海陆空天惯性世界——战机超音速1

海陆空天惯性世界——战机超音速1
海陆空天惯性世界——战机超音速1

凤凰甫出群雀伏,风云交汇龙生翼

从20世纪90年代后期至今,世界先进战斗机的研制和改进掀起了新的高潮。这其中最引人注目的无疑是美国的F/A-22“猛禽”(Raptor)。该机是当今技术水平最高、作战能力最强的战斗机,也是目前第四代战斗机的唯一典型代表。本文拟对这种战斗机进行简单探讨,并探寻我国四代机的发展思路。

凤凰甫出群雀伏——F/A-22浅析

远见成就超凡——从概念起源到全速生产

众所周知F/A-22是美国“先进战术战斗机”(ATF)计划的产物,不过该计划并不是很多人所认为的那样是针对前苏联苏-27和米格-29的威胁才提出的。早在1971年美国战术空军司令部便提出了ATF概念,在整个20世纪70年代ATF都被定义为一种先进攻击机,并且在将制空作为它的一项作战任务考虑之前,美国空军已在一系列的需求和概念分析研究中,逐步明确了该机应具有超声速巡航、高机动性、综合化的航电系统、大航程、低可探测性和改善的可保障性等特点。

在气动设计上,苏-27S堪称早期三代机的颠峰之作

美国空军对这种攻击机需求的推动力同样来自当时欧洲大陆上的军事态势。首先,1967年北约组织批准了1959年由艾森豪威尔政府的陆军参谋长麦克斯韦尔泰勒首次提出、1961年1月约翰肯尼迪就任美国总统后开始推行的“灵活反应”核战略的实施,该战略的基点是美苏双方的核力量可以“相互确保摧毁”,重点强调美国应具有应付各种常规战争及其升级的能力。这种战略的实施,使北约以前阻滞华约突破的“前沿防御”战略由过于依赖战略核武器的,转变为依靠战略核武器、战区核武器及常规武器组成的“三位一体”的综合作战力量。而到了20世纪70年代美苏和力量对比更加均衡,欧洲大陆上战区核武器的使用门槛也因此提高,所以双方都大大加强了常规武器的研制并力求取得优势。

此外,北约在欧洲大陆部署战区核武器后,华约将其纵深的第二、三梯队的部署得更加分散,避免因过分集中而在战时遭到北约战区核武器的毁灭性打击。比如在北约部署战区核武器之前,苏军一个坦克师的集结范围是3×3千米(宽×深,下同),一个集团军、方面军分别是10×20千米、100×40千米;北约部署战区核武器之后师、集团军的集结范围分别增加到20×30千米、75×100千米,一个师的编制人数也由原来的5000人增加到12000人。同时,华约将集中到前沿的打击力量比例减少到约20%(其中约60%集中到第一梯队),而其余80%都部署在离前线500千米以内的纵深。

显然,北约若要在与华约常规战争中确保实施“前沿防御”战略,就必须具备对华约分散部署的纵深目标进行常规打击的能力,由此便导致了对能穿透华约前线和纵深防空火力、具备纵深攻击能力的先进攻击飞机的需求,前述对ATF的技术要求便来自在纵深打击中保持效率和高生存力的需要。当时美国的研究结果认为,这种攻击机的巡航高度应达到50000~65000英尺(15240~19812米),最大马赫数应达到1.6~2.2。

但是到了70年代后期,情况发生了一些变化。1977~1979年,美国侦察卫星在莫斯科附近朱可夫斯基城的拉明斯基(Ramenskoye)先后发现了苏联两种新型战斗机的试验机,并根据发现地点将其分别称为拉明-K和拉明-L,它们实际上分别是苏-27和米格-29的原型机。当时美国情报部门认为这两种飞机将分别在1987年年中和1985年年初具备初始作战能力(IOC),且性能可与F-15和F-16相匹敌;同时美国的情报显示其他国家也在研制或准备购买新一代战斗机。为继续保持美军战斗机领先一代的优势,美空军在1980年4月将制空列入了ATF的任务考虑,其后一系列的研究表明此前明确的ATF攻击机应具有的特征同样适用于未来空战环境。1982年8月,美空军首次明确将争夺制空权列为ATF最优先的任务。

ATF竞争的失败者,YF-23A

与前卫的YF-23A相比,YF-22A看上去有点像F-15的进化

画面远处那架安装反尾旋伞的是第一架YF-22A,装T-GE-100发动机;第二架则装YF119-PW-100发动机。

1990年4月YF119-PW-100战胜T-GE-100,被选为F-22A的发动机进行工程发展

1981年11月获得五角大楼批准了美空军有关ATF的需求报告,经过概念发展研究(CDI)和演示/验证(D/V)两个阶段后,洛克希德(今洛克希德马丁公司)小组的YF-22A于1990年4月23日击败诺斯罗普小组的YF-23A,赢得ATF的工程制造与发展(EMD)合同。虽然YF-23A在隐身和超声速巡航能力上高于YF-22,但美空军认为该机的设计过于冒险。YF-23A若能赢得合同并发展成功,其超视距空战能力将比今天的

F/A-22更强。下表显示了YF-22A在与YF-23A进行竞争试飞的过程中达到的一些性能:

第一架F-22A EMD飞机(4001)

1997年4月9日F-22A被命名为“猛禽”,首架EMD飞机(4001)于同年9月7日首飞;1998年5月17日该机开始了发展试验与评估(DT&E)阶段试飞;2001年8月15日获准进入低速率初始生产(LRIP)阶段;2002年9月17日编号改为F/A-22,表示它也可用来对地攻击;2004年4月29日开始进行初始作战试验与评估(IOT&E);相当于部队试用;2005年4月15日,美国国防部批准该机进入全速率生产(FRP)阶段,这标志着该机研制工作已经结束。下表显示了9架EMD飞机的基本情况:

4011进行出厂试飞

1998年7月10日,美空军与洛马签订合同生产2架生产型代表试验机(PRTV)和6架初始生产型F-22A。这些飞机编号为4010~4017,其中两架PRTV:4010、4011分别于2002年10月12日和2002年9月16日首飞,它们与4008、4009号机参加了IOT&E。截至目前F/A-22工业小组已获得5批低速生产合同,第6

批的生产数量已确定为26架。LRIP阶段的生产率约24架/年,FRP阶段将提高到约32架/年。目前美空军与国防部就该生产多少架F/A-22仍在争论不休,空军坚持需要381架,但其预算最多只能支持295架;国防部则打算将生产数量砍到181架。该机前5批生产合同的基本情况见下表。到第4批时,其单价已降低到约1.3亿美元。

截至2005年4月26日,F/A-22公布的最大飞行高度超过60000英尺(18288米),迎角范围超过-60°~+60°。达到的主要关键性能指标中,超声速巡航速度达到M1.72,比指标要求的M1.5高15%;加速时间53秒,比指标要求的54秒高2%(未指明具体条件);M0.9时的机动性满足指标要求;某种任务构型下的作战半径(亚声速+超声速)达到574+185千米,比指标要求的370+185千米高14%;雷达探测距离比指标要求高5%;完成部署需要8.4架C-141B运输机支持,与指标要求的8架略有差距;平均故障间隔时间(MTBF)3.0小时,满足指标要求;隐身性能高于指标要求。

美空军预计,F/A-22将在2005年12月形成IOC(初始作战能力),驻扎在佛罗里达州的廷德尔空军基地的第325飞行联队将成为首支训练部队,驻扎在弗吉尼亚州的兰利空军基地的第1飞行联队第27中队将成为首支作战中队。(未完待续)

超级战斗机——F-22“猛禽”(一、初试锋芒)

超级战斗机——F-22“猛禽”(一、初试锋芒) 2014年9月23日,洛克希德马丁公司的F-22“猛禽”战斗机首次参加实战。那一夜,打击机群中的4架“猛禽”耗时两小时飞行1931公里攻击了伊斯兰国(IS)在叙利亚阿勒颇附近的一处设施。这次行动发生在奥巴马授权使用武力打击IS的一个月之后,证明了这种高技术武器的实战效果,但也招致了空中作战“规模太寒碜”的批评,有人认为这难以取得很大效果。这种批评的根据是数量,美国空军同一时间只在战区部署6架F-22。在1991年海湾战争的“沙漠风暴”行动期间,联军飞机日均出动1241架次,而在打击IS的“坚定决心”行动中,美国和盟国部队飞机日均仅出动12架次。此外,由于严格的交战规则,其中约一半架次要带弹返回基地。 参加“坚定决心”行动的F-22战斗机

尽管“坚定决心”只是一次小规模行动,但却是这种近十年来一直饱受批评的隐身菱形翼超级战斗机的首战。批评者此前一直抱怨F-22花了纳税人太多的钱,驾驶F-22飞行是危险的,该机的氧气系统问题也一度闹得沸沸扬扬。 总统授权动武后,美国空军决定让F-22战斗机上阵来对付叙利亚空军的拦截。结果在行动中叙利亚防空网试图跟踪打击机群,但并没有采取任何敌对行动。随后F-22承担了保持战场通信畅通的任务。一位消息人士告诉《Air International》:F-22在后续任务中实施了对地攻击。 陆军中将威廉·梅维尔是来自参谋长联席会议的行动指挥,他诉记者:“我们着眼于目标的毁伤效果以及最适合在该地区作战的机型,我们有一长串的目标清单。说实话,能满足我们要求的平台不多。” 这些F-22来自美国空军第27远征战斗机中队。鉴于IS对囚犯实施惨无人道的处决,美国空军对参与行动飞行员的姓名严格保密。而且因为基地东道国的政治敏感性,美国空军也从未透露战斗机部署在中东地区的地点。 尽管此前F-22在阿拉伯联合酋长国的答法拉空军基地部署过,但这次参与作战行动的第一波机群显然是从卡塔尔乌代德空军基地起飞的,同基地的KC-10“增程器”为机群提供了空中加油。这两个基地与伊朗隔波斯湾相望,该国已经在支持伊拉克和叙利亚境内的什叶派势力反抗IS。 红圈内就是卡塔尔乌代德空军基地和阿联酋答法拉空军基地

米格系列战斗机

米格-25“狐蝠”(Mig-25 Foxbat)

是苏联在1960年代研制部署的一种高空高速战斗机,是世界上第一种速度超过3马赫的战斗机,在冷战时期曾出口过叙利亚、伊拉克、印度等国家,至今仍活跃在这些国家的空军。 米格-25的研制主要是为了对付美国的研发中的XB-70轰炸机与A-12/SR-71“黑鸟”高空高速侦察机,这种侦察机的最高速度同样达到3马赫,普通的截击机根本无法追上更遑论跟踪监视拦截,只有米格-25可以轻松的尾随在SR-71的后面随时监视其航向,并在其有不轨举动时提出警告。 米格-25在装备苏军初期由于其极高的性能参数,一直为西方世界所关注,西方甚至以此推测苏联的军用航空制造技术已经领先于世界。直到1976年9月6日苏军飞行员别连科中尉驾驶米格-25飞机叛逃日本,西方世界才真正揭开了该飞机神秘的面纱。美日的技术专家把米格-25完全拆解后运到东京以北100

多公里的百里空军基地,经过彻底的检查,该机70%的部件是不锈钢,虽然极限速度很高,但是技术性能并没有想象中那么可怕,从整体性能上说仅仅相当于美国的F-4“鬼怪”战斗机,和美国当时正在研制的F-1 5“鹰”和F-16“战隼”战斗机更是相距甚远。 但是不管怎么说,苏联工程师能用相对落后的技术生产出某方面性能突出的战机,某些设计理念至今仍为世人推崇。米格25在其服役期间击落过各类战机,甚至有消息说第一次海湾战争时期米格25曾击落过美军的F/A-18大黄蜂战斗机。 米格-27 是米高扬设计局在米格-23C基础上研制的战斗轰炸机。原称米格-23B,后改称米格-27。1969年完成设计,1970年8月20日首飞,1971年开始批生产,至80年代后期停产时共生产了1000多架,其中1973年改称米格-27以后的各型就有910多架。该机外观上与米格-23相似,但是机头取消了大型对空火控雷达,改为对地光电装置,机头变小并下倾,增大背脊面积,重要部位增加了装甲。由于对地攻击对机动性要求不高,米格-27换装了简化的进气口和喷口。这使得米格-27的超音速性能与米格-23相比有下降,但简化了结构,降低了成本。米格-27采用一台图曼斯基R-29-3000发动机,推力11500千克。固定武器为一门23毫米机炮,外挂载重量4吨。正式命名的米格-27于1973年开始生产,固定式进气道,改进设备,可在能见度差的条件下攻击地面活动目标。改装1门30毫米机炮,机载电子设备作了改进,1973~1977年共生产560架。米格-27的主要改进型号有:米格-27K、米格-27M、米格-27D和米格-27MD。米格-27K是1975年研制的改进型,主要改装先进机载设备、机载火控系统和改挂先进武器。可使用电视制导和激光制导炸弹及X-25M反雷达导弹,以及混凝土穿甲弹。1977~1982年共生产200架。米格-27M 是在K型的简化版本,有一定改进,座舱内装了电视屏幕显示器。1978~1983年间生产150架。米格-27D是将早期型的机体加装上M型的机载设备,共改装了500架,可执行侦察任务。米格-27MD是M型的出口型,设备简化,1982年开始生产

喷气式飞机BD5 制作指南

Suggested build specs: Material: 6mm Depron or MPF (approx one and a half full sheets) 1000 x 700 sheet Servo’s: 3 x HXT900 9g (or similar) Motor: D2826-6 2200kv Outrunner Motor (or similar) ESC: TURNIGY Plush 40amp Speed Controller (or similar) Prop: GS Sport 6x4E Precision propeller (or similar) Designed and Drawn by: Tony Audsley (Lockey) These are the formers shown in the position they need to go

The Fuselage Skeleton First glue F8 and F9 in place on the “vertical former” Glue the “horizontal former” to the “vertical former” and into F8 Glue the ’’top formers” in place … as shown Glue in place the rest of the formers as shown After gluing, I use a sanding block to sand the formers to follow the shape of the fuselage and make it nice and smooth for the side panels to be glued on.Please note: The side panels and hatch panels are slightly oversize and any excess can be trimmed off after gluing in place Cut 2 x 10mm x 6 mm dou-blers from some scrap foam and glue onto the fuselage sides as shown. This is for sanding and rounding a little

航空行业制造装备发展分析

航空行业制造装备发展分析 非常荣幸参加中国机床工具工业协会主办的“跟踪重点需求,自主创新发展”高层论坛。我今天的演讲题目是“航空工业制造装备的发展分析”。我来自于中航技国际工贸公司,中航技国际工贸公司从上个世纪70 年代开始,一直是中国航空工业制造装备的采购商,是我国航空工业进口制造装备的主渠道。 需要强调的是,我们既不是航空工业的规划管理机构,也不是航空装备的制造企业,我们是一个长期从事航空制造装备进口的外贸公司。由于长期从事国外航空制造装备的采购工作,特别是近10 年来,航空行业采取了制造装备集中规划,集中采购的政策,使我们有机会见证了中国航空工业的蓬勃发展,了解了一些航空工业制造装备的需求和发展历程。 我很高兴借这次演讲的机会,向大家介绍航空工业的现状及发展趋势,找出国内外航空工业的差距,并提出相应的建议;将我们对航空工业装备发展的粗浅认识与大家分享交流。 谈航空工业装备的发展,有必要先看看航空工业的发展。 一、航空工业的发展趋势 航空工业属于高新技术产业,是一个国家综合实力的重要体现。中国航空工业经过半个多世纪的发展,已经形成了具有一定产业规模,上下游产品配套完整的工业体系。我们的航空产品主要包括:各类军用飞机、民用飞机、运输机、直升机、教练机;各类航空发动机;各种航空机载系统等。胡锦涛总书记在十七大报告中提出:“提升高新技术产业,发展航空航天产业”,说明党和国家对发展航空工业的重视。可以说,中国航空工业面临着巨大的发展机遇,有相当可观的发展预期,投资规模会在相当长的一段时间内继续维持在一个较高的水平。 航空工业的不断发展带动了相关材料、工艺和结构的发展,是对设备制造业需求产生的基础。下面,我向大家简单介绍国内外航空工业的发展趋势。 1.军用飞机的发展趋势 目前世界军用飞机正在由三代机向第四代先进战机发展。第四代战机具有超音速巡航能力,能以马赫数1.5—1.6 持续飞行;具有更好的隐身能力和更高的机动性能。其零件数量减少4O%—60 % ,可靠性提高1倍,耐久性提高2倍。这一代战机以美国F - 22 为代表,同时美国也正在研制联合攻击机F—35。 2.直升机的发展趋势 直升机由于具有垂直起降、无需专用跑道、长时间空中悬停等特点,在军用

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

美国海军第六代喷气式舰载战斗机前瞻2

美国海军第六代喷气式舰载战斗机前瞻2 对历史型号的技术参数进行分析得出的结果,与根据美军过去10年作战行动的经验数据推算而来的估计值大同小异。这里选取的历史型号是F-111B 舰队防空战斗机,A-12 “复仇者’ II 舰载隐形战术轰炸机,及F-35C “闪电” II 打击战斗机。这三个型号执行典型作战任务时均不携带外挂燃油箱,A-12 和F-35C 与第六代舰载战斗机一样,将基本武器载荷容纳于内置弹舱之中,而F-111B 虽然采用外挂武器,但将其半保形挂载于机身和内翼之下,对机翼的升力特性影响微乎其微,可以近似地将其看作内置武器的型号加以分析。F-111B和A-12虽最终未装备部队,但项目中止时研制工作都已相当深入,F-111B 更试飞达1173次,1748飞行小时,因此性能和重量数据应该是比较可靠的。F-111B 使用空重为20911 千克,机内燃油10433 千克,携带6 枚AIM-54 “不死鸟” 空空导弹时的作战半径是915 海里,燃油系数0.3;A-12 使用空重为17690 千克,机内燃油9672 千克,携带 2 枚重型制导炸弹和 2 枚AIM-120 空空导弹时的作战半径是800 海里,燃油系数0.32;F-35C 使用空重为15785 千克,机内燃油8891 千克,根据最新估计携带2 枚907 千克级空地武器和2 枚AIM-120 空空导弹时的作战半径为615 海里,燃油系数0.33。按照10% 燃油储备余量计算,F-111B,A-12,F-35C 的100 海里耗油量分别为518 千克,550 千克,657 千克,平均100 海里耗油量是577 千克;若储备燃油水平取为30分钟余油,则F-111B,A-12,F-35C 的100 海里耗油量分别为508 千克,532 千克,611 千克,平均100 海里耗油量是550 千克。F-111B 的体积和重量都是三个型号中的冠军,燃油消耗率反而是最低的,体型居于末席的F-35C 相比之下倒是只油老虎。这一看似有违常理的现象既有F-111B 的变后掠翼气动效率高,巡航状态升阻比优于F-35C 的截梢三角翼的因素,也与TF30 型涡扇发动机涵道比较大,燃油经济性胜过F135 型发动机密不可分。飞翼布局的A-12 气动效率极高,但其F412 发动机涵道比偏低,燃油经济性不如TF30,因此A-12 的巡航耗油率虽然远低于F-35C,却较F-111B 高出5-6个百分点。作为必须执行制空作战和舰队防空任务的多用途武器平台,第六代舰载战斗机的气动布局和发动机设计势必要针对超音速性能进行优化,从而将不可避免地牺牲亚音速巡航效率,即使考虑到技术进步的因素,其亚音速巡航燃油经济性也很难超过A-12。以A-12的巡航耗油率为标杆,取100海里耗油量532千克,30分钟余油,达到1000 海里的作战半径需要机内燃油11837 千克;若按10% 燃油余量,每100海里消耗燃油550千克计算,则1000海里作战半径所对应的机内燃油量为12100千克。

代表机型和战斗机分代

代表机型和战斗机分代 按照西方的战斗机分代划分方法 第一代:亚音速战斗机(喷气革命)——代表机型:美制F86、苏制米格15、中国歼5(前苏联米格15仿制型)等 第一代战斗机的判断依据:喷气式、亚音速,从此战斗机螺旋桨时代进入喷气时代,史称战斗机的“喷气革命”。 第二代:强调超音速性能的战斗机(超音速革命)——代表机型:美制F4、F5,苏制米格21、米格25(2代机的巅峰作品),中国歼7(前苏联米格21的仿制型)等 第二代战斗机的判断依据:战斗机速度首次超过音速,并且重视速度,认为速度越快战斗机越强(非能量机动原理设计),史称战斗机的“超音速革命” 第三代:可变后掠翼,米格—23和美制F—111单独划分一代称之为第三代。 第四代:强调中近距离空战和空空格斗的多用途超音速战斗机(能量机动革命)——代表机型:美制F15、F16、F14、F18,苏制米格29、苏27、苏30(苏27的改进型)中国歼10等,其中F15、F16、米格29、苏27被称为冷战末期统治天空的战斗机“四大天王”。 第四代战斗机的判断依据:符合能量机动原理设计的超音速多用途战斗机。关于能量机动原理,百度里很少有人回答准确什么是第4代战斗机,第三代战斗机就是用能量机动原理设计出来的战斗机。越南战争时期,美国空军发现,自己的F4速度比米格21快,但是屡屡被米格21击落,甚至在不利情况下难于脱身。这是为什么?。一些老的空军退役的飞行员和科学家一起合作研究,发现了“能量机动原理”,具体含义比较复杂,在此不多讲,能量机动原理即,同时具有最大动能和最大势能的战斗机在空战中取得胜利的可能性很高,这些人在综合了自二战以来所有战斗机格斗案例后的惊人发现,合理的解释了战斗机快和高之间的取舍。他们提出了和但是理论相悖的能量机动原理,指出,以后设计战斗机,速度并不是第一要求,飞机所有性能复合能量机动原理越好,他们也被当时不理解他们行为的人称为“战斗机黑手党”。但是F15制造出来以后,一鸣惊人,F15是第一款符合能量机动原理的战斗机,其后的F16服役,F16是第一款根据能量机动原理精确计算后制造的战斗机,自此美国空军进入4代机时代,前苏联几乎花了十几年才搞明白了能量机动原理。后来出来了苏27和米格29.。这里有一个争议,即F14,有人认为F14并不能符合能量机动原理设计,但是我们仍然把它算做第4代战机,因为当时正值“战斗机黑手党”和官员们争吵,另外,F14的可变后掠翼为能量机动原理提供了修正机会,所以仍然算第三代战斗机。史称战斗机的“能量机动革命” 第五代:强调隐身性能等4S标准的的多用途超音速战斗机——代表机型:美制F22“猛禽”、F35“闪电” ,俄罗斯在研的苏47(S37)“金雕”战斗机 第五代战斗机的判断依据:史称战斗机的“隐身革命”。 4S:Super Maneuverability;Super Sonic Cruise;Stealth;Superior Avioni cs for Battle Awareness and Effectiveness

钛合金在多领域的应用与发展

上海大学 本科生课程论文论文题目:钛合金在多领域的应用与发展 课程名称: 课程号: 学生姓名: 学生学号: 所在学院:材料科学与工程学院 日期:2015.05.24

摘要:钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。本文综述了钛合金在航空航天飞行器、热氢处理、发动机、高温钛合金、生物医用材料等方面的应用与发展。 关键词:钛合金;航空;氢;发动机;生物医用材料 钛合金在航空方面的应用与发展 钛合金具有比强度高、耐腐蚀性好、耐高温等优点。从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波音777为7%,运输机C-17为10.3%,战斗机F-4为8%,F-15为25.8%,F-22为39%。 高性能航空发动机的发展需求牵引着高温钛合金的发展,钛合金的使用温度逐步提高,从20世纪50年代以Ti-6Al-4V合金为代表的350℃,经过IMI679和IMI829提高到了以IMI834合金为代表的600℃。目前,代表国际先进的高温钛合金有美国的Ti-6242S,Ti-1100,英国的IMI834,俄罗斯的BT36以及中国的Ti-60。表2为600℃主要高温钛合金的成分及性能特点。 Ti-6242S(Ti-6Al-2Sn-4Zr-2Mo-0.1Si)钛合金是美国于20世纪60年代为了满足改善钛合金高温性能的需要,特别是为了满足喷气发动机使用要求而研制的一种近α型钛合金。合金的最高使用温度为540℃,室温的σb=930 MPa。特点是具有强度、蠕变强度、韧性和热稳定性的良好结合,并具有良好的焊接性能,主要应用于燃气涡轮发动机零件,发动机结构板材零件,飞机机体热端零件。 BT36(Ti-6.2A1-2Sn-3.6Zr-0.7Mo-0.1Y-5.0W-0.15Si)合金是俄罗斯于1992年研制成功的一种使用温度在600~650℃的钛合金。合金中加入了5%W和约0.1%Y。加入W对提高合金的热强性有明显作用。加入微量Y可以明显地细化合金的晶粒,改善了合金的塑性和热稳定性。 Ti60(Ti-5.8 Al-4.8 Sn-2.OZr-1.0 Mo-0.35Si-0.85Nd)合金由中国科学院金属研究所在Ti55合金基础上改型设计、宝鸡有色金属加工厂参与研制的一种600℃高温钛合金。Ti60合金的特点之一是合金中加入了1%Nd(质量分数),通过内氧化方式形成富含Nd、Sn和O的稀土相,降低基体中的氧含量,从而起到净化基体,改善合金热稳定性的作用。Ti60合金已进行了半工业性中试试验(包括压气机盘模锻)和全面性能测定。 根据国内外研究现状,未来高温钛合金的发展趋势是:(1)研制600℃以上的新型高温钛合金。可对现有高温钛合金的成分进行调整,改进加工工艺,或研发新的高温钛合金,提高高温钛合金的使用温度。(2)稀土元素在高温钛合金中的作用尚待进一步研究。我国研制的含稀土元素的高温钛合金其使用温度已达到600℃,其各项性能显示均为良好。但稀土元素在合金

战斗机技术性能定义(精)

战斗机的技术性能定义[包括计算] 起飞重量=飞机的基本重量+起飞油量+实际业务载重量 最大起飞重量是指因设计或运行限制,航空器能够起飞时所容许的最大重量。最大起飞重量是航空器的三种设计重量限制之一,其余两种是最大零燃油重量和最大着陆重量。 原理 起飞时航空器必须能产生大于航空器本身重力的升力,才能使航空器离开地面升空。由于航空器只能产生有限的升力,因此航空器本身的总重必须受到限制,以保障能够正常起飞离地。 在实际应用中,最大起飞重量还要受其他因素的限制,如跑道长度、大气温度、起飞平面气压高度和越障能力等。在确定民用航空器最大审定起飞重量时需要满足一定的适航标准,一般在国际民航组织规定的国际标准大气条件下测定。在这个情况下,即使在达到V1速度后一具引擎熄火,飞机都必须能够安全起飞。 飞行前,飞机的总重都会被计算出来。飞行员会跟据总重计算飞机所需的起飞速度并确保总重在最大起飞重量以下。 限制因素 最大起飞重量受以下几个因素影响: 机身设计→飞机本身重量和气动设计 引擎种类和推力→机翼能产生多少升力是取决于空气流过机翼的速度。一具高推引擎可以令飞机加速更快和有更高的速度。

气压→较高的气压可以令机翼产生更多升力。 以上因素决定了飞机的最大许可起飞重量。但还未计及起飞时的环境因素,这些因素包括: 机场高度(气压高度)→气压高度变化伴随着空气密度变化,密度变化会使发动机性能和机翼效能发生变化。 气温→气温升高会导致空气密度变小,使得发动机效率降低。 跑道长度→跑道长度会影响飞机离地前的可用加速距离,如果跑道过短,飞机有可能没有足够时间加速到预期起飞速度。 跑道状况→跑道有积雪或凹凸不平就会产生较多阻力使得飞机加速较缓慢。 障碍→如果机场起落航线上有障碍物,那么最大起飞重量还要受进一步限制,必须保证航空器有足够的越障能力。 实用升限 是指飞机在实际飞行中能够达到的最大平飞高度。 爬升率 又称爬升速度或上升串,是各型飞机,尤其是战斗机的重要性能指标之一。它是指定常爬升时,飞行器在单位时间内增加的高度,其计量单位为米/秒。飞机在某一高度上,以最大油门状态,按不同爬升角爬升,所能获得的爬升率的最大值称为该高度上的“最大爬升率”。以最大爬升串飞行时对应的飞行速度称为“快升速度”,以此速度爬升,所需爬升时间最短。飞机的爬升性能与飞行高度有关,高度越低,飞机的最大爬升率越大,高度增加后,发动机推力一般将减小,飞机的最

英国制造喷气式发动机的兴衰史

英国制造】喷气式发动机的兴衰史 喷气式发动机的产生,给世界航空工业带来了一场革命。由于它采用了全新的 工作原理,可为飞机提供远远超过其前辈一一活塞式发动机的强大动力,而且它还摒弃了前者所“难以割舍”的痼疾一一螺旋桨,因而大幅度提高了飞机的性能。如今,喷气技术已经得到了越来越广泛的应用,不论是军用还是民用飞机,甚至某些航模也采用小型脉冲喷气发动机作为自己的动力装置。然而,当英国人弗兰克.惠特尔爵士将这只“丑小鸭”刚刚带到世界上来时,却颇费了一番周折。 英国的喷气发动机发展史,最初也是公司甚至是个人的行为。英国政府最初对这种新锐技术所表现出来的态度,着实不敢令人恭维。唯一值得佩服的是,一旦认识到了航空喷气动力产业的重要意义,英国政府就再也没有掉以轻心。 从淡漠到执着在喷气推进领域,英国和美国、法国以及苏联一样,都或多或少从战败国德国那里获得过相关技术,但在后续发展上,几个国家的道路却有较大差异。英国喷气发动机的发展,某种程度上就是罗罗公司喷气推进技术的发展史,但其中却处处渗透着英国政府的努力和关注,绝不是纯粹的“公司力量”。英国“台风”战斗机使用的EJ200 喷气发动机性能不俗,但一般人也许想不到,惠特尔当年研究航空喷气发动机时,却四处寻求资助无门,最困难时就连5 英镑的专利延期费用都交不起,原因很简单,当时英国空军认为喷气推进是一项很多人已经研究了很久的技术,惠特尔几乎不可能在可以预见的未来取得成功。 1907 年6 月1 日,惠特尔出生于英格兰南部的考文垂。在第一次世界大战中,童年的惠特尔亲眼看到战斗飞机的空中格斗,从而对空战产生了浓厚兴趣。16 岁时,惠特尔考入英国皇家空军见习学校,毕业后到克兰威尔的皇家空军学院学习。在校期间,他就发现驱动螺旋桨的活塞式发动机满足不了飞机高空高速飞行的需要,并在毕业论文中提出了新型推进系统涡轮喷气发动机的工作原理:先将空气吸人,再经过双面离心压气机压缩,然后在单管燃烧

美国海军第六代喷气式舰载战斗机前瞻3

美国海军第六代喷气式舰载战斗机前瞻3 按照1000海里作战半径的性能指标,将机内燃油容量大致界定在11837-13350 千克区间之内后,以机内燃油量除以燃油系数便可得到正常起飞重量。重型战术飞机的燃油系数通常高于同时期的中轻型战术飞机,而第六代舰载战斗机无疑将采用比F-35C 更为先进的材料和设计以减轻结构重量,燃油系数应该有可能超过F-35C 的0.33。但从另一方面来说,新机型的结构预计将为空战任务按9 g过载强化,自然也就轻巧不到哪里去,加上作为高性能战术飞机,航电,基本武器,动力系统,环境控制系统等一样也不能放水,燃油系数基本上没有高于0.35 的可能。若机内燃油取最低值11837 千克,燃油系数设为0.35,则正常起飞重量是33820 千克,鉴于过去20 年中研制的低可观测性战术飞机重量屡屡超标,设计第六代舰载战斗机时宜留出一定的重量余度,可考虑将定型飞机的正常起飞重量设置为36288千克/8万磅级,最大起飞重量若以 F-111B为参照应在40824千克/9万磅级,将是美国海军批量装备的最重型舰载战术飞机。美国海军为CVN-78”福特”级核动力航空母舰研制的电磁飞机弹射系统(Electromagnetic Aircraft Launch System, EMALS) 的发射能量为122兆焦,可将45360千克/10万磅级的舰载飞机以130节的速度弹射出去,足以支持最大起飞重量40824千克级的六代机;CVN-68”尼米兹”级的蒸汽弹射器发射能量为95兆焦,与电磁弹射器相比颇有不如,但与六代机自身动力相结合,仍可满足其在零甲板风情况下满载起飞的需要。从航母支持能力的角度出发,六代机完全可以按正常起飞重量40824千克,最大起飞重量45360千克设计,其外形尺寸或将接近美军航母曾装备过的A-5”民团团员”型舰载轰炸机。

钛合金在多领域的应用与发展完整版

钛合金在多领域的应用 与发展 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

上海大学 本科生课程论文 论文题目:钛合金在多领域的应用与发展 课程名称: 课程号: 学生姓名: 学生学号: 所在学院:材料科学与工程学院 日期 摘要:钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。本文综述了钛合金在航空航天飞行器、热氢处理、发动机、高温钛合金、生物医用材料等方面的应用与发展。 关键词:钛合金;航空;氢;发动机;生物医用材料 钛合金在航空方面的应用与发展 钛合金具有比强度高、耐腐蚀性好、耐高温等优点。从20世纪50年代开始, 钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波 音777为7%,运输机C-17为%,战斗机F-4为8%,F-15为%,F-22为39%。 高性能航空发动机的发展需求牵引着高温钛合金的发展,钛合金的使用温度逐 步提高,从20世纪50年代以Ti-6Al-4V合金为代表的350℃ ,经过IMI679和 IMI829提高到了以IMI834合金为代表的600℃。目前,代表国际先进的高温钛合金有美国的Ti-6242S,Ti-1100,英国的IMI834,俄罗斯的BT36以及中国的Ti-60。表 2为600℃主要高温钛合金的成分及性能特点。 Ti-6242S钛合金是美国于20世纪60年代为了满足改善钛合金高温性能的需要,特别是为了满足喷气发动机使用要求而研制的一种近α型钛合金。合金的最高使用温度为540℃,室温的σb=930 MPa。特点是具有强度、蠕变强度、韧性和热稳定性 的良好结合,并具有良好的焊接性能,主要应用于燃气涡轮发动机零件,发动机结构 板材零件,飞机机体热端零件。 BT36合金是俄罗斯于1992年研制成功的一种使用温度在600~650℃的钛合金。合金中加入了5%W和约%Y。加入W对提高合金的热强性有明显作用。加入微量Y可以明显地细化合金的晶粒,改善了合金的塑性和热稳定性。 Ti60 合金由中国科学院金属研究所在Ti55合金基础上改型设计、宝鸡有色金属加工厂参与研制的一种600℃高温钛合金。Ti60合金的特点之一是合金中加入

F22战斗机

F-22“猛禽”(英语:F-22 Raptor)战斗机是由美国洛克希德2马丁和波音联合研制的单座双发高隐身性第五代战斗机,也是世界上第一种进入服役的第五代战斗机。F-22于2000年代中期陆续进入美国空军服役,以取代上一代的主力机种F-15鹰式战斗机。洛克希德2马丁为主承包商,负责设计大部分机身、武器系统和F-22的最终组装。计划合作伙伴波音则提供机翼、后机身、航空电子综合系统和培训系统。 F-22被公认为现代十大战斗机第一名。洛克希德2马丁公司宣称,猛禽的隐身性能、灵敏性、精确度和态势感知能力结合,组合其空对空和空对地作战能力,使得它成为当今世界综合性能最佳的战斗机。但飞机的制造成本过高、俄罗斯和中国的第五代战斗机的计划延迟导致的缺乏清晰空对空作战任务、猛禽的出口禁令和其它使用计划(包括F-35和无人机)都使得F-22的生产计划提前终止。2009年4月,美国国防部建议停止新订单,经国会批准最终采购187架战斗机。“2010财年国防授权法”致使缺乏生产更多F-22的资金。2011

年12月13日最后一架F-22的上线仪式在多宾斯空军预备役基地举行。 F-22战斗机发展自上个世纪七十年代末的美国先进战术战斗机计划,旨在为美国空军开发下一代空优战斗机,以对付新出现的全球威胁,取代F-15鹰式战斗机,并要在性能上全面制衡前苏联的苏-27战斗机。

F-22采用双垂尾双发单座布局。垂尾向外倾斜27度,恰好处于一般隐身设计的边缘。其两侧进气口装在翼前缘延伸面(边条翼)下方,与喷嘴一样,都作了抑制红外辐射的隐形设计,主翼和水平安定面采用相同的后掠角和后缘前掠角,都是小展弦比的梯形平面形,水泡型座舱盖凸出于前机身上部,全部武器都隐蔽地挂在4个内部弹舱之中。 F-22水平面上为高梯形机翼搭配一体化尾翼的综合气动力外型,包括彼此隔开很宽和并朝外倾斜的带方向舵型垂直尾翼,且水平安定面直接靠近机翼布置。按照技术标准(小反射外形、吸收无线电波材料、用无线电电子对抗器材和小辐射的机载无线电电子设备装备战斗机,其设计最小雷达反射面为0.005-0.01平方米左右)。在机体上还广泛使用热加工塑胶(12%)和人造纤维(10%)的聚合复合材料(KM)。在量产机上使用复合材料(KM)的比例(按重量)更将达35%。两侧翼下菱形截面发动机进气道为不可调节的进气发动机压气机冷壁进气道呈S形通道。发动机二维向量喷嘴,有固定的侧壁和调节喷管横截面积;及可俯仰±20°角的可动上下调节板以偏转推力方向。

从喷气式的产生到第一代喷气式战机

从喷气式的产生到第一代喷气式战机 最早发明喷气式飞机的是德国飞机设计师。1939年,飞机设计师亨克尔找到研制喷气式发动机屡遭挫折的奥海因寻求合作,两人一拍即合。奥海恩是位燃气涡轮专家,他从1934年起就开始研制涡轮发动机,并取得了一定的进展,这次跟亨克尔合作非常兴奋。两位有志青年密切配合,协调工作,一个设计飞机,一个设计燃气涡轮发动机,研究工作进展顺利。1939年8月27日,两人心血的结晶He-178喷气式战斗机试飞成功,它标志着人类航空中上喷气飞行时代的到来。 德国另一位飞机设计师维利·梅塞施米特研制的Me-163“彗星”喷气式战斗机几经周折,最终还是受到德国空军的青睐。这位曾设计了二战名机Me-109的著名设计师,深受德国当局信任。研制喷气式战斗机的任务实质上是政府给他下达的。1941年春,“彗星”喷气式战斗机试飞成功。当天观看试飞的有德国空军战斗机总监加兰德将军。这位掌握着“彗星”生杀大权的将军,面对这架“怪鸟”般外形的飞机疑窦顿生:这玩艺行吗?然而,事实令他对其利目相看,飞机轻松地飞出了时速650千米。在此后的试飞中,“彗星”曾创造了时速1003千米的高速度。于是,德国当局命令加速研制并生产这种喷气式战斗机。 1942年8月,“彗星”试飞完毕,定型生产。该机使用的喷气发动机可产生2000千克推力,飞行最大时速可达953千米,装有2门航炮。“彗星”参战是在德军日渐溃败的1944年的一天,“彗星”便以它独特的高速优势一举击落了3架美国先进的战斗机P-51,紧接着又“干掉”了2架B-17轰炸机。一时间,“彗星”喷气式战斗机在空中战场上声名大噪。 然而,喷气式战斗机毕竟还是一项崭新的技术。“彗星”除在速度上占有优势外,许多方面的性能远不及当时优秀的活塞式战斗机。同盟国在研究了解“彗星”后,很快找到了它的弱点并进行了坚决巧妙的反击,使“彗星”无法发挥作用,成了“短命鬼”。但勿庸置疑,“彗星”作为世界上最早的喷气式战斗机,在人类的航空史上具有特殊的位置。 彗星战机简介 二战末期,一种外形奇特、集三个“世界第一”于一身的飞机出现在德国。它就是梅塞施米特飞机公司研制并生产的Me 163战斗机。在当时条件下,其飞行速度极快,飞行中尾后拉着一股烟雾,所以绰号“彗星”。 Me 163战斗机是世界上第一种(也是唯一的)可实用的火箭动力飞机、世界上第一种

四代战机发展历程

四代战机发展历程 第一代超音速战斗机 喷气式战斗机在50年代就实现了超音速化,因而现代战斗机一般是按超音速断代的。到目前为止,超音速战斗机共发展了四代。在设计思想上,第一代超音速战斗机以追求更高的飞行速度为主。1947年10月14日,美国贝尔公司研制的X-1火箭飞机首次实现了超音速飞行,为实用超音速飞机的研制积累了经验。40年代后期至50年代初出现的许多亚音速喷气战斗机也为实用超音速飞机的研制成功打下了坚实的技术基础。在这样的背景下,第一代超音速战斗机应运而生。最具代表性的是美国的F-100和前苏联的米格-19。 F-100“超级佩刀”战斗机是美国北美航空公司于1948年开始研制的,其原型机YF-100A 于1953年5月25日完成了首次飞行。米格-19是前苏联第一种实用超音速战斗机,由米高扬设计局研制。为了研制米格-19,米高扬设计局先制造了一架验证机,它于1952年10月进行了首次试飞。而经过大量改进的米格-19原型机首飞日期则是在1953年9月18日。因此,究竟这两种飞机谁先谁后,至今也没有一致的说法。第一代超音速战斗机,除F-100和米格-19外,还有美国康维尔公司的F-102“三角标枪”、麦克唐纳公司的F-101“巫毒”,英国的“猎人”式、法国达索公司的“超神秘”、瑞典的萨伯-35等。这一代战斗机的性能特点是低超音速,最大平飞速度为1.3~1.5马赫。为了实现超音速,采取的主要措施是加大发动机推力,使用后掠翼布局和三角翼等。第一代超音速战斗机使用的武器主要是机枪、机炮和火箭弹,后期改型加装了导弹,增强了攻击能力。 第二代超音速战斗机 第一代超音速战斗机的性能仍然偏低,速度不够,升限、加速性、爬升率不够高,武器系统和机载设备相对简单,因而作战能力仍有很大不足之处。为此,50年代后期各国开始发展第二代超音速战斗机,强调所谓“高空高速”,升限可达20000米以上,最大速度超过两倍音速。个别的高空截击机的升限高达30000米,速度超过3倍音速。第二代超音速战斗机出现于50年代末和60年代初。代表机型包括美国洛克希德公司F-104“战星”式、麦克唐纳公司F-4“鬼怪”式、诺斯罗普公司F-5“自由战士”;英国“闪电”式;法国的“幻影”Ⅲ和“幻影”F1;瑞典的萨伯-37;前苏联的米格-21、米格-23、米格-25和苏-17;中国在米格-21基础上研制的歼7和自行研制的歼8等。 为保证性能要求,在气动设计上这一代已过渡到头部尖锐、两侧进气,为改善低速性能有的采用了可变后掠翼。在翼型上,开始采用较薄的超音速翼型。这种翼型前缘尖锐、上下对称,常见的有菱形翼型、六面形翼型、双凸翼型。第二代战斗机的空战武器主要是第二代空对空导弹,并装有第二代雷达,有的还装备了有拦射能力的火力控制系统。第二代超音速战斗机速度快、升限高、火力强,因而作战能力大大提高,它的出现使第一代超音速战斗机逐步退出历史舞台。 第三代超音速战斗机 第三代超音速战斗机出现于20世纪70年代中期。在这一代战斗机研制中,设计思想发生了重大变化,由强调“高空高速”转变为高机动性。根据越南战争的经验,如果一方战斗机的机动性能好,就很容易变被动为主动。因此,美国在研制新型战斗机时,突出强调高机动性、多用途、可对地攻击等。美国称这样的战斗机是“空中优势战斗机”,它也由此成

世界战斗机划分标准解读

世界战斗机划分标准解读 世界战斗机划分标准解读 2013-05-05 07:37:11 第一代战斗机是指首批采用喷气发动机的战斗机,其出现时间大约为1944至1953年。由于采用了新式喷气发动机其作战能力比使用涡轮螺旋桨发动机的飞机有 了显著提高。第1代战斗机的外形与使用涡轮螺旋桨驱动的战斗机有些相似之处,如采用直机翼,带机炮,雷达还仅在特殊的夜间战斗机上装备。虽然比起先前的飞 机具有很多优势,但第一代战斗机有着很大缺陷,如其使用寿命很短,发动机可靠性差、体积笨重,其功率也只能进行缓慢调节。第一代战斗机典型机型有二战末期 德国的Me 262和英国的"流星",以及后来苏联的米格-15、米格-17、美国的P-80和F-86等。第二代战斗机主要是指20世纪50年代至60年代研制的战斗机,典型机型如美国F-100"超级佩刀"。由于采用了许多新技术,这时的战斗机作战能力有了大 幅提高。飞机开始使用AIM-9"响尾蛇"、AIM-7"麻雀"等制导导弹进行视距外攻击,雷达也作为标准配置用于确定敌方攻

击目标。新的飞机设计也层出 不穷,如后掠翼、三角翼、变后掠翼以及按面积律设计的机身等,采用后掠翼的生产型战斗机飞行速度终于突破了声障。这一时期的一个重要特点是出现了战斗轰炸 机(如F-105和苏-7)和截击机(英国"闪电"和F-104)。截击机的发展主要依赖于制导导弹能完全替代机炮、空战将在视距进行的观点,因而截击机 具有较大的载弹量和强大的雷达,这牺牲了速度、爬升率等敏捷性。第二代战斗机包括苏联米格-21、米格-19、苏 -7/-9/-11,英国"闪电",美国 F-8、F-11、F-100、F-102、F-104、F-105等。第 三代战斗机主要是指1960~1970年出现的战斗机。这个时期航空技术发展日趋成熟,战斗机作战能力的发展主要是通过引入性能更好的导弹、雷达和其他航 电系统来获得。基于大量制导导弹的实战使用经验,设计人员重新肯定了近距格斗在空战中的地位,机炮再次成为标配,而机动性也再一次成为优先考虑的设计因 素。航空技术发展在显著提高战斗机能力的同时,使得其研制和使用成本也显著增加。军方早先曾有各种专门用途的战斗机,如夜间战斗机、重型战斗机和攻击战斗 机,面对战斗机的成本暴涨,军方开始将战斗机的任务合并。美国F-4战斗机原先设计成美国海军的一种截击机,但后来

战斗机划分标准

按照西方的战斗机分代划分方法 1:亚音速战斗机(喷气革命)——代表机型: xx制 F86、xx米格 15、中国歼5(前苏联米格15仿制型)等 第一代战斗机的判断依据: 喷气式、亚音速,从此战斗机螺旋桨时代进入喷气时代,史称战斗机的“喷气革命”。 2:强调超音速性能的战斗机(超音速革命)——代表机型: xx制 F4、F5,xx米格 21、米格25(2代机的巅峰作品),中国歼7(前苏联米格21的仿制型)等 第二代战斗机的判断依据: 战斗机速度首次超过音速,并且重视速度,认为速度越快战斗机越强(非能量机动原理设计),史称战斗机的“超音速革命”3:强调中近距离空战和空空格斗的多用途超音速战斗机(能量机动革命)——代表机型: xx制 F15、F 16、F 14、F18,xx米格 29、苏

27、苏30(苏27的改进型)中国歼10等,其中 F15、F 16、米格 29、苏27被称为冷战末期统治天空的战斗机“四大天王”。 第三代战斗机的判断依据: 符合能量机动原理设计的超音速多用途战斗机。关于能量机动原理,百度里很少有人回答准确什么是第3代战斗机,第三代战斗机就是用能量机动原理设计出来的战斗机。越南战争时期,美国空军发现,自己的F4速度比米格21快,但是屡屡被米格21击落,甚至在不利情况下难于脱身。 这是为什么?。一些老的空军退役的飞行员和科学家一起合作研究,发现了“能量机动原理”,具体含义比较复杂,在此不多讲,能量机动原理即,同时具有最大动能和最大势能的战斗机在空战中取得胜利的可能性很高,这些人在综合了自二战以来所有战斗机格斗案例后的惊人发现,合理的解释了战斗机快和高之间的取舍。他们提出了和但是理论相悖的能量机动原理,指出,以后设计战斗机,速度并不是第一要求,飞机所有性能复合能量机动原理越好,他们也被当时不理解他们行为的人称为“战斗机黑手党”。但是F15制造出来以后,一鸣惊人,F15是第一款符合能量机动原理的战斗机,其后的F16服役,F16是第一款根据能量机动原理精确计算后制造的战斗机,自此美国空军进入3代机时代,前苏联几乎花了十几年才搞明白了能量机动原理。后来出来了苏27和米格 29.。这里有一个争议,即F14,有人认为F14并不能符合能量机动原理设计,但是我们仍然把它算做第3代战机,因为当时正值“战斗机黑手党”和官员们争吵,另外,F14的可变后掠翼为能量机动原理提供了修正机会,所以仍然算第三代战斗机。史称战斗机的“能量机动革命” 4:强调隐身性能等4S标准的的多用途超音速战斗机——代表机型: 美制F22“猛禽”、F35“闪电”,俄罗斯在研的苏47(S37)“金雕”战斗机

相关文档
最新文档