2015年诺贝尔化学奖钟情于基因组DNA“修理工”

2015年诺贝尔化学奖钟情于基因组DNA“修理工”
2015年诺贝尔化学奖钟情于基因组DNA“修理工”

1989年诺贝尔生理及医学奖

1989年诺贝尔生理及医学奖 毕晓普与Levintow一起工作时,逆转录酶已被发现,这使毕晓普考虑复制逆转录病毒。在这方面的早期成果,包括描述逆转录酶将RNA拷贝进DNA中;受感染细胞中病毒RNA的鉴定;以及在正常细胞及感染细胞中病毒DNA的识别及描述。毕晓普等将他们对逆转录病毒转导的证据进行整理,将结果归纳为Src位于病毒基因组靠近3'端的一个单一基因以外的逆转录病毒基因;它可帮助弄清何种基因损伤使正常细胞基因转变成癌基因;探讨原癌基因对人类癌症起源的作用;通过数种实验策略增加原癌基因的种类;对正常生物体(有机体)内的原癌基因的生理功能进行研究,以及发现由Src 编码的蛋白激酶。1970年毕晓普同H.E瓦尔默斯合作,着手验证这样一个假说--正常体细胞里也有一些静止的病毒癌基因,一旦被激活,它们可以致癌。用已知可以在鸡中致癌的劳斯肉瘤病毒作为实验材料,他们发现,在健康细胞中也存在一个基因,其结构同病毒中的致癌基因相似.1976年他们发表了他们的发现,声称病毒是由正常细胞得到这个致癌基因.病毒感染细胞并开始复制时,它把这个基因整合到自身的遗传材料中去.以后的研究还表明,这样的基因可通过几种方式致癌.甚至没有病毒的参与,这种基因也可被某些化学致癌物转化,成为造成细胞不受限制地增生的形式.因为毕晓普和瓦慕斯发现的机制似乎为一切癌瘤的发生所共有,所以他们的工作对于癌瘤研究贡献极大.至1989年科学家已在动物中鉴定出40个以上的具有致癌潜能的基因. 从而他们也否定了以前的看法癌基因必然源自病毒。毕晓普因与H.E 瓦尔默斯一起,说明了位于细胞核内的原癌基因正常情况下是不活跃的,不会导致癌症;当受到物理、化学、病毒等因素的刺激后被激活,成为致癌基因,即原癌基因被激活后转化为致癌基因的复制过程,并发现动物的致癌基因不是来自病毒,而是来自动物体内正常细胞内所存在的一种基因──原癌基因,即逆转录病毒癌基因的起源,因而了荣获1989年诺贝尔生理或医学奖。 任何成功都不是随随便便的,成功的机会是赋予那些有准备的人的!逆转录病毒(Retroviruses)归类于逆转录病毒科,包括一大类含有逆转录酶的RNA病毒,分为肿瘤病毒亚科、泡沫病毒亚科和慢病毒亚科,每一亚科又有若干个属。肿瘤病毒亚科大多引起禽类、猫、鼠、猴等动物肿瘤,与人类疾病相关者有人类嗜T细胞病毒(humanT-celllymphotropicvirus,HTLV);泡沫病毒亚科(spumavirinae)的致病作用尚不清楚;慢病毒亚科(lentivirinae)中的人类免疫缺陷病毒(humanimmunodeficiencyvirus,HIV)则是艾滋病的病原体. 反转录病毒的最基本特征是在生命过程活动中,有一个从RNA到DNA的复制过程,即反转录过程——病毒在反转录酶的作用下,以病毒RNA为模板,合成互补的负链DNA后,形成RNA:DNA中间体。中间体的RNA酶H水解,在DNA聚合酶的作用下,

近5年诺贝尔生理学或医学奖、化学奖总结

大村智是日本的微生物学家,他专注于一个细菌群落——生活在土壤中的霉菌,这种菌类会产生大量抗菌活性剂(包括1952年的诺贝尔奖获得者塞尔曼·沃克斯曼发现的链霉素)。大村智教授用独特的技巧发展起大规模培养和表征这些细菌的方法,并从土壤样本中分离出新的链霉菌菌株,还成功地在实验室中将它们培养出来。从数千个不同的培养皿中,他选出大约50个最有希望的菌株,并进一步分析它们对付有害微生物的活性。 威廉·坎贝尔在美国从事寄生虫生物学研究,他获得了大村智的链霉菌培养菌株并继续研究它们的功效。坎贝尔的工作表明,一个培养菌株中的成分可显著地防止家养农场动物受到寄生虫的感染。生物活性剂的纯化名称为阿维菌素,随后经化学改性将之发展成一种叫做伊维菌素的更有效的化合物。此后对伊维菌素在感染寄生虫患者中的人体测试结果显示,它可有效杀死寄生虫幼虫(微丝)。大村智和坎贝尔共同发现了这样一类新的具有超强疗效的抗寄生虫药物。 疟疾的传统治法是使用奎宁,但是其治愈成功率在逐渐下降。上世纪60年代末,根除疟疾的大量努力都失败了,这种疾病的发病率有上升的趋势。在那个时候,中国的屠呦呦转向开发传统中药对抗疟疾的新疗法。她从大量中草药中选取对抗疟疾感染,青蒿成为备选对象,但是结果却与预期的并不一致,屠呦呦重新开始查找古典医书,并发现了引导她成功从青蒿中提取活性成分的线索。屠呦呦首先证明了这种后来被称为“青蒿素”的成分能够高效治愈感染疟疾寄生虫的动物和人类。青蒿素代表了一类新型抗疟疾制剂,能够在发病初期快速杀死疟疾寄生虫,并展现了在治疗严重疟疾上前所未有的功效。 阿维菌素、青蒿素保障全人类健康 阿维菌素和青蒿素的发现,从根本上改变了寄生虫疾病的治疗方法。阿维菌素的衍生物伊维菌素在世界各地获得很好的使用,它能有效对抗各种寄生虫,不仅副作用有限,还免费在全球发放。伊维菌素改善了数以百万计的河盲症和淋巴丝虫病患者的健康状况,为世界最贫困地区带来福祉。它的治疗效果如此巨大,以至于这类疾病已经濒临绝迹,这将是人类医学史上的一大壮举。 此外,每年有近2亿人感染疟疾,青蒿素已经用于世界各个疟疾肆虐之地。当它被用于组合疗法时,估计降低疟疾总体死亡率20%以上,在儿童中的治愈率更是高达30%。仅在非洲,青蒿素就能每年挽救10多万个生命。 阿维菌素和青蒿素革命性地治愈受到寄生虫疾病危害的大量患者,坎贝尔、大村智和屠呦呦彻底转变了治疗寄生虫疾病的方法,他们的科学成就对全人类的健康具有不可估量的影响力。

近十年诺贝尔化学奖得主及其贡献

2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。 2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。

2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。 2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。

2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。 2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。 2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。

10月8日,瑞典皇家科学院在瑞典首都斯德哥尔摩宣布,将2003年诺贝尔化学奖授予美国科学家彼得阿格雷和罗德里克麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。这是47岁的化学奖得主罗德里克麦金农。

10月8日,瑞典皇家科学院在瑞典首都斯德哥尔摩宣布,将2003年诺贝尔化学奖授予美国科学家彼得阿格雷和罗德里克麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。这是54岁的化学奖得主彼得阿格雷。 2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了“开创性贡献”而获奖。 2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希发明了对生物大分子进行识别和结构分析的方法。 2001年,诺贝尔化学奖奖金一半授予美国科学家威廉诺尔斯与日本科学家野依良治,以表彰他们在“手性催化氢化反应”领域所作出的贡献;另一半授予美国科学家巴里夏普莱斯,以表彰他在“手性催化氧化反应”领域所取得的成就。

2010年诺贝尔物理学奖被授予发现石墨烯的两位俄裔科学家

正面反面 2011年安徽省中考物理模拟试卷 一、填空题(第1-6题每空1分,第7-10题每空2分,共28分;将答案直接写在横线上,不必写出题过程) 1.如图,“歼—10战斗机”是亚洲最具作战力的一种机型。高空的最大速度可达2马赫(马赫为音速 单位,1马赫大约等于340m/s),合_____km/h。在“歼—10战斗机”的驾驶员看来,飞机是_____的。 第1题图第2题图2.草坪式浴室防滑垫是由柔软的PVC材料制成,其正面为仿草坪式设计,背面有许多小吸盘(如图所示)。 正面是通过_____增大脚与垫之间的摩擦力,背面则是利用_____产生的较大压力来增大垫与地之间的摩擦力,两措施并举从而达到理想的防滑效果。 3.美国科学家发明了一种特殊的隐形物质,在空气中沿______传播的光,射到该物质表面上时会 顺着衣服“流走”,从而无法让光在其表面发生______,让旁人看不到它。 4.生活中,当我们拔掉自行车轮胎气门芯时,一股气流从气门冲出来,并伴有潮湿的小水珠。这实际 上是车胎内的压缩空气迅速膨胀对外做功,使其内能_____,(填变化情况)温度降低,空气中的水蒸气遇冷_____(填物态变化名称)而形成的小水珠。 5.灯L1与L2并联在电路中,L2比L1亮。小明同学猜想可能是通过L2灯的电流比通过L1灯的电流大;小 亮同学猜想可能是L2灯两端的电压比L1灯两端的电压大。你认为____同学猜想肯定是错的,理由是________________________。 第5题图第6题图 6.如图,条形磁铁放在水平桌面上,当闭合开关后,条形磁铁保持静止,画出条形磁铁所受摩擦力的示 意图。请你判断:通电螺线管的左端为_____极。 7.2010年诺贝尔物理学奖被授予发现石墨烯的两位俄裔科学家。石墨烯被证实是世界上已经发现的最 薄、最坚硬的物质,它的导电性能好、导热性能强,熔点超过3000℃。用石墨烯制成的导线可用来做______(“保险丝”或“高压输电线”)。科学试验表明:如果将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,要想用一支削尖的铅笔戳穿它,那么需要一头大象站在铅笔上,才能戳穿。若铅笔尖的横截面积为1×10-7m2,一头大象的质量为3000kg,铅笔的质量忽略不计,则这种保鲜膜厚度的石墨烯薄层所能承受的最大压强约为______Pa。(g取10N/kg) 8.在中考跳绳比赛中,李艳艳同学以1min跳绳180次的绝对优势获得女子跳绳第一名。她的诀窍是每 次跳起的高度很低,约为5cm。若李艳艳的质量是50kg,则在比赛中,李艳艳跳绳的功率约为_____W。(g取10N/kg)

2003-2014年诺贝尔化学奖、生理学或医学奖得主

2003-2014年诺贝尔生理学或医学奖 2003年,美国科学家保罗·劳特布尔(Paul https://www.360docs.net/doc/f916179633.html,uterbur)、英国科学家彼得·曼斯菲尔德(Sir Peter Mansfield)因在核磁共振成像技术领域的突破性成就而共同获得诺贝尔生理学及医学奖。 2004年,美国科学家理查德·阿克塞尔(Richard Axel)和琳达·巴克(Linda B.Buck)因在人类嗅觉方面的卓越成就而共同获诺贝尔生理学或医学奖。 2005年,澳大利亚巴里-马歇尔(Barry Marshall)和罗宾-沃伦(J. Robin Warren)因发现了幽门螺杆菌以及该细菌对消化溃疡病的致病机理而共同获诺贝尔生理学或医学奖。 2006年,美国科学家安德鲁·法尔和克雷格·梅洛因为他们发现了RNA(核糖核酸)干扰机制而被授予诺贝尔生理学或医学奖. 2007年,马里奥·卡佩奇(Mario R. Capecchi) 和奥利弗·史密西斯(Oliver Smithies)(美国)、马丁·埃文斯(Sir Martin J. Evans)(英国)。通过使用胚胎干细胞改造老鼠体内的特定基因,为“基因靶向”技术奠定了基础,从而获得诺贝尔生理学或医学奖。 2008年,哈拉尔德·楚尔·豪森(Harald zur Hausen)(德国),发现人乳突淋瘤病毒引发子宫颈癌;弗朗索瓦丝·巴尔-西诺西(Fran?oise Barré-Sinoussi)和吕

克·蒙塔尼(Luc Montagnier)(法国),发现人类免疫缺陷病毒。 2009年,伊丽莎白·布莱克本(Elizabeth H.Blackburn)、卡罗尔·格雷德(Carol W.Greider)、杰克·绍斯塔克(Jack W.Szostak) (美国),发现端粒和端粒酶保护染色体的机理。 2010年,罗伯特·爱德华兹(Robert G. Edwards)(英国)因为在试管婴儿方面的研究获得2010年诺贝尔生理学或医学奖。 2011年,布鲁斯·巴特勒(Bruce A. Beutler),卢森堡人朱尔斯·霍夫曼( Jules A. Hoffmann)(美国),以及拉尔夫·斯坦曼(Ralph M. Steinman)(加拿大)。发现了免疫系统激活的关键原理。 2012年,约翰·格登(John Gurdon)和山中伸弥(Shinya Yamanaka),发现了成熟细胞可以被重新编程而具备多能性获得了诺贝尔生理学奖或医学奖。 2013年,美国科学家詹姆斯-E·罗斯曼(James E. Rothman)和兰迪- W. 谢克曼(Randy W. Schekman)、德国科学家托马斯- C. 苏德霍夫(Thomas C. Südhof ),他们因发现细胞内部囊泡运输调控机制而获得了诺贝尔生理学奖或医学奖。

历届诺贝尔化学奖获得者名单及贡献

历届诺贝尔化学奖获得者名单及贡献 1901-荷兰科学家范托霍夫因化学动力学和渗透压定律获诺贝尔化学奖。 1902-德国科学家费雪因合成嘌呤及其衍生物多肽获诺贝尔化学奖。 1903-瑞典科学家阿伦纽斯因电解质溶液电离解理论获诺贝尔化学奖。 1904-英国科学家拉姆赛因发现六种惰性所体,并确定它们在元素周期表中的位置获得诺贝尔化学奖。 1905-德国科学家拜耳因研究有机染料及芳香剂等有机化合物获得诺贝尔化学奖。 1906-法国科学家穆瓦桑因分离元素氟、发明穆瓦桑熔炉获得诺贝尔化学奖。 1907-德国科学家毕希纳因发现无细胞发酵获诺贝尔化学奖。 1908-英国科学家卢瑟福因研究元素的蜕变和放射化学获诺贝尔化学奖。 1909-德国科学家奥斯特瓦尔德因催化、化学平衡和反应速度方面的开创性工作获诺贝尔化学奖。 1910-德国科学家瓦拉赫因脂环族化合作用方面的开创性工作获诺贝尔化学奖。 1911-法国科学家玛丽·居里(居里夫人)因发现镭和钋,并分离出镭获诺贝尔化学奖。 1912-德国科学家格利雅因发现有机氢化物的格利雅试剂法、法国科学家萨巴蒂埃因研究金属催化加氢在有机化合成中的应用而共同获得诺贝尔化学奖。 1913-瑞士科学家韦尔纳因分子中原子键合方面的作用获诺贝尔化学奖。 1914-美国科学家理查兹因精确测定若干种元素的原子量获诺贝尔化学奖。 1915-德国科学家威尔泰特因对叶绿素化学结构的研究获诺贝尔化学奖。

1916-1917-1918-德国科学家哈伯因氨的合成获诺贝尔化学奖。 1919-1920-德国科学家能斯脱因发现热力学第三定律获诺贝尔化学奖。 (1921年补发)1921-英国科学家索迪因研究放射化学、同位素的存在和性质获诺贝尔化学奖。 1922-英国科学家阿斯顿因用质谱仪发现多种同位素并发现原子获诺贝尔化学奖。 1923-奥地利科学家普雷格尔因有机物的微量分析法获诺贝尔化学奖。 1924-1925-奥地利科学家席格蒙迪因阐明胶体溶液的复相性质获诺贝尔化学奖。 1926-瑞典科学家斯韦德堡因发明高速离心机并用于高分散胶体物质的研究获诺贝尔化学奖。 1927-德国科学家维兰德因发现胆酸及其化学结构获诺贝尔化学奖。 1928-德国科学家温道斯因研究丙醇及其维生素的关系获诺贝尔化学奖。 1929-英国科学家哈登因有关糖的发酵和酶在发酵中作用研究、瑞典科学家奥伊勒歇尔平因有关糖的发酵和酶在发酵中作用而共同获得诺贝尔化学奖。 1930-德国科学家费歇尔因研究血红素和叶绿素,合成血红素获诺贝尔化学奖。 1931-德国科学家博施、伯吉龙斯因发明高压上应用的高压方法而共同获得诺贝尔化学奖。 1932-美国科学家朗缪尔因提出并研究表面化学获诺贝尔化学奖。 1933-1934-美国科学家尤里因发现重氢获诺贝尔化学奖。 1935-法国科学家约里奥·居里因合成人工放射性元素获诺贝尔化学奖。 1936-荷兰科学家德拜因 X射线的偶极矩和衍射及气体中的电子方面的研究获诺贝尔化学奖。

1981年诺贝尔生理学或医学奖

1981年诺贝尔生理学或医学奖 关于大脑两半球功 能 专属的研究 斯佩里Roger W. Sperry 美国 加利福尼亚技术研 究所 1913年—1994年 关于视觉系统信号 处理的研究 休贝尔 David H. Hubel 美国 哈佛医学 院 1926年— 威塞尔 Torsten N. Wiesel 瑞典 哈佛医学院 1924年— 斯佩里把猫、猴子、猩猩联结大脑两半球的神经纤维割断,称为“割裂脑”手术。这样两个半球的相互联系被切断,外界信息传至大脑半球皮层的某一部分后,不能同时又将此信息通过横向胼胝体纤维传至对侧皮层相对应的部分。每个半球各自独立地进行活动,彼此不能知道对侧半球的活动情况。1961年斯佩里设计了精巧和详尽的测验,在作割裂脑手术的人恢复以后,进行了神经心理学的测定,获得了人左右两半球机能分工的第一手资料,发现两半球机能的不对称性,右半球也有言语功能,从而更新了优势半球的概念。裂脑人的每一个半球都有其独自的感觉、知觉和意念,都能独立地学习、记忆和理解,两个半球都能被训练执行同时发生的相互矛盾的任务。斯佩里的研究,深入地揭示了人的言语、思维和意识与两个半球的关系,成绩卓著。 在20世纪50年代晚期,休贝尔和威塞尔测试了猫的视皮质细胞反应。他们把微电极埋在猫的视皮质细胞中,尽管他们不能选择某个特定细胞,但可以把电极以大约正确的方式插在某处,因此可以了解他们到达了什么地方。而当研究者在屏幕上打出一些光影或者其他图形时,猫就用带子系好,藉已固定好猫的头部,研究者就可以知道是网膜上的哪一部分是图像显现之处,然后把这个被刺进的皮质区进行连接,透过放大器和扬声器,他们可以听到细胞启动的声音。其结果显示细胞对一个横向的线或者边缘有强烈反应,但对点、斜线或直线只有非常微弱的反应,或者根本就没有反应,之后的研究继续显示:有些细胞对某些处在一个角度上的线条、垂直线条、直角

类文阅读:屠呦呦获2015年诺贝尔生理学或医学奖

屠呦呦获2015年诺贝尔生理学或医学奖 本报(人民日报)斯德哥尔摩10月5日电(记者刘仲华商璐)瑞典卡罗琳医学院5日宣布,将2015年诺贝尔生理学或医学奖授予中国药学家屠呦呦以及爱尔兰科学家威廉·坎贝尔和日本科学家大村智,表彰他们在寄生虫疾病治疗研究方面取得的成就。 屠呦呦的获奖理由是“有关疟疾新疗法的发现”。这是中囯科学家因为在中国本土进行的科学研究而首次获诺贝尔科学奖,是中国医学界迄今为止获得的最高奖项,也是中医药成果获得的最高奖项。今年诺贝尔生理学或医学奖奖金共800万瑞典克朗(约合92万美元),屠呦呦将获得奖金的一半,另外两名科学家将共享奖金的另一半。 屠呦呦是诺贝尔医学奖的第十二位女性得主。上世纪六七十年代,在极为艰苦的科研条件下,屠呦呦团队与中国其他机构合作,经过艰苦卓绝的努力并从《肘后备急方》等中医药古典文献中获取灵感,先驱性地发现了青蒿素,开创了疟疾治疗新方法,全球数亿人因这种“中国神药”而受益。目前,以青蒿素为基础的复方药物已经成为疟疾的标准治疗药物,世界卫生组织将青蒿素和相关药剂列入其基本药品目录。 诺贝尔生理学或医学奖评委让·安德森在接受本报记者采访时说,得益于三位科学家的贡献,千百万人得到了对症治疔的药物,这一事件具有里程碑意义。他说:“屠呦呦是第一个证实青蒿素可以在动物体和人体内有效抵抗疟疾的科学家。她的研发对人类的生命健康贡献突出,为科研人员打开了一扇崭新的窗户。屠呦呦既有中医学知识,也了解药理学和化学,她将东西方医学相结合,达到了一加一大于二的效果,屠呦呦的发明是这种结合的完美体现。” 诺贝尔奖评选委员会说,由寄生虫引发的疾病困扰了人类几千年,构成重大的全球性健康问题。屠呦呦发现的青蒿素应用在治疗中,使疟疾患者的死亡率显著降低;坎贝尔和大村智发明了阿维菌素,从根本上降低了河盲症和淋巴丝虫病的发病率。今年的获奖者们均研究出了治疗“一些最具伤害性的寄生虫病的革命性疗法”,这两项获奖成果为每年数百万感染相关疾病的人们提供了“强有力的治疗新方式”,在改善人类健康和减少患者病痛方面的成果无法估量。

历届诺贝尔化学奖得主及其成就

历届诺贝尔化学奖得主及其成就 历届诺贝尔化学奖得主及其成就(1960——2008)(2009-04-03 11:30:05) 1960年W.F.利比(美国人)发明了“放射性碳素年代测定法” 1961年M.卡尔文(美国人)揭示了植物光合作用机理 1962年M.F.佩鲁茨,J.C.肯德鲁(英国人)测定出蛋白质的精细结构 1963年K.齐格勒(德国人),G.纳塔(意大利人)发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究 1964年D.M.C.霍金奇(英国人)使用X射线衍射技术测定复杂晶体和大分子的空间结构1965年R.B.伍德沃德(美国人)对有机合成法的贡献 1966年R.S.马利肯(美国人)用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构 1967年R.G.W.诺里什,G.波特(英国人),M.艾根(德国人)发明测定快速化学反应技术 1968年L.翁萨格(美国人)从事不可逆过程热力学的基础研究 1969年O.哈塞尔(挪威人),D.H.R.巴顿(英国人)为发展立体化学理论作出贡献 1970年L.F.莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用 1971年G.赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究 1972年C.B.安芬森(美国人)确定了核糖核苷酸酶的分子氨基酸排列 S.莫尔,W.H.斯坦(美国人)从事核糖核苷酸酶的活性区位研究 1973年E.O.菲舍尔(德国人),G.威尔金森(英国人)从事具有多层结构的有机金属化合物的研究 1974年P.J.弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究 1975年J.W.康福思(澳大利亚人)研究酶催化反应的立体化学 V.普雷洛格(瑞士人)从事有机分子以及有机反应的立体化学研究 1976年W.N.利普斯科姆(美国人)从事甲硼烷的结构研究 1977年I.普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论 1978年P.D.米切尔(英国人)从事生物膜上的能量转换研究 1979年H.C.布郎(美国人),G.维蒂希(德国人)研制了新的有机合成法 1980年P.伯格(美国人)从事核酸的生物化学研究 W.吉尔伯特(美国人),F.桑格(英国人)确定了核酸的碱基排列顺序 1981年福井谦一(日本人),R.霍夫曼(美国人)从事化学反应过程的研究 1982年A.克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究 1983年H.陶布(美国人)阐明了金属配位化合物电子反应机理 1984年R.B.梅里菲尔德(美国人)开发了极简便的肽合成法 1985年J.卡尔,H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法 1986年D.R.赫希巴奇,李远哲(美籍华人),J.C 波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学 1987年C.J.佩德森,D.J.克拉姆(美国人),J.M.莱恩(法国人)合成冠醚化合物 1988年J.戴森霍弗,R.胡伯尔,H.米歇尔(德国人)分析了光合作用反应中心的三维结构1989年S.奥尔特曼,T.R.切赫(美国人)发现RNA自身具有酶的催化功能 1990年E.J.科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论

诺贝尔化学奖

1990年伊莱亚斯?詹姆斯?科里(Elias James Corey)(美国),由于提出有机合成理论及方法而获奖。他创立了“逆合成分析原理”,并率先用计算机辅助有机合成的方法,使有机合成化学进入到一个新的领域——“分子模拟”,得以模拟生产许多复杂的天然产品。 1991年理查德?恩斯特(Richard R Ernst)(瑞士),1933年生于瑞士联邦的温吐尔,苏黎士瑞士联邦理工学院教授,因对开发制造高分辨率核磁共振谱仪技术的贡献而获奖。 1992年鲁道夫?马库斯(Rudolph?Arthur?Marcus)(美国)1923 年生于加拿大魁北克蒙特利尔城,加利福尼亚理工学院教授,因为确立化学系统中电子转移反应理论的贡献而获奖。该理论对于生命或生理机制具有重要意义。 1993年发现聚合酶链式反应法的卡里?穆利斯(kary Mullis)(美国)1944年生于美国加州的拉霍亚。与创立寡聚核苷酸导向定位突变法的迈克尔?史密斯(Michaei Smith,1932年出生的加拿大籍英国人)分享当年的化学奖。 1994年乔治?奥拉(George A.Olah)(美国),1927年生于匈牙利,美国南加州大学教授,因对有机化学的贡献而获奖。他发现了用超强酸使阳离子保持稳定的方法,对发现新的有机化学反应和推动有机化学工业发展起到了重要作用。 1995年保罗?克鲁森(Paul Crutzn,生于1933年,荷兰)、马里奥?莫利纳(Mario Molina,生于1943年,墨西哥)和弗兰克?舍伍德?罗兰(Frank Sherwood Rowland,生于1927年,美国)三人由于在大气化学领域,尤其是在有关臭氧层形成和损耗方面的研究工作而共同获奖。 1996年小罗伯特?柯尔(Robert F.Curl,Jr,美国,生于1933年)、哈罗德?克罗托(Sir Harlod W.Kroto,生于1939年,英国)和理查德?斯莫斯(Richard E.Smalley,生于1943年,美国)等三人由于发现球状碳分子即富勒烯C60而共同获奖。 1997年一半奖金由保罗?博伊尔(Paul D.Boyer,生于1918年,美国)和约翰?约克(John E.Walker,生于1914年,英国)分享,是因其阐明了三磷酸腺苷在体内形成的生物催化原理;另一半由丹麦的延斯?斯科(Jens C.Skou,生于1918年)获得,他发现了钠、钾离子三三磷酸腺苷酶。 1998年本年度诺贝尔化学奖给予量子化学领域的科学家瓦尔特?柯恩(Walter Kohn)和约翰?波普尔(John A Pople Kohn,美国),1923年生于匈牙利维也纳,在美国加州大学工作;PoPle(英国),1925年生于英国,在美国西北大学工作。这俩位科学家各自率先创新了量子化学计算方法,咳对分子的性质及其参与的化学过程进行有效的理论分析。 1999年本年度诺贝尔化学奖给予埃及裔美国人艾哈德?泽维尔(Ahmed H.Zewail),以表彰他为飞秒光谱学(femtosecond spectroscopy,1飞秒=10-15秒)研究所作的贡献。泽维尔的研究成果使得人们便于研究和预测一些重要的化学反应,给化学以及相关科学领域带来了一场革命。 2000年美国科学家艾伦?黑格、艾伦?马克迪尔米德以及日本科学家白川英树由于在导电聚合物领域的开创性贡献,荣获今年的诺贝尔化学奖。

2001-2011年诺贝尔化学奖的得主

2001年诺贝尔化学奖获得者 像人的左右手一样,这被称作手性。而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。这些药是消旋体,它的左旋与右旋共生在同一分子结构中。在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。2001年的化学奖得主就是在这方面做出了重要贡献。他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。 1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的对映体。他的研究被迅速应用于一种治疗帕金森症药物的生产。后来,野依良至进一步发展了对映性氢 2002年 瑞典皇家科学院于2002年10月9日宣布,将2002年诺贝尔化学奖授予美国科学家约翰·芬恩、日本科学家田中耕一和瑞士科学家库尔特·维特里希,以表彰他们在生物大分子研究领域的贡献。 2002年诺贝尔化学奖分别表彰了两项成果,一项是约翰·芬恩与田中耕一“发明了对生物大分子进行确认和结构分析的方法”和“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖另一半的奖金。 2003年 2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。他们研究的细胞膜通道就是人们以前猜测的“城门”。 2004年 2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。 2005年 三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理查德·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典皇家科学院说,这是重要基础科学造福于人类、社会和环境的例证。 2006年诺贝尔化学奖获得者-罗杰·科恩伯格 美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖。瑞典皇家科学院在一份声明中说,科恩伯格揭示了真核生物体内的细胞如何利用基因内存储的信息生产蛋白质,而理解这一点具有医学上的“基础性”作用,因为人类的多种疾病如癌症、心脏病等都与这一过程发生紊乱有关。 2007年诺贝尔化学奖格哈德·埃特尔

1990年诺贝尔化学奖

1990年诺贝尔化学奖 伊利亚斯·詹姆士·科里 1990年10月17日,瑞典皇家科学院授予美国哈佛大学的有机化学家伊利亚斯·詹姆士·科里(Elias James Corey)以1990年的诺贝尔化学奖,表彰他在有机合成的理论和方法学方面的贡献。 科里从50年代后期开始进行有机合成的研究工作,30多年来他和他的同事们合成了几百个重要的天然产物。这些化合物的结构都比较复杂,而且越往后,他合成的目标化合物越复杂,合成的难度也越大。 按照科里和他的学生成学敏在1989年出版的一本名为《化学合成的逻辑》的书分类,他的合成工作主要涉及(1)大环结构:主要是一些大环内酯和大环内酰胺类的抗菌化合物;(2)杂环结构:主要是一些生物碱和维生素等;(3)倍半萜类化合物:由3个异戊二烯结构单位组成分子碳架的各种天然的烃类和其衍生物;(4)多环异戊二烯类化合物:含有更多异戊二烯结构单位的天然多环化合物;(5)前列腺素类化合物:一类激素;(6)白三烯类化合物:一类具有很强生物活性的多烯和其衍生物。下面列出科里首先合成的有代表性的几个化合物: 从这几个例子就足以看出,即使他最早期的合成工作(如长叶烯的合成)也已经能够显示出他的巨大天才。但是,科里最大的功绩并不在于他的那些艰巨的合成工作,而是在1967年他提出具有严格逻辑性的“逆合成分析原理”,以及有关在合成过程中,各种功能团的转变、加入和消去的一系列系统地修饰分子的原则和方法。逆合成分析原理,简单地说,就是确定如何将要合成的目标分子按可再结合的原则在合适的键上进行分割,使其成为合理的、较简单的和较易得的较小起始反应物分子;然后,再反过来将找到的这些小分子或等价物按一定的顺序和立体方式,逐个地通过合成反应再结合起来,并经过必要的修饰,而得到所要合成的目标化合物。所以逆合成分析是决定整个合成路线的关键,关系到整个合成的策略、成败和评价。例如,科里选用的长叶烯逆合成是:

1901-2015年诺贝尔化学奖获得者

1901-2015历届诺贝尔化学奖得主诺贝尔化学奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔(1833-1896)的部分遗产作为基金创立的5项奖金之一。诺贝尔化学奖由瑞典皇家科学院从1901年开始负责颁发,总共被颁发了106次。期间只有1916、1917、1919、1924、1933、1940、1941和1942八年没有颁发。诺贝尔奖奖项空缺,除了受到两次世界大战影响之外,还受到了诺贝尔奖组委会“宁缺毋滥”的评奖理念的影响。 到目前为止,诺贝尔化学奖共有169位获奖者。其中英国生物化学家弗雷德里克·桑格(Frederick Sanger)在1958年和1980年两次获得诺贝尔奖,因此历史上获得诺贝尔奖的总共只有168人。 诺贝尔化学奖获奖者的平均年龄是58岁。其中有32人获奖年龄介于50岁和54岁之间,几乎占到了总获奖人数的20%。 1901年--1910年 1901年:雅克布斯?范特霍夫(荷)发现了化学动力学法则和溶液渗透压。 1902年:赫尔曼?费歇尔(德)合成了糖类和嘌呤衍生物。 1903年:阿累尼乌斯(瑞典)提出了电离理论,促进了化学的发展。 1904年:威廉?拉姆齐爵士(英)发现了空气中的稀有气体元素,并确定他们 在周期表里的位置。 1905年:阿道夫?拜耳(德)对有机染料以及氢化芳香族化合物的研究促进了 有机化学与化学工业的发展。 1906年:穆瓦桑(法)研究并分离了氟元素,并且使用了后来以他名字命名 的电炉。 1907年:爱德华?毕希纳(德)对酶及无细胞发酵等生化反应的研究。 1908年:欧内斯特?卢瑟福爵士(新西兰)对元素的蜕变以及放射化学的研 究。 1909年:威廉?奥斯特瓦尔德(德)对催化作用,化学平衡以及化学反应速率 的研究。 1910年—1919年 1910年:奥托?瓦拉赫(德)在脂环类化合物领域的开创性工作促进了有机化 学和化学工业的发展的研究。 1911年:玛丽亚?居里(法)发现了镭和钋,提纯镭并研究镭的性质。 1912年格利雅(法)发明了格氏试剂,促进了有机化学的发展;保罗?萨巴蒂 埃(法)发明了有机化合物的催化加氢的方法,促进了有机化学的发展。

2002年诺贝尔化学奖

库尔特·维特里希(1938-) 所有生物都含有包括DNA和蛋白质在内的生物大分子,“看清”它们的真面目曾经是科学家的梦想。如今这一梦想已成为现实。2002年诺贝尔化学奖表彰的就是这一领域的两项成果。 这两项成果一项是美国科学家约翰·芬恩与日本科学家田中耕一“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖一半的奖金。 质谱分析法是化学领域中非常重要的一种分析方法。它通过测定分子质量和相应的离子电荷实现对样品中分子的分析。19世纪末科学家已经奠定了这种方法的基础,1912年科学家第一次利用它获得对分子的分析结果。在质谱分析领域,已经出现了几项诺贝尔奖成果,其中包括氢同位素氘的发现(1934年诺贝尔化学奖成果)和碳60的发现(1996年诺贝尔化学奖成果)。不过,最初科学家只能将它用于分析小分子和中型分子,由于生物大分子比水这样的小分子大成千上万倍,因而将这种方法应用于生物大分子难度很大。 尽管相对而言生物大分子很大,但它们在我们看来是非常小的,比如人体内运送氧气的血红蛋白仅有千亿亿分之一克,怎么测定单个生物大分子的质量呢?科学家在传统的质谱分析法基础上发明了一种新方法:首先将成团的生物大分子拆成单个的生物大分子,并将其电离,使之悬浮在真空中,然后让它们在电场的作用下运动。不同质量的分子通过指定距离的时间不同,质量小的分子速度快些,质量大的分子速度慢些,通过测量不同分子通过指定距离的时间,就可计算出分子的质量。 这种方法的难点在于生物大分子比较脆弱,在拆分和电离成团的生物大分子过程中它们的结构和成分很容易被破坏。为了打掉这只“拦路虎”,美国科学家约翰·芬恩与日本科学家田中耕一发明了殊途同归的两种方法。约翰·芬恩对成团的生物大分子施加强电场,田中耕一则用激光轰击成团的生物大分子。这两种方法都成功地使生物大分子相互完整地分离,同时也被电离。它们的发明奠定了科学家对生物大分子进行进一步分析的基础。 如果说第一项成果解决了“看清”生物大分子“是谁”的问题,那么第二项成果则解决了“看清”生物大分子“是什么样子”的问题。 第二项成果涉及核磁共振技术。科学家在1945年发现磁场中的原子核会吸收一定频率的电磁波,这就是核磁共振现象。由于不同的原子核吸收不同的电磁波,因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。这种技术已经广泛地应用到医学诊断领域。 不过,最初科学家只能将这种方法用于分析小分子的结构,因为生物大分子非常复杂,分析起来难度很大。瑞士科学家库尔特·维特里希发明了一种新方法,这种方法的原理可以用测绘房屋的结构来比喻:我们首先选定一座房屋的所有拐角作为测量对象,然后测量所有相邻拐角间的距离和方位,据此就可以推知房屋的结构。维特里希选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的两个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。 这种方法的优点是可对溶液中的蛋白质进行分析,进而可对活细胞中的蛋白质进行分析,能获得“活”蛋白质的结构,其意义非常重大。1985年,科学家利用这种方法第一次绘制出蛋白质的结构。目前,科学家已经利用这一方法绘制出15-20%的已知蛋白质的结构。 最近两年来,人类基因组图谱、水稻基因组草图以及其他一些生物基因组图谱破译成功后,生命科学和生物技术进入后基因组时代。这一时代的重点课题是破译基因的功能,破译蛋白质的结构和功能,破译基因怎样控制合成蛋白质,蛋白质又是怎样发挥生理作用等。在这些课题中,判定生物大分子的身份,“看清”

【历届诺贝尔奖得主(十)】2003年化学奖

化学奖 美国科学家彼得·阿格雷、罗德里克·麦金农因在细胞膜通道方面做出的开创性贡献,而共同获得诺贝尔化学奖。 彼得·阿格雷 彼得·阿格雷,科学家。1949年生于美国明尼苏达州小城诺斯菲尔德,1974年在巴尔的摩约翰斯·霍普金斯大学医学院获医学博士,现为该学院生物化学教授和医学教授。2004年来到杜克大学,担任医学院副院长。由于发现了细胞膜水通道,在2003年获得诺贝尔化学奖。 人物简介 彼得·阿格雷1949年生于美国明尼苏达州小城诺斯菲尔德,1974年在巴尔的摩约翰斯·霍普金斯大学医学院获医学博士,现为该学院生物化学教授和医学教授。2004年到杜克大学,担任医学院副院长。他与麦金农分享总额为1000万克朗(约合130万美元)的奖金。 瑞典皇家科学院2003年10月8日宣布,将2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金 彼得·阿格雷 农,以表彰他们在细胞膜通道方面做出的开创性贡献。 彼得·阿格雷诺贝尔化学奖评选委 员会主席本特·努丁在新闻发布会上说,阿格雷得奖是由于发现了细胞膜水通道,而麦金农的贡献主要是在细胞膜离子通道的结构和机理研究方面。他们的发现阐明了盐分和水如何进出组成活体的细胞。比如,肾脏怎么从原尿中重新吸收水分,以及电信号怎么在细胞中产生并传递等等,这对人类探索肾脏、心脏、肌肉和神经系统等方面的诸多疾病具有极其重要的意义。诺贝尔科学奖通常颁发给年龄较大的科学家,获奖成果都经过几十年的检验。但阿格雷只有54岁,而麦金农才47岁。他们的成果也比较新:麦金农的发现产生于5年前;阿格雷的工作于1988年完成。瑞典媒体评论说,这在诺贝尔科学奖历史上是比较罕见的。今年诺贝尔化学奖及生理学或医学奖的结果都显示出了当代科学跨领域研究的趋势。 离子通道是另一种类型的细胞膜通道,神经系统和肌肉等方面的疾病与之有关,它还能产生电信号,在神经系统中传递信息。但由于科学家一直不能弄清楚它的结构,进一步的研究无法展开。而麦金农在1998年测出了钾通道的立体结构,“震惊了所有的研究团体”。评选委员会说,由于他的发现,人们可以“看见”离子如何通过由不同细胞信号控制开关的通道。 获奖情况 2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。 奖项:2003年诺贝尔化学奖 获得者:彼得·阿格雷罗德里克·麦金农 成就:表彰他们在细胞膜通道方面做出的开创性贡献 获奖理由 人类在内的各种生物都是由细胞组成的。细胞如同一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。早在100多年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允 罗德里克·麦金农 许特定的分子或离子出入。2003年诺贝尔化学奖表

2013年诺贝尔物理学奖,物理化学和化学物理,及学术的源流

2013年诺贝尔物理学奖,物理化学和化学物理,及 学术的源流 2013.10.29 https://www.360docs.net/doc/f916179633.html,/blog-176-737164.html 在博文《2013诺贝尔化学奖、物理化学和化学物理,及学术上的尾巴摇狗》之后本来准备写一篇《2013年诺贝尔物理学奖,物理化学和化学物理,以及学术的源流》,为了收集材料拖了几天,结果遇上了具有中国特色的南京大学王牧和闻海虎之争的大热,只好避几天风头再来炒冷饭。 博文《2013诺贝尔化学奖、物理化学和化学物理,及学术上的尾巴摇狗》链接:https://www.360docs.net/doc/f916179633.html,/blog-176-732783.html 2013年诺贝尔物理学奖又是物理化学和化学物理的胜利 2013年的诺贝尔物理学奖,说来说去又算得上是物理化学和化学物理的胜利。 为什么这样说呢? 2013年诺贝尔物理学奖获得者Peter Higgs的博士老板Charles Coulson是所谓应用数学家和理论化学家,他的主要科学贡献在于应

用量子价键理论去研究分子结构,动力学和化学反应性。Peter Higgs 的博士论文题目是Some Problems in the Theory of Molecular Vibrations(《分子振动理论中的一些问题》),这是典型的物理化学和化学物理研究内容,也是俺比较具有特长的研究领域。另外,今年获得诺贝尔化学奖的Martin Kaplus也在Charles Coulson的研究组做过博士后。Karplus和Higgs算是师出同门,当然是物理化学和化学物理的门。 wiki百科Charles Coulson介绍链接: https://www.360docs.net/doc/f916179633.html,/wiki/Charles_Coulson wiki百科Peter Higgs介绍链接: https://www.360docs.net/doc/f916179633.html,/wiki/Peter_Higgs Peter Higgs在University of Edingburgh他自己的网站上介绍说,“In 1954, he was awarded a PhD for a thesis entitled 'Some Problems in the Theory of Molecular Vibrations', work which signalled the start of his life-long interest in the application of the ideas of symmetry to physical systems.”也就是说,Higgs是在研究分子振动的理论中学到了关于对称性的思想然后才开始了他一生中把对称性思想应用到物理体系中 去的兴趣。 Peter Higgs在Edingburgh大学的网站链接: https://www.360docs.net/doc/f916179633.html,/higgs/peter-higgs

相关文档
最新文档