素化靶蛋白脱泛素链和变性,进入20S亚单位的筒状结构内被降解成3~22个多肽。由于蛋白酶体具有精确降解细胞内各种目的靶蛋白,进而参与基因转录和细胞周期调节,以及受体胞吞、抗原呈递等各种细胞生理过程[1]。因此,应用蛋白酶体抑制剂改变其酶切位点活性已成为抗肿瘤治疗的研究热点,蛋白酶体是影响和改变细胞功能重要的目的靶标。 1.蛋白酶体组成 1979年,Goldberg等首先报道在大鼠肝脏和网织红细胞中存在一种分子质量为700 kD的受A TP激活的中性蛋白水解酶。此后,一些在形态、功能及免疫学特征上与之相同的颗粒通过不同途径被分离出来,被统一命名为蛋白酶体[2]。在真核生物进化中,蛋白酶体具有高度的保守性,其简单形式甚至存在于古细菌和真细菌中。真核细胞内的蛋白酶体分布于胞质与胞核内,有的与内质网或细胞骨架相结合,约占细胞蛋白质总量的1%。有功能的26S蛋白酶体是由20S催化颗粒(catalytic particle, CP)、11S调控因子(11S regulator)和2个19S调节颗粒(regulatory particle, RP)组成,其分子量为2.4MD,是ATP依赖性蛋白水解酶复合体。 1.120S催化颗粒(20S CP) 人类蛋白酶体CP的沉降系数为20S,分子量700~750kD。它由α环和β环组成,每个环各有7个相同的亚单位,分别以α1-7β1-7β1-7α1-7顺序排列成圆桶状结构,20S CP中间由两个β亚单位环组成。几乎所有β亚单位都含有一个N 端前导序列,尽管此序列在20S CP装配过程中被切除,但在引导真核生物β亚单位的正确折叠以及β与α亚单位的组装中有重要作用[3]。当β亚单位的N端前导序列被切除后,Thr残基被暴露出来,Thr是酶的活性位点,分别存在于β环的内表面,使β亚单位具有类似的丝氨酸蛋白酶的催化作用[4]。例如,β亚单位N端的折叠方式允许Thr的-OH对底物发动亲核反应形成半缩醛,而Thr的α-NH3可代替丝氨酸蛋白酶中His的咪唑基作为质子受体。此外,活性位点附近的一个Lys残基与特定的丝氨酸蛋白酶中一样,也起着催化剂的作用。目前认为,在20S CP内起催化作用的亚单位主要是β1、β2、β5。不同的β亚单位的催化活性尽管不同,但能互相协调使蛋白酶体具有多种蛋白酶活性,如类糜蛋白酶活性(chymotrypsin-like, ChTL)、类胰蛋白酶活性(trypsin-like,TL)、肽-谷氨酰肽水解酶活性(post-glutamyl-peptide hydrolyzing,PGPH)、支链氨基酸肽酶活性、中性氨基酸切割活性。在20S CP圆桶状的两端由α亚单位环组形成,环口的中央被α亚单位(α

丝氨酸蛋白酶抑制剂的研究进展教学提纲

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,江苏常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类

泛素降解途径

蛋白质降解的泛素—蛋白酶体途径 泛素(ubiquitin,Ub)是76个氨基残基组成的小分子多肽,可以以共价结合的方式与蛋白质的赖氨酸相连。蛋白质一旦接有泛素,称为发生泛素化(uhiquitylation)。泛素化在A TP的参与下被三种酶依序催化,形成蛋白质与一条泛素聚合链相结合的复合结构,进入蛋白酶体,然后降解为肽段(图8—15A)。此为生物大分子在胞质中降解的泛素—蛋白酶体途径(ubiquitim proteosome pathway)。泛素化是一个具有普遍意义的免疫生物学现象。例如第一章提到NF-~B激活中抑制成分I-~cB的降解,以及免疫调节一章中将提到细胞因子信号转导抑制蛋白(SOCS)对底物的作用,皆涉及这一泛素—蛋白酶体途径。 蛋白质泛素化系统由3个组分构成,一个称为泛素激活酶n,它可利用水解A TP释放的能量以其胱氨酸残基(Cys)的巯基与泛素C端的甘氨酸残基(Gly)形成高能硫酯键。然后连接在殿上的泛素被转移到另一个泛素结合酶E2上,同时,被选中的靶蛋白与第三个组分即靶蛋白泛素连接酶E3结合(图8—15A)。E2然后将与其连接的泛素转移到靶蛋白上,并与靶蛋白赖氨酸残基(Lys)—NH2基团形成异肽键(isopeptidebond),E2被释放。选择什么样的蛋白质进行泛素化主要取决于E2和E3。 内源性抗原在胞内的降解 A.泛素蛋白酶体降解途径;B.泛素化的内源性被28S免疫蛋白酶体降解成肽段。 单个连接的泛素残基尚不足以引起底物降解,活细胞中有一系列的泛素残基可加到前一个泛素赖氨酸残基上,形成泛素聚合链(polyUb),这一过程受细胞活性的调控。连接到降解蛋白质底物上的多聚泛素链可为蛋白酶体提供识别的信号,也是调控蛋白质降解的环节之一。 内源性抗原肽依据该途径实施降解,具体涉及两个作用环路。其一是泛素与底物结合,然后在分解酶(deconjugatmg enzyme)DUB的作用下重新游离,已如上述;二是结合有调节复合物的28S免疫蛋白酶体,对带有泛素聚合链的内源性抗原肽实施降解,然后再回复到19S 调节复合物及20S蛋白酶体,构成第二个环路。两者共同作用的结果是,泛素化的内源性抗原进入免疫蛋白酶体的孔道后,在蛋白水解酶的作用下降解成为5~15个氨基酸残基的短肽。

蛋白酶体

蛋白酶体 蛋白酶体(Proteasome)是一种巨型蛋白质复合物,主要作用是通过打断肽键来实现降解 细胞不需要的或受到损伤的蛋白质。 简介

蛋白酶体在真核生物和古菌中普遍存在,在一些原核生物中也存在。在真核生物中,它位于细胞核和细胞质中。[1] 能够发挥这一作用的酶被称为蛋白酶。蛋白酶体是细胞用来调控特定蛋白质的浓度和除去错误折叠蛋白质的主要机制。经过蛋白酶体的降解,蛋白质被切割为约7-8个氨基酸长的肽段;这些肽段可以被进一步降解为单个氨基酸分子,然后被用于合成新的蛋白质。[2] 反应过程 需要被降解的蛋白质会先被一个称为泛素的小型蛋白质所标记(即连接上)。这一标记反应是被泛素连接酶所催化。一旦一个蛋白质被标记上一个泛素分子,就会引发其它连接酶加上更多的泛素分子;这就形成了可以与蛋白酶体结合的“多泛素链”,从而将蛋白酶体带到这一标记的蛋白质上,开始其降解过程。[2] 分子结构 从蛋白质结构上看,蛋白酶体是一个桶状的复合物,[3] 包括一个由四个堆积在一起的环所组成的“核心”(右图中蓝色部分),核心中空,形成一个空腔。其中,每一个环由七个蛋白质分子组成。中间的两个环各由七个β亚基组成,并含有六个蛋白酶的活性位点。这些位点位于环的内表面,所以蛋白质必须进入到蛋白酶体的“空腔”中才能够被降解。外部的两个环各含有七个α亚基,可以发挥“门”的作用,是蛋白质进入“空腔”中的必由之路。这些α亚基,或者说“门”,是由结合在它们上的“帽”状结构(即调节颗粒,右图中红色部分)进行控制;调节颗粒可以识别连接在蛋白质上的多泛素链标签,并启动降解过程。包括泛素化和蛋白酶体降解的整个系统被称为“泛素-蛋白酶体系统”。 作用 蛋白酶体降解途径对于许多细胞进程,包括细胞周期、基因表达的调控、氧化应激反应等,都是必不可少的。2004年诺贝尔化学奖的获奖主题就是蛋白质酶解在细胞中的重要性和泛素在酶解途径的作用,而三位获奖者为阿龙·切哈诺沃、阿夫拉姆·赫什科和欧文·罗斯。 [4] 发现 在发现泛素-蛋白酶体系统之前,细胞中的蛋白质降解被认为主要依赖于溶酶体,一种膜包裹的囊状细胞器,内部为酸性环境且充满了蛋白酶,可以降解并回收外源蛋白质以及衰老或损伤的细胞器。[2] 然而,在对网织红血球的研究中发现,在缺少溶酶体的情况下,ATP依赖的蛋白质降解依然能够发生;这一结果提示,细胞中存在另一种蛋白质降解机制。1978年,一些研究者发现这一新的降解机制有多种不同的蛋白质参与,在当时被认为是新的蛋白酶。[5] 随后在对组蛋白修饰的研究工作中发现,组蛋白发生了意外的共价修饰:组蛋白上的一个赖氨酸残基与泛素蛋白C-端的甘氨酸残基之间形成了共价连接,但其对应的功能未知。[6] 而后又发现先前鉴定的一个参与新的降解机制的蛋白质,ATP依赖的蛋白质水解因子1(ATP-dependent proteolysis factor 1,APF-1),实际上就是泛素。[7]

丝氨酸蛋白酶 (2)

丝氨酸蛋白酶 摘要:丝氨酸蛋白酶是一种种类丰富的酶类【1】,之所以以此命名是因为在酶的催化活性位点上包含丝氨酸在内的丝氨酸、组氨酸、天冬氨酸组成的催化三联体。有些丝氨酸蛋白酶类如凝血酶类蛋白酶,其中包括凝血酶,组织纤维蛋白溶酶原激活剂、血纤维蛋白溶酶,它们参与凝血的发生以及炎症应答反应;也有些如胰蛋白酶类的丝氨酸蛋白酶类的参与消化的酶类,包括胰蛋白酶、弹性蛋白酶、胰凝乳蛋白酶;还有一些表达在神经系统中的丝氨酸蛋白酶类,这些酶类与神经系统正常的维持或是介导病理情况的发生。其实丝氨酸蛋白酶类在执行功能的时候也受到许多因素的限制,如受一些抑制剂的影响等,这些物质对蛋白酶功能的执行起到重要的作用。 关键词:丝氨酸蛋白酶催化机制功能调节 酶的功能 已知所有的蛋白分解酶类丝氨酸蛋白酶占到了其中的三分之一,这些酶又可以细分成很多种类有胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、凝血酶、纤溶酶、组织纤溶酶原激活剂、神经源类的丝氨酸蛋白酶等。这些酶类具有消化凝血、纤溶、消化、受精、生长发育、凋亡、免疫等方面都有重要的作用。 酶的催化位点 由于丝氨酸蛋白酶的种类很多根据其催化的特点以及种树亲疏性可以分成不同的类别,不同的组织器官,不同的生物种系中酶的分布与种类是不同的(见表格)。但是其催化特点通常都是其反应的催化三联体,丝氨酸的亲核攻击,即丝氨酸的羟基攻击酰胺键的羰基碳,但是在生物进化的长时间了这种催化活性结构也发生了改变。如在有些酶中其催化三联体不在是固定的丝氨酸、天冬氨酸、组氨酸,而是只有丝氨酸与天冬氨酸或是组氨酸的一种组成催化活性位点,也有的如组氨酸成对出现于丝氨酸组合形成新的催化结构,但是无论怎样其上的丝氨酸残基是固定保守的。 酶的活化 对于丝氨酸蛋白酶类的活化,一般来说是通过对酶前体【2】的加工使其形成具有催化活性的酶,或者是通过一些辅助因子的协同作用使其由闭合的非活化状态转成活性状态,也有通过信号的捕获诱发一系列的级联反应从而活化蛋白,或是通过一些关键因子的作用使得构想发生改变来实现活化等等。通常来说酶的状态一种是抑制非活化状态,另一种是活化的活性状态,但是在一些研究中酶具有新的状态,而这种状态与酶原或是缺少辅因子而显示无活性的酶的状态是不同的,虽然这种状态下的酶也没有活性,但是其结构上出现一些特有的变化,在对凝血酶的研究中发现,这种状态称为E*【3】,其伴有一些氨基酸链陷入酶的催化活性部位从而破坏其中的氧离子空穴,致使没得活性受阻,因此对于这种酶的活化一定有其他的方式,研究发现当E*状态下在远离活性部位连接一种配体时会将这种氨基酸陷入活性位点的状况扭转过来,从而恢复酶的活性位点,并在其他因子的作用下得到活化。 酶的催化机制 对于丝氨酸蛋白酶类的催化活性,有的是通过前体酶原的活化,比如胰蛋白酶类

泛素蛋白酶体

泛素—蛋白酶体途径代谢异常与2型糖尿病发生的关系 随着社会的进步发展,人们生活水平的提高,糖尿病(diabetes mellitus,DM) 的发病率逐年增高。据统计2011年全球糖尿病患者总数约 3.66 亿[1],到2030 年患病人数预计将达到 5.52 亿,这其中 85%~90%为 2 型糖尿病(type 2 diabetes mellitus,T2DM),而中国、印度和美国为世界糖尿病三大国[2]。T2DM以及其相应带来的并发症已成为严重威胁人类机体健康的主要慢性病之一,不仅给患者身心带来巨大困扰,而且增加了患者家庭乃至社会的医疗负担。T2DM主要表现为胰岛素抵抗和胰岛素分泌缺陷而非胰岛B细胞自身免疫破坏。然而其确切发病机制尚未明确。近年来,人们发现在肥胖、糖尿病等众多机体代谢紊乱情况下,胰岛素靶器官中泛素-蛋白酶体系统(Ubiquitin-Proteasome System, UPS)活性明显上调,并且表现出相应的病理表现[3],UPS在T2DM及其并发症的发生、发展过程中起了重要作用。现将其机制作一综述。 1. 泛素—蛋白酶体系统的组成 UPS由泛素(ubiquitin, Ub)、泛素活化酶(ubiquitin—activating enzyme, E1 )、泛素结合酶(ubiquitin—conjugating enzyme, E2)、泛素蛋白连接酶(ubiquitin—protein ligase, E3 )、蛋白酶体及其底物(蛋白质)构成,其对靶蛋白的降解是一种三级酶联反应过程。通过UPS,细胞几乎可以对其内在的任何一种蛋白质进行高度特异性的降解,整个过程由底物蛋白的泛素化和蛋白酶体降解两个部分组成[4]【4】。泛素化是对特异的靶蛋白进行泛素修饰的过程,泛素化修饰涉及泛素激活酶 E1、泛素结合酶 E2 和泛素连接酶 E3 的一系列反应。首先在 ATP 供能的情况下,泛素分子 C 端的 Gly 残基与 E1 激活酶上的 Cys 残基结合,将泛素激活;接着,激活酶将活化的泛素分子通过转酰基作用转移到 E2 结合酶的 Cys 残基上,二者以硫酯键连接;之后,随着泛素连接酶识别靶蛋白,E3 连接酶分别结合着携带着泛素分子的 E2 结合酶和待泛素化修饰的底物蛋白,在连接酶的作用下,泛素分子从结合酶上转移到底物蛋白上,完成泛素化修饰。在此过程中,E3 连接酶尤其重要,它决定着泛素化修饰的时间性和特异性。根据连接在靶蛋白上的泛素分子的连接方式和数目,可以将泛素化修饰分为单泛素化修饰和多聚泛素化【5】。由泛素控制的蛋白质降解具有重要的生理意义,它不仅能够清除错误的蛋白质,还对细胞周期调控、DNA修复、细胞生长、免疫功能等都有重要的调控作用。 1.1泛素(Ub) Ub是1975 年由 Goldstein首先发现的一种在真核生物细胞内高度保守的多肽,单个泛素分子是由76个氨基酸组成,分子量约85kD , 泛素以共价键与底物蛋白连接,它的主要功能是标记待降解的蛋白质,使其被转运至蛋白酶体,进而发生降解【6】。泛素也可以标记跨膜蛋白,比如受体,将其从细胞膜上除去。泛素分子中散布着7个赖氨酸残基,这些残基可以作为其他泛素共价结合的位点。经过几轮结合后,泛素链将会变得很长,这样有助于对“标记”蛋白的识别【7】。泛素化蛋白可被泛素解离酶识别,而将泛素分子从底物蛋白上水解下来,重复利用【8】。 1.2 参与泛素化降解的酶 E1是一种广泛表达的多肽,大约1100 个氨基酸,含有位置固定的保守的半胱氨酸残基。有2个亚型,是由同一个mRNA 在不同的起始位点翻译而成的,存在于细胞浆和细胞核中。目前在脊椎动物中已发现的E1只有一个,有数目不等的E2和大量的E3;E1酶可以激活所有的E2酶,每个E2酶又可以与多个E3酶相互作用【9】。E1首先与ATP结合,然后与泛素相互作用,催化泛素C端腺嘌呤化并释放焦磷酸,使其C端甘氨酸残基与E1的半胱氨酸残基形成高能硫酯键而获得活性,E1—泛素结合的中间体再将泛素转移给E2s,形成E2-泛素中间体。

泛素调节的蛋白质降解

泛素标记的蛋白质降解 ——探索生命活动中化学过程的又一成果 李静雯陆真 (南京师范大学化学教育研究所南京 210097) 摘要:本文主要介绍了2004年诺贝尔化学奖--泛素调节蛋白质降解的原理、模型及应用实例。该成果将有助于科学家从分子水平对细胞控制蛋白质分裂进行研究,并有利于研发新型药物,从而造福人类。 关键词:2004诺贝尔化学奖泛素标记蛋白质降解 2004年10月16日瑞典皇家科学院将本年度诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们在泛素调节的蛋白质降解研究领域中的卓越成就。 图1 2004年诺贝尔化学奖获得者,从左至右依次为阿龙·切哈诺沃、阿弗拉姆·赫尔什科、欧文·罗斯 阿龙·切哈诺沃1947年出生在以色列城市海法,现年57岁,1976-1981年间在赫什科指导下攻读博士学位,1981年获得以色列工学院医学博士学位,曾在麻省理工学院从事研究,后返回以色列工学院任教;阿弗拉姆·赫尔什科1937年出生在匈牙利,犹太后裔,13岁移民以色列,现年67岁,1969年在耶路撒冷希伯来大学获得医学博士学位,曾在旧金山加州大学从事研究,1972年起在以色列工学院任教;来自美国的欧文·罗斯现年78岁,1952年在芝加哥大学获得博士学位,现就职于美国加利福尼亚大学欧文分校。三名获奖者自20世纪70~80年代以来就一直致力于这一领域的研究。1970年代末,赫什科借着带薪休假的机会,带着当时还是博士后的切哈诺沃,到美国费城福克斯·蔡斯癌症研究中心的罗斯实验室进行访问研究,在那里完成了三位获奖者的大部分合作研究,发表了一系列生物化学论文。 1 泛素调节的蛋白质降解的生物学概述 蛋白质是包括人类在内各种生物体的重要组成成分。对于生物体而言,蛋白质的生成与降解至关重要。过去几十年来,生物化学界对于细胞如何制造出各种蛋白质有很多解释,但是对蛋白质降解的研究还很少,上世纪80年代初期这三名学者深入蛋白质降解过程的研究领域,进而发现了细胞最重要的循环过程以及有规律的蛋白质降解活动。

丝氨酸蛋白酶的相关研究

丝氨酸蛋白酶的相关研究 摘要:本文概述了丝氨酸蛋白酶的酶学基础,反应机制,该酶抑制剂的设计及其应用。丝氨酸蛋白酶是一个蛋白酶家族,它们的作用是断裂大分子蛋白质中的肽键,使之成为小分子蛋白质。其激活是通过活性中心一组氨基酸残基变化实现的,它们之中一定有一个是丝氨酸(其名字的由来)。在哺乳类动物里面,丝氨酸蛋白酶扮演着很重要的角色,特别是在消化,凝血和补体系统方面。正是由于该酶的特殊性质,使其在众多领域都有所应用。 关键字:丝氨酸蛋白酶;酶学基础;反应机制;应用 Abstract:This article provides an overview of the serine protease enzyme, reaction mechanism, the design and application of enzyme inhibitors. Serine protease is a protease family, their roles are to break large protein molecules in the peptide bond, to become small molecular protein. Its activation is through the active center of a group of amino acid residues change, they must have a serine (the origin of the name). In mammal animal, serine proteases play a very important role, especially in the digestion, Coagulation and complement systems. Because of the special nature of the enzyme, and it has been applied in many fields. Keywords: Serine protease; fundamentals of enzymology; reaction mechanism; application

丝氨酸蛋白酶

丝氨酸蛋白酶 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

丝氨酸蛋白酶 摘要:丝氨酸蛋白酶是一种种类丰富的酶类【1】,之所以以此命名是因为在酶的催化活性位点上包含丝氨酸在内的丝氨酸、组氨酸、天冬氨酸组成的催化三联体。有些丝氨酸蛋白酶类如凝血酶类蛋白酶,其中包括凝血酶,组织纤维蛋白溶酶原激活剂、血纤维蛋白溶酶,它们参与凝血的发生以及炎症应答反应;也有些如胰蛋白酶类的丝氨酸蛋白酶类的参与消化的酶类,包括胰蛋白酶、弹性蛋白酶、胰凝乳蛋白酶;还有一些表达在神经系统中的丝氨酸蛋白酶类,这些酶类与神经系统正常的维持或是介导病理情况的发生。其实丝氨酸蛋白酶类在执行功能的时候也受到许多因素的限制,如受一些抑制剂的影响等,这些物质对蛋白酶功能的执行起到重要的作用。 关键词:丝氨酸蛋白酶催化机制功能调节 酶的功能 已知所有的蛋白分解酶类丝氨酸蛋白酶占到了其中的三分之一,这些酶又可以细分成很多种类有胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、凝血酶、纤溶酶、组织纤溶酶原激活剂、神经源类的丝氨酸蛋白酶等。这些酶类具有消化凝血、纤溶、消化、受精、生长发育、凋亡、免疫等方面都有重要的作用。 酶的催化位点 由于丝氨酸蛋白酶的种类很多根据其催化的特点以及种树亲疏性可以分成不同的类别,不同的组织器官,不同的生物种系中酶的分布与种类是不同的(见表格)。但是其催化特点通常都是其反应的催化三联体,丝氨酸的亲核攻击,即丝氨酸的羟基攻击酰胺键的羰基碳,但是在生物进化的长时间了这种催化活性结

构也发生了改变。如在有些酶中其催化三联体不在是固定的丝氨酸、天冬氨酸、组氨酸,而是只有丝氨酸与天冬氨酸或是组氨酸的一种组成催化活性位点,也有的如组氨酸成对出现于丝氨酸组合形成新的催化结构,但是无论怎样其上的丝氨酸残基是固定保守的。 酶的活化 对于丝氨酸蛋白酶类的活化,一般来说是通过对酶前体【2】的加工使其形成具有催化活性的酶,或者是通过一些辅助因子的协同作用使其由闭合的非活化状态转成活性状态,也有通过信号的捕获诱发一系列的级联反应从而活化蛋白,或是通过一些关键因子的作用使得构想发生改变来实现活化等等。通常来说酶的状态一种是抑制非活化状态,另一种是活化的活性状态,但是在一些研究中酶具有新的状态,而这种状态与酶原或是缺少辅因子而显示无活性的酶的状态是不同的,虽然这种状态下的酶也没有活性,但是其结构上出现一些特有的变化,在对凝血酶的研究中发现,这种状态称为E*【3】,其伴有一些氨基酸链陷入酶的催化活性部位从而破坏其中的氧离子空穴,致使没得活性受阻,因此对于这种酶的活化一定有其他的方式,研究发现当E*状态下在远离活性部位连接一种配体时会将这种氨基酸陷入活性位点的状况扭转过来,从而恢复酶的活性位点,并在其他因子的作用下得到活化。 酶的催化机制 对于丝氨酸蛋白酶类的催化活性,有的是通过前体酶原的活化,比如胰蛋白酶类就是通过将蛋白的前导序列进行切除之后,然后空间构象进行调整折叠成具有反应活性的活化酶。对于丝氨酸蛋白酶类的催化机制由于其催化活性位点上

李依 食品酶学 丝氨酸蛋白酶

丝氨酸蛋白酶的研究 【摘要】 综述了丝氨酸蛋白酶的结构与功能、蛋白质工程、表达系统和应用。丝氨酸蛋白酶是一类以丝氨酸为活性中心的重要的蛋白水解酶,在生物有机体中发挥着重要而又广泛的生理作用,具有广泛的研究和应用价值。它们的活性部位都含Ser、His、Asp,并具有相同的催化机制。丝氨酸蛋白酶超家族成员执行多种多样的生理功能,在很多致病过程以及细胞内的信号转导等方面起着重要作用。正是由于丝氨酸蛋白酶在结构上的微小变化,从而引起了其在功能上的进化。 On serine protease Abstract: This paper reviews the serine proteases’structures,functions,protein engineering,expression system,and applications.Serine protease is a group of proteolytic enzymes that are important for its potential applications.All serine proteases have serine,histidine and aspartic acid in their active domain,and same catalytic mechanism.The members in the serine protease super family serve a wide range of physiological functions,especially in thepathogenesis of many diseases and intracellular signal transduction.Any minute alternations in their structures canresult in significant functional changes. 【关键词】丝氨酸蛋白酶抑制剂表达结构 【正文】 一丝氨酸蛋白酶的概述 1 简介 丝氨酸蛋白酶是一个蛋白酶家族,它们的作用是断裂大分子蛋白质中的肽键,使之成为小分子蛋白质。其激活是通过活性中心一组氨基酸残基变化实现的,它们之中一定有一个是丝氨酸(其名字的由来)。在哺乳类动物里面,丝氨酸蛋白酶扮演着很重要的角色,特别是在消化,凝血和补体系统方面。 (1)消化酶胰分泌的酶里面有三种是丝氨酸蛋白酶: A 糜蛋白酶 糜蛋白酶,又称为胰凝乳蛋白酶,水解酶类的一种肽链内切酶,主要促使疏水性氨基酸尤其是酪氨酸、色氨酸、苯丙氨酸及亮氨酸的羧基端多肽裂解。由胰以糜蛋白酶原的形式分泌,在小肠内经胰蛋白酶作用而激活。糜蛋白酶A及B 分子大小不同,但特异性则相似。 B 胰蛋白酶 胰蛋白酶属水解酶类,促使肽链分裂,作用部位为精氨酸或赖氨酸羧基。此酶以酶原形式由胰释出,在小肠中转化为活性形式。 C 弹性蛋白酶 弹性蛋白酶(EC 3.4.21.36.):水解酶类的一种,对丙氨酸、甘氨酸、异亮氨酸、亮氨酸或缬氨酸等含羧基的多肽键起催化水解的作用,因曾认为此酶主要作用于弹性蛋白而有此命名。它是胰以酶原(弹性蛋白酶原)形式分泌的一种丝氨酸蛋白酶,参与肠内蛋白消化。 这三种酶的一级结构(氨基酸序列)和三级序列(所有原子的空间排布)相似。它们的活性丝氨酸残基都是在同一位置(Ser-195)。

相关文档
最新文档