几种形状规则刚体转动惯量的计算

几种形状规则刚体转动惯量的计算
几种形状规则刚体转动惯量的计算

(推荐)电机转动惯量的计算

电机转动惯量的计算 对于细杆 当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。 对于圆柱体 当回转轴是圆柱体轴线时;J=m(r^2)/2 其中m是圆柱体的质量,r 是圆柱体的半径。 对于细圆环 当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径 对于薄圆盘 当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径 对于空心圆柱 当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。

对于球壳 当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。 对于实心球体 当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径 对于立方体 当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L 为立方体边长。

只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。 角加速度与合外力矩的关系: 角加速度与合外力矩

式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。角动量: 角动量 刚体的定轴转动动能: 转动动能 注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。 只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。 转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测物体的转动惯量 7.预习思考题回答 (1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平? 答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。 (2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之? 答:有影响。当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。 (3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。 理论上,22010002 [()]04x gRr I I I m m T m T H π=-= +-> 所以2 2 000()0m m T m T +->= 〉0/T T > 1<,并不能保证0/1T T >,因此放上待测物后周期不一定变大。 (4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响? 答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。 8.数据记录及处理 表 1 待测刚体的有关尺寸数据的记录及简单计算 g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 g m 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm

新版-转动惯量计算公式

转动惯量计算公式 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax

刚体的转动惯量专题

刚体的转动惯量专题 1.刚体的转动惯量的三要素 刚体对某轴的转动惯量,是描述刚体在绕该轴的转动过程中转动惯性的物理量. 有转动惯量的定义式2i i I m r =∑可看出,刚 体的转动惯量是与下列三个因素有关的. (1)与刚体的质量有关. 例如半径相同的两个圆柱体,而它们的质量不同,显然,对于相应的转轴,质量大的转动惯量也较大.

(2)在质量一定的情况下,与质量的分布有关. 例如,质量相同、半径也相同的圆盘与圆环,二者的质量分布不同,圆环的质量集中分布在边缘,而圆盘的质量分布在整个圆面上,所以,圆环的转动惯量较大. (3)还与给定转轴的位置有关,即同一刚体对于不同的转轴,其转动惯量的大小也是不等的. 例如,同一细长杆,对通过其质心且垂直于杆的转轴和通过其一端且垂直于杆的转轴,二者的转动惯量不相同,且后者较大. 这是由于转轴的位置不同,从而也就影响了转动惯量的大小.

刚体的转动惯量的三要素:刚体的总质量、刚体的质量分布情况、转轴的位置. 2.转动惯量的普遍公式 (1)转动惯量的定义式 2 i i I m r =∑ ·········○1 可知,对于形状规则、质量均匀分布的连续刚体,其对特殊轴的转动惯量的计算可借助于定积分. 这是,可设想将刚体分成

许多小线元、面元、体元. d d d d d d m x m S m V λσρ=== 于是 222222d d d d d d l S V I r m r x I r m r S I r m r V λσρ======?????? 一般说来,这是个三重的体积分,但对于有一定对称性的物体,积分的重数可以减少,甚至不需要积分. (2)刚体对某轴的转动惯量 刚体对z 轴的转动惯量

转动惯量公式表

常见几何体]转动惯量公式表

对于细杆 当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。

对于圆柱体 当回转轴是圆柱体轴线时;J=m(r^2)/2 其中m是圆柱体的质量,r是圆柱体的半径。 对于细圆环 当回转轴通过中心与环面垂直时,J=mR^2; 当回转轴通过边缘与环面垂直时,J=2mR^2; R为其半径 对于薄圆盘 当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2; 当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2; R为其半径 对于空心圆柱 当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2]; R1和R2分别为其内外半径。 对于球壳 当回转轴为中心轴时,J=﹙2/3﹚mR^2; 当回转轴为球壳的切线时,J=﹙5/3﹚mR^2; R为球壳半径。 对于实心球体 当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2; 当回转轴为球体的切线时,J=﹙7/5﹚mR^2; R为球体半径 对于立方体 当回转轴为其中心轴时,J=﹙1/6﹚mL^2; 当回转轴为其棱边时,J=﹙2/3﹚mL^2; 当回转轴为其体对角线时,J=(3/16)mL^2; L为立方体边长。 只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。 角加速度与合外力矩的关系:

角加速度与合外力矩 式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。 角动量: 角动量 刚体的定轴转动动能: 转动动能 注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。 只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。 转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I=∑ mi*ri^2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=∫r^2dm=∫r^2ρdV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 平行轴定理 平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为: I=Ic+md^2 这个定理称为平行轴定理。 一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加

刚体转动惯量数据处理

测量装置的几何尺寸 仪器:米尺cm D =米尺 0.5 卡尺0.02mm D =卡尺 (表格单位:cm ) ⑴塔轮半径 塔轮半径:1 d 2 r = = cm 测量的不确定度:11()(d) 1.32(d)cm 2 2 A A u r u s ==? ()0.683c m B u r =譊=卡尺 ()cm u r 测量结果:()r r u r =? ( )cm 2.角加速度测量 2 rad/s D =仪0.001 m=30g

10b 测量的不确定度2 1010() 1.20()rad/s A u s b b == 210()0.683rad/s B u b =譊=仪 210()rad/s u b 。 20b 测量的不确定度2 2020() 1.20()rad/s A u s b b == 220()0.683rad/s B u b =譊=仪 220()rad/s u b 。 1b 测量的不确定度211() 1.20( )rad/s A u s b b == 21()0.683r a d /s B u b =譊=仪 21()rad/s u b 。 2b 测量的不确定度222() 1.20( )rad/s A u s b b == 22()0.683r a d /s B u b =譊=仪 210()rad/s u b 。 空载转动惯量:22002010 () =kg m mr g r J b b b -= - ⑵圆环的转动惯量2221 () =kg m mr g r J b b b -= -合 圆环的转动惯量实验值: 210kg m J J J =-= 合 圆环的转动惯量理论值:22212111m )kg m 8 J D D =+= 理( 实验值与理论值相对误差:111100%=%r J J E J -= 理理

刚体的转动惯量

刚体的转动惯量
1.刚体的转动惯量的三要素 刚体对某轴的转动惯量,是描述刚体在绕该轴的转动过程中转动惯性的物理量. 有转动惯量
? 的定义式 I ? miri2 可看出,刚体的转动惯量是与下列三个因素有关的.
(1)与刚体的质量有关. 例如半径相同的两个圆柱体,而它们的质量不同,显然,对于相 应的转轴,质量大的转动惯量也较大. (2)在质量一定的情况下,与质量的分布有关. 例如质量相同、半径也相同的圆盘与圆环, 二者的质量分布不同,圆环的质量集中分布在边缘,而圆盘的质量分布在整个圆面上,所以, 圆环的转动惯量较大. (3)还与给定转轴的位置有关,即同一刚体对于不同的转轴,其转动惯量的大小也是不等 的. 例如,同一细长杆,对通过其质心且垂直于杆的转轴和通过其一端且垂直于杆的转轴, 二者的转动惯量不相同,且后者较大. 这是由于转轴的位置不同,从而也就影响了转动惯量 的大小.刚体的转动惯量的三要素:刚体的总质量、刚体的质量分布情况、转轴的位置. 2.转动惯量的普遍公式
? (1)转动惯量的定义式 I ? miri2
·········○1
可知,对于形状规则、质量均匀分布的连续刚体,其对特殊轴的转动惯量的计算可借助于定
积分. 这是,可设想将刚体分成许多小线元、面元、体元.
dm ? ?dx dm ? ? dS dm ? ?dV
于是
? ? I ? r2dm ? r2?dx l
? ? I ? r2dm ? r2? dS S
? ? I ? r2dm ? r2?dV V
一般说来,这是个三重的体积分,但对于有一定对称性的物体,积分的重数可以减少,甚至
不需要积分.
(2)刚体对某轴的转动惯量
刚体对 z 轴的转动惯量

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测物体的转动惯量 7.预习思考题回答 (1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平? 答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。 (2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之? 答:有影响。当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。 (3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。 理论上,22010002 [()]04x gRr I I I m m T m T H π=-= +-> 所以2 2 000()0m m T m T +->=〉000//()T T m m m >+ 00/()1m m m +<,并不能保证0/1T T >,因此放上待测物后周期不一定变大。 (4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响? 答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。 8.数据记录及处理 g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 g m 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm

刚体转动惯量计算方法

刚体对轴转动惯量的计算 一、转动惯量及回转半径 在第一节中已经知道,刚体对某轴z 的转动惯量就就是刚体内各质点与该点到 z 轴距离 2 平方的乘积的总与,即 J z 口小。如果刚体质量连续分布,则转动惯量可写成 J z r 2 dm M (18-11) 由上面的公式可见,刚体对轴的转动惯量决定于刚体质量的大小以及质量分布情况 ,而与 刚体的运动状态无关,它永远就是一个正的标量。如果不增加物体的质量但使质量分布离轴 远一些, 就可以使转动惯量增大。例如设计飞轮时把轮缘设计的厚一些 ,使得大部分质量集中 在轮缘上,与转轴距离较远,从而增大转动惯量。相反,某些仪器仪表中的转动零件,为了提高灵 敏 度,要求零件的转动惯量尽量小一些 ,设计时除了采用轻金属、 塑料以减轻质量外,还要尽量 将材料多靠近转轴。 工程中常把转动惯量写成刚体总质量 M 与某一当量长度 的平方的乘积 (18-12) 相距为z 的点上,则此集中质量对z 轴的转动惯量与原刚体的转动惯量相同。 具有规则几何形状的均质刚体,其转动惯量可以通过计算得到,形状不规则物体的转动惯 量往往不就是由计算得出,而就是根据某些力学规律用实验方法测得。 二、简单形状物体转动惯量的计算 1.均质细直杆 dm 如图18-7所示,设杆长为I ,质量为M 。取杆上微段dx ,其质量为 图 18-7 杆对z c 轴的转动惯量为 对应的回转半径 2.均质细圆环 如图18-8所示均质细圆环半径为 R ,质量为M 。任取圆环上一微段,其质量为dm ,则对z z 称为刚体对于 z 轴的回转半径(或惯性半径),它的意义就是 ,设想刚体的质量集中在与 Mdx I ,则此 J z c I 2 2 x 2 dm 2/ —Ml 12 J z c I M 2、3 0.289I

最新转动惯量计算公式

1 2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 3 4 5 8 2 MD J = 6 对于钢材:341032-??= g L rD J π 7 ) (1078.0264s cm kgf L D ???-8 9 M-圆柱体质量(kg); D-圆柱体直径(cm); 11 L-圆柱体长度或厚度(cm); 12 r-材料比重(gf /cm 3)。 13 14 2. 丝杠折算到马达轴上的转动惯量: 15 2i Js J = (kgf·c 16 17 J s –丝杠转动惯量18 (kgf·c m·s 2); 19 i-降速比,1 2 z z i = 21 22 g w 22 ? ?? ???=n v J π 23 g w 2s 2 ? ?? ??=π (kgf·c m·s 2) 24 25 v -工作台移动速度(cm/min); 26 n-丝杠转速(r/min); 27 w-工作台重量(kgf); 28

g-重力加速度,g = 980cm/s 2; 29 s-丝杠螺距(cm) 30 31 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: 32 ()) s cm (kgf 2g w 1 2222 1????????????? ??+++=πs J J i J J S t 33 34 35 36 37 38 39 40 J 1-齿轮z 1及其轴的转动惯量; 41 J 2-齿轮z 2的转动惯量42 (kgf ·cm · s 2); 43 J s -丝杠转动惯量(kgf ·cm ·s 2); 44 s-丝杠螺距,(cm); 45 w-工件及工作台重量(kfg). 46 47 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 48 2 g w R J = (kgf ·c 49 50 R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) 53 54 55 56 57 58 6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 59 ??? ? ??++ =2221g w 1R J i J J t 60 61 62

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、 形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

,u rx==% R=± urx=% 计算转动惯量的结果表示: J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上. (2)实验测量计算的误差: J=mR(g?Rβ2)β2?β1 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导, ?J ?m=R(g?Rβ2)β2?β1 ?J ?R=mg?2Rβ2β2?β1 ?J ?β2=?mR2(β2?β1)?mR(g?Rβ2) (β2?β1)^2 ?J ?β1= mR(g?Rβ2) (β2?β1)^2

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

转动惯量计算折算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2MD J = 对于钢材:3 410 32-??=g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ? ? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1?? ??? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?=T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

刚体的转动惯量专题

-- 刚体的转动惯量专题 1.刚体的转动惯量的三要素 刚体对某轴的转动惯量,是描述刚体在绕该轴的转动过程中转动惯性的物理量. 有转动惯量的定义式2i i I m r =∑可看出,刚体的 转动惯量是与下列三个因素有关的. (1)与刚体的质量有关. 例如半径相同的两个圆柱体,而它们的质量不同,显然,对于相应的转轴,质量大的转动惯量也较大.

(2)在质量一定的情况下,与质量的分布有关. 例如,质量相同、半径也相同的圆盘与圆环,二者的质量分布不同,圆环的质量集中分布在边缘,而圆盘的质量分布在整个圆面上,所以,圆环的转动惯量较大. (3)还与给定转轴的位置有关,即同一刚体对于不同的转轴,其转动惯量的大小也是不等的. 例如,同一细长杆,对通过其质心且垂直于杆的转轴和通过其一端且垂直于杆的转轴,二者的转动惯量不相同,且后者较大. 这是由于转轴的位置不同,从而也就影响了转动惯量的大小. --

-- 刚体的转动惯量的三要素:刚体的总质量、刚体的质量分布情况、转轴的位置. 2.转动惯量的普遍公式 (1)转动惯量的定义式 2i i I m r =∑ ·········○1 可知,对于形状规则、质量均匀分布的连续刚体,其对特殊轴的转动惯量的计算可借助于定积分. 这是,可设想将刚体分成许多小线元、面元、体元.

-- d d d d d d m x m S m V λσρ=== 于是 222222d d d d d d l S V I r m r x I r m r S I r m r V λσρ======?????? 一般说来,这是个三重的体积分,但对于有一定对称性的物体,积分的重数可以减少,甚至不需要积分. (2)刚体对某轴的转动惯量 刚体对z 轴的转动惯量 ()()2 2 2 2 d d z I r z m x y m =-=+?? (2)

常用物体的转动惯量与扭矩的计算

附录1.常用物体转动惯量的计算 角加速度的公式a = (2n /60) /t 转 矩T=J* a =J*n*2 n /60) /t a -弧度/秒t-秒T -Nm n-r/min 图i矩形结构定义 以a-a为轴运动的惯量: 惯量的计算: / W 为 为 为 位 位 位 单 单 单 量 积 度 质 体 密 m v / m 1 2 公式中: 以b-b为轴运动的惯量: 圆柱体的惯量 图2圆柱体定义 m = Vx3 V=Lxhxw 矩形体的计算

m = Vx3 Di r =— 2 J旳严尽匹 2 8 m = Vx3 4 _ m x (Do2+ Di2) Jx— ----------------- m '(Po2+D2) _L2> 1t 4+_3 > 摆臂的惯量 TTD I2 "T~ xt (Di2r、 3 丿 空心柱体惯量 图3空心柱体定义

图4-1摆臂1结构定义 图4-2摆臂2结构定义J = m.R2 曲柄连杆的惯量

图5曲柄连杆结构定义带减速机结构的惯量 图6带减速机结构定义齿形带传动的惯量J = m R? + rm n2 J M:电机惯量 J L :负載惯量 J L^M :负载惯量折算到电机侧的惯量M L :负载较矩 J R:减速机折算到输入的愤量 R :减速比 r]R :减速机效率 R= — = - = Ry.&L 3w= R X3L 9L Q}L ■总-惯量: ■折算到电机侧的力矩: M, Mz"%彷R片 R J M卡J R +J I J W ■根据能量守恒定律;

图7齿形带传动结构 齿轮 组减速结构的惯量 J M :电机惯量 J L :负载惯量 Mi :负载力矩 J PM :电机侧带轮惯量 □PM :电机侧带轮直径 N TM :电机侧带轮齿数 JPL :负载侧带轮惯量 □PL :负载带轮直径 N TL :负载带轮齿数 q :减速机效率 me :皮带质量 M L J M :电机惯量 J L :负載惯量 M L :负载扭矩 J GM :电机側齿轮惯量 N IM :电机侧齿轮齿数 J GL :负载齿轮惯量 N R :负载齿轮齿数 n :减 速机效率 图8齿轮组传动结构 滚珠丝杠的惯量 J 叫叭皿6ljwljml JpL> D R L + 6M = /?x Q L CO JW = R^UJ L D PL 时7> ■折算到电机扭矩: /Wi. T M 二 R=— eM=RxQL N TM ■折算到电机力矩:

刚体的转动惯量专题

1第 1 页 共 126 页 刚体的转动惯量专题 1.刚体的转动惯量的三要素 刚体对某轴的转动惯量,是描述刚体在绕该轴的转动过程中转动惯性的物理量. 有转动惯量的定义式2i i I m r =∑可看出,刚体的 转动惯量是与下列三个因素有关的. (1)与刚体的质量有关. 例如半径相同的两个圆柱体,而它们的质量不同,显然,对于相应的转轴,质量大的转动惯量也较大.

(2)在质量一定的情况下,与质量的分布有关. 例如,质量相同、半径也相同的圆盘与圆环,二者的质量分布不同,圆环的质量集中分布在边缘,而圆盘的质量分布在整个圆面上,所以,圆环的转动惯量较大. (3)还与给定转轴的位置有关,即同一刚体对于不同的转轴,其转动惯量的大小也是不等的. 例如,同一细长杆,对通过其质心且垂直于杆的转轴和通过其一端且垂直于杆的转轴,二者的转动惯量不相同,且后者较大. 这是由于转轴的位置不同,从而也就影响了转动惯量的大小. 2第2 页共126 页

3第 3 页 共 126 页 刚体的转动惯量的三要素:刚体的总质量、刚体的质量分布情况、转轴的位置. 2.转动惯量的普遍公式 (1)转动惯量的定义式 2i i I m r =∑ ·········○1 可知,对于形状规则、质量均匀分布的连续刚体,其对特殊轴的转动惯量的计算可借助于定积分. 这是,可设想将刚体分成许多小线元、面元、体元.

4第 4 页 共 126 页 d d d d d d m x m S m V λσρ=== 于是 222222d d d d d d l S V I r m r x I r m r S I r m r V λσρ======?????? 一般说来,这是个三重的体积分,但对于有一定对称性的物体,积分的重数可以减少,甚至不需要积分. (2)刚体对某轴的转动惯量 刚体对z 轴的转动惯量 ()()2 2 2 2 d d z I r z m x y m =-=+?? (2)

-转动惯量及其计算方法

-转动惯量及其计算方法

渤海大学本科毕业论文(设计) 转动惯量及其求法 The Computing Method of Moment of Inertia 学院(系):数理学院 专业:物理师范 学号:12022004 学生姓名:郝政超 入学年度:2012 指导教师:王春艳 完成日期:2016年3月21日 渤海大学 Bohai University

摘要 随着科学与技术的飞速发展,刚体的转动惯量作为一个十分重要的参数,使他在很多领域里受到了重视,尤其是工业领域。近几年来,伴随着高科技的飞速发展,关于刚体转动惯量的研讨,尤其是对于那些质地不均匀和形状不规则刚体的转动惯量的深入探究,已经全然对将来的军事、航空、以及精密仪器的制作等行业产生了极为深远的影响。本篇文章将在这些知识基础上,遵循着循序渐进的原则,对常见刚体的转动惯量以及不同常见规则的刚体的转动惯量的计算进行深入的研究。 本文主要分为四个部分。首先本文系统介绍了刚体以及刚体的动量矩,转动动能和转动惯量的基础知识。其次介绍了刚体的平行轴定理和垂直轴定理,并且给出了转动惯量常见的的计算方法。接着,本文介绍了几类常见的刚体的转动惯量,其中包括圆环、圆柱体、圆盘、杆、空心圆柱体以及六面体的转动惯量。最后,通过具体实例给出了不规则刚体的转动惯量的测量方法。 【关键词】力矩;角加速度;摩擦力

The compute of moment of inertia Abstract Delve into the irregular inhomogeneous along with the science and technology rapid development, the rigid body rotational inertia is a very important parameter, make him in many fields by the attention, especially industrial fields. In recent years, along with the high-tech rapid development of rigid body rotation inertia of research, especially for those texture and shape of rigid body inertia has been completely to the future military, aviation, and precision instrument manufacturing industry produced extremely far-reaching impact. This article will be in the knowledge base, follow the gradual principle of common rigid body inertia and common rules of rigid body rotation The calculation of inertia is deeply studied. This paper is divided into four parts. First of all, this paper systematically introduced the rigid body and the angular momentum of a rigid body, rotational kinetic energy and rotational inertia based knowledge. Followed by the introduction of the parallel axis theorem of rigid body and vertical axis theorem, and gives the rotation inertia common calculation method. Then, this paper introduces the several common types of rigid body's moment of inertia, which include ring, cylinder, disc, rod, hollow cylinder and hexahedron of the moment of inertia. Finally, through specific examples are given irregular rigid body rotational inertia measurement method. Key Words:Moment;Angular Acceleration;Friction

刚体转动惯量计算方法

刚体对轴转动惯量的计算 一、转动惯量及回转半径 在第一节中已经知道,刚体对某轴z 的转动惯量就是刚体内各质点与该点到z 轴距离平 方的乘积的总和,即∑=2 i i z r m J 。如果刚体质量连续分布,则转动惯量可写成 ?=M z dm r J 2 (18-11) 由上面的公式可见,刚体对轴的转动惯量决定于刚体质量的大小以及质量分布情况,而 与刚体的运动状态无关,它永远是一个正的标量。如果不增加物体的质量但使质量分布离轴远一些,就可以使转动惯量增大。例如设计飞轮时把轮缘设计的厚一些,使得大部分质量集中在轮缘上,与转轴距离较远,从而增大转动惯量。相反,某些仪器仪表中的转动零件,为了提高灵敏度,要求零件的转动惯量尽量小一些,设计时除了采用轻金属、塑料以减轻质量外,还要尽量将材料多靠近转轴。 工程中常把转动惯量写成刚体总质量M 与某一当量长度ρ的平方的乘积 2z z M J ρ= (18-12) z ρ称为刚体对于z 轴的回转半径(或惯性半径),它的意义是,设想刚体的质量集中在与z 轴相距为z ρ的点上,则此集中质量对z 轴的转动惯量与原刚体的转动惯量相同。 具有规则几何形状的均质刚体,其转动惯量可以通过计算得到,形状不规则物体的转动惯量往往不是由计算得出,而是根据某些力学规律用实验方法测得。 二、简单形状物体转动惯量的计算 1. 均质细直杆 如图18-7所示,设杆长为l ,质量为M 。取杆上微段dx ,其质量为 dx l M dm = ,则此 图18-7 杆对z c 轴的转动惯量为 220 2 20 2 12122Ml dx l M x dm x J l l z c ===??

相关文档
最新文档