3.2传感器的接线及调试方法.

3.2传感器的接线及调试方法.
3.2传感器的接线及调试方法.

3.2 传感器的接线及调试方法

MPS控制设备中传感器的调试方法。

不同类型的传感器接线也各不相同,不管是何种类型的传感器,其引出导线大致可分二根线或三根线两种情况。导线的颜色一般有棕色(红色)、黑色(黄色)、蓝色,对于三根线传感器的接线来讲,棕色(红色)导线要接电源正极,蓝色导线接电源负极,而黑色(黄色)导线是传感器的信号输出线,可以接PLC。下面将传感器的接线举例说明。

1.三根引出线的传感器接线示意图

NPN型传感器接线:

图3-2-1 NPN型传感器接线原理图

图3-2-2 NPN型传感器内部原理框图

图3-2-3 NPN型传感器实际接线图PNP型传感器接线:

图3-2-4 PNP型传感器接线原理图

图3-2-5 PNP型传感器内部原理框图

图3-2-6 PNP型传感器实际接线图2.两根引出线的传感器接线示意图

图3-2-7 传感器接线原理图(直流型)

图3-2-8 传感器内部原理框图(直流型)

图3-2-9 两根引出线的传感器实际接线A图

图3-2-10 两根引出线的传感器实际接线B图

3.四根引出线的传感器接线示意图

1)NPN型接线(一对常开,一对常闭):

图3-2-11 NPN型四线接线原理图

2)PNP型接线(一对常开,一对常闭):

图3-2-12 PNP型四线接线原理图

4.交流五线型传感器接线示意图:

图3-2-13 交流五线型传感器接线原理图

传感器的调试方法:

1.准备好直流稳压电源(24V)、万用表、欧姆龙PLC等设备和测量工具。

2.按下图接线(以三线光电传感器为例)

图3-2-14 传感器与PLC的连接示意图

3.调试传感器的检测距离,并通过实验法得出回差距离。

准备好直尺,将被检测物放在尺上,在传感器通电状态下,检测头对准被检

测物体,然后移动被检测物体,细心观察PLC输入指示灯的状态,来回反复实验,可得出具体数据。

1、每个学习小组根据本站的实际情况,将传感器的学习内容制作成多媒体课件,并将学习成果全班展示。

2、所有展示结束后,组织同学进行自评和互评。

3、根据自评和互评的结果,教师给学生相应的成绩评定。

1、如何将NPN型的传感器转换成PNP型的传感器?

2、二线制传感器与三线制传感器在接线时应注意哪些问题?

光纤传感器最终版

课程设计 题目光纤传感器实验设计 二级学院光电信息学院 专业应用物理 班级110160101 学生姓名王洋学号11016010124 指导教师陶传义 考核项目设计50分平时成绩20分答辩30分得分 总分考核等级教师签名

光纤位移传感器设计实验 摘要:反射式光纤位移传感器是一种传输型光纤传感器。光纤采用Y型结构两束多模光纤,一端合并组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 关键词:光纤传感器

重庆理工大学课程论文作者:王洋 目录 摘要…………………………………………………………………………………I 前言 (1) 1.设计原理 (1) 1.1光导纤维与光纤传感器的一般原理 (1) 1.2反射式位移传感器的结构原理 (1) 2.实验内容 (3) 2.1实验仪器 (3) 2.2实验步骤 (3) 2.3实验结果 (5) 3.系统误差分析 (6) 3.1误差来源 (6) 3.2提高测量精度的措施 (6) 参考文献 (7)

前言 位移测量是多种物理量(如:振动、压力、应变、加速度、流量等)测量的基础。通常有机械式测量、电磁测量及激光测量等方法。机械式测量的精度低,速度慢,不适于在线测量;电磁式测量易受工厂电磁干扰;但是光学测量,不但速度快,而且精度高,且适用于微小的位移测量。 1设计原理 1.光导纤维与光纤传感器的一般原理 光导纤维主要是由二氧化硅构成,它利用光的完全内反射原理传输光波,是一种非常高效的传播介质。如图1所示,光纤是由折射率高的纤芯和包层组成。包层的折射率小于纤芯的折射率,光纤的直径为0.1mm~0.2mm。由于纤芯的折射率比包层高,当光线由光纤端面进入纤芯时,在到达纤芯与包层的交界面时,光线就会完全内反射回纤芯层。经过不断的完全反射,光线就能沿着纤芯向前传播。 许多外界因素(如压力、温度、电场、磁场、振动等)都可对光纤产生作用,从而引起光波特性参量(如相位、偏振态、振幅等)发生变化。因此我们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。 2.反射式位移传感器的结构原理

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

现场传感器接线说明

现场传感器接线说明 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1)室外温湿度传感器 现场使用的室外温湿度传感器主要有两个型号 QFA3160 电源:24VDC;输出:0-10V QFA3171电源:24VDC;输出:4-20mA 按上图片可以修改传感器的信号类型和量程范围,信号类型出场都是调试好的,基本不用改。量程范围根据当地气候,一般情况用R3档。 上图为传感器接线图(需要注意QFA3171温度和湿度需要单独供电)。 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线(电压和电流型在AI模块上的接线不同)。 3.传感器量程;信号类型是否和硬件组态中一致。 4.改完量程一定要盖上传感器的盖子才能正确度数 5.程序中的FC105的上下限应与计算值对应。 2)水管温度传感器 现场使用的室外温湿度传感器主要有两个型号 PT100和LG-Ni1000;PT100为温度0度时电阻为100欧姆的铂电阻,LG-Ni1000是指温度0度是电阻为1000欧姆的镍电阻。 接线方式分为2线制和3线制。3线制的接法可以消除线组对传感器测量数值的影响 传感器端只有两个段子,3线制接线方法为将其中两个线接到传感器一个段子上,模块端分别接在S-和M-上,剩余的一根线接到M+上;2线制的接法为将两根线分别接到传感器两个段子上,模块端分别接在M+和M-,同时将模块端S-和M-短接。

硬件组态的时候,如果选择的是PT100Sta.,那么程序中除以10,如果选择的是PT100Cl.,就要除100。 3)流量传感器 流量传感器型号:DWM2000 电源:24VDC 输出:4-20mA 接线方法和设置如下图: 拨码的计算 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线。 3.传感器量程;信号类型是否和硬件组态中一致。 4.必须在不开水泵,同时保证管道中液体静止时才能调零。 5.程序中的FC105的上下限应与计算值对应。 4)西门子压力传感器 型号:QBE2002 电源:24VDC 输出:0-10V 接线方法: 现场很多西门子传感器线的颜色为棕、蓝、白与接线图上线色不同,但是还是按照棕—供电、白—GND、蓝—输出信号的接法。 5)瑞士Huba压力传感器

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

光纤传感器实验报告

实验题目:光纤传感器 实验目的: 掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量, 加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。实验仪器: 激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调 整架,显微镜,光纤传感实验仪,CCD及显示器,等等 实验原理:(见预习报告) 实验数据: 1.光纤传感实验(室温:24.1℃) (1)升温过程 (2)降温过程

2.测量光纤的耦合效率 在光波长为633nm条件下,测得光功率计最大读数为712.3nw。数据处理: 一.测量光纤的耦合效率 在λ=633nW,光的输出功率P1=2mW情况下。在调节过程中测得最大 输出功率P2=712.3nW 代入耦合效率η的计算公式: 3.56×10-4 二.光纤传感实验 1.升温时 利用Origin作出拟合图像如下: B 温度/℃由上图可看出k=5.49±0.06

根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变 2π,则 Δφ=2π×m (m 为移动的条纹数) 故灵敏度即为 因l=29.0cm 故其灵敏度为±1.30)rad/℃ 2.降温时 利用Origin 作出拟合图像如下: -40 -20 A B 由上图可看出k=7.45±0.11 同上: 条纹数 温度/℃

灵敏度为 因l=29.0cm 故其灵敏度为±2.38)rad/℃ 由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。 思考题: 1.能否不用分束器做实验?替代方案是什么? 答:可以,只要用两个相同的相干波波源分别照射光纤即可,这样也可造成光的干涉。 2.温度改变1℃时,条纹的移动量与哪些因素有关? 答: (1)与光纤的温度灵敏度有关 (2)与光纤置于温度场的长度有关 3.实验中不可用ccd是否能有办法看到干涉条纹?替代方案是什么? 答:可以。可以用透镜将干涉条纹成像在光电探测器上进行测量。 实验小结: 1.光纤的功能层非常脆弱,光纤剥离过程中要使力均匀,不可用力过猛, 否则易造成光纤的断裂,必要时可分段进行剥离。 2.使用宝石刀进行切割时,要轻轻划一下,再将光纤弹断,直接切断会 造成光纤断面不平滑,导致测出的光纤耦合系数较低。 3.光纤传感实验时记录移动的条纹数时可自行在显示器上寻找参照点, 保证记录的准确即可。

传感器原理及工程应用设计

传感器原理及工程应用设计

传感器原理及工程应用设计(论文) 压电传感器在动平衡测量系统中的设计与应用 学生姓名:李梦娇 学号:20094073231 所在学院:信息技术学院 专业:电气工程及其自动化(2)班 中国·大庆 2011年12月

摘要 传感器是动平衡测量系统中的重要元件之一, 是一种将不平衡量产生的振动信号不失真地转变成电信号的装置。利用压电式力传感器作为动平衡测量系统中的敏感元件来测量不平衡质量引起的振动。重点阐述了该压电式力传感器的结构设计、安装位置设计及振动信号检测中的关键问题。同时, 详细分析了该传感器的信号调理电路特点。现场实验结果表明, 设计的压电式力传感器在动平衡测量中的性能良好。动平衡处理是旋转部件必须采取的工艺措施之一, 以单片机为核心的动平衡测量系统将逐步取代常规动平衡仪。 关键词:动平衡振动信号压电式力传感器调理电路测量系统单片机

ABSTRACT As one of the important elements in the dynamic balancing measurement system, transducer is the device that converts the vibration signal caused by the mi balance into electrical signal without distortion. The piezoelectric pressure transducer is app lied to dynamic balancing measurement system formeasuring the vibration caused by mi balanced mass. The structure design and the installation location of the piezoelectric force transducer and the critical issues in vibration signal detection are expounded. The characteristics of the signal conditioning circuit of this transducer are analyzed in detail. The experimental results show that the performance of the piezoelectric pressure transducer offers excellent performance in dynamic balancing measurement. The dynamic equilibration measurement is one of the main technological steps to betaken for all the swiveling part s. T he conventional dynamic equilibration measurement system is being replaced by a new o ne based on a monolithic computer. Keyword:dynamic balance vibration signal Piezoelectric force transducer Conditioning circuit Measurement system Monolithic computer

现场传感器接线说明书

1)室外温湿度传感器 现场使用的室外温湿度传感器主要有两个型号 QFA3160 电源:24VDC;输出:0-10V QFA3171电源:24VDC;输出:4-20mA 按上图片可以修改传感器的信号类型和量程围,信号类型出场都是调试好的,基本不用改。量程围根据当地气候,一般情况用R3档。

上图为传感器接线图(需要注意QFA3171温度和湿度需要单独供电)。 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线(电压和电流型在AI模块上的接线不同)。 3.传感器量程;信号类型是否和硬件组态中一致。

4.改完量程一定要盖上传感器的盖子才能正确度数 5.程序中的FC105的上下限应与计算值对应。 2)水管温度传感器 现场使用的室外温湿度传感器主要有两个型号 PT100和LG-Ni1000;PT100为温度0度时电阻为100欧姆的铂电阻,LG-Ni1000是指温度0度是电阻为1000欧姆的镍电阻。 接线方式分为2线制和3线制。3线制的接法可以消除线组对传感器测量数值的影响 传感器端只有两个段子,3线制接线方法为将其中两个线接到传感器一个段子上,模块端分别接在S-和M-上,剩余的一根线接到M+上;2线制的接法为将两根线分别接到传感器两个段子上,模块端分别接在M+和M-,同时将模块端S-和M-短接。

硬件组态的时候,如果选择的是PT100 Sta.,那么程序中除以10, 如果选择的是PT100 Cl.,就要除100。

3)流量传感器 流量传感器型号:DWM2000 电源:24VDC 输出:4-20mA

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

传感器接线端子说明

涡街流量计使用说明 一、 涡街表头实现功能 : 1.液晶点阵汉字显示,直观方便,操作简洁明了; 2.带温度/压力传感器接口。温度可配接Pt100或Pt1000,压力可接表 压或绝压传感器,并可分段修正; 3.输出信号多样化,可根据客户要求选择两线制4-20mA 输出、三线制脉 冲输出和三线制当量输出; 4.具有卓越的非线性修正功能,大大提高仪表的线性; 5.具有软件频谱分析功能,提高了仪表抗干扰和抗震的能力; 6.测量介质广泛,可测量蒸汽、液体、一般气体、天然气等; 7.超低功耗,一节干电池全性能工作可维持至少3年; 8.工作模式可自动切换,电池供电、两线制、三线制; 9.自检功能,有丰富的自检信息;方便用户检修和调试。 10.具有独立密码设置,参数、总量清零和校准可设置不同级别的密码,方便用户管理; 11. 三线制模式下支持485通讯; 12.显示单位可选择,可自定义; 二、 涡街表头操作: 仪表通过按键进行参数设置,一般在安装时要使用按键手动设置一些参数。仪表有三个按键,从左到右顺序为F1、F2和F3键.通常F1为移位键,F2为确认和换项键,F3为修改和返回键。如有按键特殊功能,按键功能有所不同,使用时请参看液晶屏界面下方的按键功能说明。仪表运行时,可通过F3键手动切换到主界面2/主界面3,主界面2显示内容除瞬时流量更改显示为工况流量外,其余与主界面1内容基本相同,主界面3同时显示工况和瞬时的流量。 2.1 启动 仪表上电时,将进行自检,如果自检异常,将显示自检错误界面(自检界面说明参照自检菜单),大约1~2秒后跳转到主界面。否则将直接跳转到主界面。主界面启动后如下图所示: 主界面1 2 3 4 5 6 1

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、实验内容 用传光型光纤测位移。 三、实验仪器 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。 四、实验原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 五、实验注意事项 1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。 2、实验前应用纸巾擦拭反射面,以保证反射效果。 六、实验步骤 1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图9-1 光纤传感器安装示意图 2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图 3、调节测微头,使探头与反射面圆平板接触。 4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。 5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。每旋转0.05mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传 感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案) 6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。 七、实验报告 在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、 波形等)并结合原始记录进一步理解实验原理。 八、实验思考题 根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。 答:由光源发出的光经发射光纤传输后入射到被测物表面,经反射体反射后再经接收光 纤接收并传输至光敏元件。由于光纤有一定的数值孔径,当光纤探头紧贴反射体时,发射光 纤中的光不能发射到接收光纤中,因此接收光纤中无光信号;当光纤探头逐渐远离被测体时, 接收光纤中的光强越来越大,当整个接收光纤被全部照亮时,接收光强达到峰值;当反射体 继续远离时,将有部分反射光没有反射进Y型光纤束,接收到的光强逐渐减小。位移特性 如下图所示。

光电传感器电路

光电传感器电路设计 1、设计要求 利用光电传感器(光电对管)将机械旋转转化为电脉冲,光电对管实物如图1所示。 图1 光电对管实物图 2、电路设计 电路原理图如图2所示。 图2 光电传感器电路原理图 电路由四部分组成。 光电对管U1、电阻R1、电阻R2构成发射接收电路;比较器U2A、电阻R3、电阻R4、电阻R5、电阻R6构成反相输入的滞回比较器;比较器U2B、电阻R7、电阻R8构成反相器;发光二极管D1、电阻R9构成输出电路。 3、电路测试 测试电路如图3所示。 由变频器带动电机工作,将光电对管对准旋转的电机(电机上贴有反光带),处理电路由12V直流电源供电。

图3 测试电路 测试波形如图4所示(测试距离为4cm)。 (a)发射接收电路的输出信号(b)滞回比较器比较电压波形 (c)滞回比较器输出波形(d)反相器输出波形 图4 测试波形 4、PCB板绘制(板子大小限定为62mm*18mm) PCB图如图5所示。其中电阻采用0805封装,LM358采用DIP8封装。

图5 光电传感器电路PCB图 5、完成实物图 实物图如图6所示。 (a)未焊接的PCB板 (b)焊接好的PCB板 (c)板子的外加塑料壳 图6 实物图 6、小结 在本次电路设计中,主要的难点有两个。 一是参数的整定,主要是滞回比较器上下门限的选择。滞回比较器上下门限的选择跟发射接收电路的输出波形有关,而光电对管与旋转面的距离、旋转面的反光度、反光带所在位置、可能遇到的干扰等都会影响输出波形。 二是PCB板的绘制。本次绘制采用的是Altium Designer Summer 09软件(Protel99SE的升级版)。首先画好原理图,然后再导入到PCB中,没有的元件

称重传感器接线方法及接线图分析-推荐下载

称重传感器接线方法及接线图分析 由于称重传感器具有测量精度高、温度特性好、工作稳定等优点使得其广泛应用于各种结构 的动、静态测量及各种电子称的一次仪表。上一篇文章中小编为大家简单介绍了有关称重传感器原理的知识,本篇文章中小编通过搜集整理资料将继续为大家介绍有 关称重传感器的知识,即称重传感器接线方法及原 理剖析(称重传感器参数)。 两种称重传感器接线方法简介(称重传感器的选用) 称重传感器可以采用两种不同的输入、输出接线方法:一种是四线制接法,四线制接法的称重传感器对二次仪表无特殊要求,使用起来比较方便,但当电缆 线较长时,容易受环境温度波动等因素的影响;  另一种是六线制接法(如图1所示).六线制接法的称重传感器要求与之配套使用的二次仪表具备反馈输入接口,使用范围有一定的局限性,但不容易受环境 温度波动等因素的影响,在精密测量及长距离测量时具有一定的优势。 两种称重传感器接线电路图 在称重设备中,四线的称重传感器用的比较多,如果要将六线传感器接到四线传感器的设备上时,可以把反馈正和激励正接到一起,反馈负和激励负,接到一起。信号线要注意一点就是,红色和白色在两种类型的传感器上对应的输出信号是不一样的。 下面小编以称重指示控制仪F701中称重传感器接线图为例对其接线原理进行简单的分析。 F701是专门用于单一物料重量称量和控制的仪表,下图所示为称重指示控制仪F701中称重传感器接线图 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

光纤传感器 实验数据范例

实验数据范例 一、光纤测量重力 表一 砝码(g) 5 10 15 20 25 30 35 40 45 显示值(mv) 77 134 180 226 280 346 397 454 500 砝码(g)50 55 显示值(mv) 552 594 表一中的数据曲线图 表二 砝码(g) 5 10 15 20 25 30 35 40 45 显示值(mv) 73 126 163 223 273 338 397 458 520 砝码(g)50 55 显示值(mv) 575 630 表二中的数据曲线图

表三 砝码(g) 5 10 15 20 25 30 35 40 45 显示值(mv) 76 129 173 230 280 342 396 460 520 砝码(g)50 显示值(mv) 560 表三中的数据曲线图 二、温度测量 表四(升温) 温度(℃)20 25 30 35.6 40 45.7 50 56 60 显示值(mv) 2290 2150 1970 1665 1520 1263 1190 1000 940 温度(℃)64.7 70 75 80 85 90 95 100 105 显示值(mv) 850 760 720 600 583 475 406 294 150 表四中的数据曲线图

表五(升温) 温度(℃)20.9 25 30 35 40 45 50 55 60 显示值(mv) 2220 2155 1954 1720 1490 1300 1190 1040 960 温度(℃)65 70.5 75 78 85 90 95 100.3 105 显示值(mv) 826 740 713 640 580 475 390 304 217 表五中的数据曲线图

光纤位移传感器测位移特性实验(精)

实验二十六 光纤位移传感器测位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能。 二、基本原理:光纤传感器是利用光纤的特性研制而成的传感器。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 光纤传感器主要分为两类:功能型光纤传感器及非功能型光纤传感器(也称为物性型和结构型)。功能型光纤传感器利用对外界信息具有敏感能力和检测功能的光纤,构成“传”和“感”合为一体的传感器。这里光纤不仅起传光的作用,而且还起敏感作用。工作时利用检测量去改变描述光束的一些基本参数,如光的强度、相位、偏振、频率等,它们的改变反映了被测量的变化。由于对光信号的检测通常使用光电二极管等光电元件,所以光的那些参数的变化,最终都要被光接收器接收并被转换成光强度及相位的变化。这些变化经信号处理后,就可得到被测的物理量。应用光纤传感器的这种特性可以实现力,压力、温度等物理参数的测量。非功能型光纤传感器主要是利用光纤对光的传输作用,由其他敏感元件与光纤信息传输回路组成测试系统,光纤在此仅起传输作用。 本实验采用的是传光型光纤位移传感器,它由两束光纤混合后,组成Y 形光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距d ,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,如图26—1所示。 发射光 接收光 (a)光纤测位移工作原理 (b)Y 形光纤 图26—1 Y 形光纤测位移工作原理图 传光型光纤传感器位移量测是根据传送光纤之光场与受讯光纤交叉地方视景做决定。当

控制箱与传感器接线方法

KXJR4-127乳化泵控制箱传感器接线方法 七芯电缆线的一头,接在控制箱的端子排与模块上。另外一头接在本安接线盒,本安接线盒放在泵站中间固定面板上;一个泵站一个本安接线盒。与控制箱引出电缆线与传感器线相接。接线方法如下: 温度传感器接线方法如下: FX2N-4AD-PT是温度传感器模块 CH1是一号泵温度: +L与-L(-L与-I短接)任意接线 CH2是二号泵温度: +L与-L(-L与-I短接)任意接线 CH3是三号泵温度: +L与-L(-L与-I短接)任意接线 泵站3Mpa压力传感器接线方法如下: PT的右边为第一个4AD模块是3个泵站的压力模块 CH1是一号泵压力: 传感器的绿线与V+相接(V+与I+短接)红色线与18V端子排相接 CH2是二号泵压力: CH3是三号泵压力: 二三号压力接线方法如一号压力接线方法。 系统压力40Mpa传感器的接线方法如下: 第二个4AD CH1是系统压力模块 传感器的绿线与V+相接(V+与I+短接)红线与18V端子排相接 液位一米长杆传感器的接线方法如下: 第二个4AD CH2是液位传感器模块 打开液位传感器的后盖;传感器接线排上的,3接在控制箱18V传感器接线排的4与V+相接(V+与I+短接) 油位一米长杆传感器的接线方法如下: 第二个4AD CH3是液位传感器模块 打开液位传感器的后盖;传感器接线排上的,3接在控制箱18V传感器接线排的4与V+相接(V+与I+短接) 泵站油位传感器线方法如下: 隔离模块输入端的20是一号油位传感器模块 油位传感器的棕色线接在控制箱18V端子排,蓝色线接在隔离模块输入端的20 隔离模块输入端的21是一号传感器模块 隔离模块输入端的22是一号传感器模块 二号与三号油位传感器接线方法如一号传感器接线方法 备注: 1、温度、油压、油位是安装在泵站上的。 2、系统压力、液位、油位传感器是安装在泵箱上的。 3、如果传感器接上线不显示可调换一下线头。

热电偶温度传感器信号调理电路设计与仿真

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

Pt100温度传感器接线说明

Pt100温度传感器接线说明 Pt100就是说它的阻值在 0度时为100 欧姆,PT100 温度传感器。是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT) Pt100温度传感器的主要技术参数如下: 测量范围:-200℃~+850℃;允许偏差值△℃:A 级±(0.15+0.002│t│),B 级±(0.30+0.005│t│);热响应时间<30s;最小置入深度:热电阻的最小置入深度≥200mm;允通电流≤5mA。另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。 PT100 温度传感器三根芯线的接法: PT100铂电阻传感器有三条引线,可用 A、B、C(或黑、红、黄)来代表三根线,三根线之间有如下规律:A 与 B 或 C之间的阻值常温下在 110 欧左右,B 与 C 之间为 0欧,B 与 C 在内部是直通的,原则上 B 与 C 没什么区别。 仪表上接传感器的固定端子有三个: A 线接在仪表上接传感器的一个固定的端子. B 和 C 接在仪表上的另外两个固定端子,B 和 C 线的位置可以互换,但都得接上。如果中间接有加长线,三条导线的规格和长度要相同。 热电阻的 3 线和 4 线接法:是采用 2 线、3 线、4 线,主要由使(选)用的二次仪表来决定。 一般显示仪表提供三线接法,PT100 一端出一颗线,另一端出两颗线,都接仪表,仪表内部通过桥抵消导线电阻。一般 PLC 为四线,每端出两颗线,两颗接 PLC 输出恒流源,PLC 通过另两颗测量 PT100上的电压,也是为了抵消导线电阻,四线精确度最高,三线也可以,两线最低,具体用法要考虑精度要求和成本。 PT100温度传感器 产品特征: 1、不锈钢套管封装,经久耐用; 2、活动螺丝固定,使用方便; 3、按照国际IEC751 国际标准制造,即插即用; 4、多种探头尺寸可选、适应面广; 5、高精度、高稳定、高灵敏; 6、外形小巧,经济实用。

传感器信号调理电路

传感器信号调理电路 传感器信号调理电路 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。 传感器 传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标: ·源阻抗 ——高的源阻抗大于100KΩ ——低的源阻抗小于100Ω ·输出信号电平 ——高信号电平大于500mV满标 ——低信号电平大于100mV满标 ·动态范围 在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。 放大器功用 放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。关键因素包括放大器和ADC之间的连接距离,电容负载效应和ADC的输入阻抗。 选择放大器与传感器正确接口时,设计人员必须使放大器与传感器特性匹配。可靠的放大器特性对于传感器——放大器组合的工作是关键性的。例如,PH电极是一个高阻抗传感器,所以,放大器的输入偏置电流是优先考虑的。PH传感器所提供的信号不允许产生任何相当大的电流,所以,放大器必须是在工作时不需要高输入偏置电流的型号。具有低输入偏置电流的高阻抗MOS输入放大器是符合这种要求的最好选择。另外,对于应用增益带宽乘积(GBP)是低优先考虑,这是因为传感器工作在低频,而放大器的频率响应不应该妨碍传感器信号波形的真正再生。

相关文档
最新文档